UMass Boston Computer Science
Instructor: Stephen Chang
Fall 2021

strictly locally
testable

Lecture Logistics

e This is a remote class!
At least until Sept 30th

Lectures will be recorded and posted to Blackboard/Echo360
« Slides will typically be posted to the course web page before class

Type questions into Zoom's chat
« Don’t use the hand raise feature
« Please be patient since | may only monitor occasionally

Keep audio and video off normally

| may call on students randomly during lecture
« Turn on audio and video when speaking
» Please be presentable

Quiz (5min) at end of every lecture (on gradescope)

Welcome to CS 622!
ry of Formal Language::

UMass Boston Computer Science >
Instructor: Stephen Chang What's a

What's a “language”?

What's a “language”

L
bject HelloWorld extends App {

println("hello world")
<?xml version="1.0"2>

<greeting>hello world</greeti
main = putStrin "hello world"

package main = b
import "fmt" <>xm1 version="1.0"2> 7 3 i :
func main() { Application xmlns="http://www.adobe.com/2606/mxml">
fmt.Println(“hello world")<Labe1 text="hel 1d" />
</Application> c 72 6C 64
createTextField("hello", @, 0, 0, 100,
hello.text ello world"

Imports Syst
Public Module modmain
Sub Main()
; Console.Write!
End Sub
state start: End Module

SELECT 'hello world' AS hello pstr(*hello world\n®); y

halt;

., (let ((hello-world (lambda() (display "hello world")(newline))))
“ (hello-world))

puts "hello world’

) Nk . Print["hello world"]
10 PRINT "hello world" ' 3 :

A DO D DR DR O e

C AR O SR D b -
b e

Transcript show: 'hello world'. T {

* 4 w1/usr/bin/lua _
=*¢ print("hello world") ,

-

on/Found
rgc, const char * argv[])

~14"Y . with Ada.Text_IO;
hello world™); ic"ada.Text_T0;
procedure Hello is
" " begin
#include <iostream> put_Line("hello world");

int main() { end Hello;
cout << "hello world" << endl;

Welcome to CS 622!
ry of Formal Languages

UMass Boston Comp\iter Science
Instructor: StepheiNChang
Fall 2021

“Defined mathematically”

The Formal Definition of a Language

- A language is a (possibly infinite) set of strings

» A string/word is a (finite) sequence of chars from an alphabet

- An alphabet is a (finite, non-empty) set of chars/symbols

The Formal Definition of a Language

- A language is a (possibly infinite) set of strings
« E.g, the set of all binary numbers
. all Python programs
. all words in English dictionary

« X" = language of all possible strings over alphabet X
« Forall languages L over alphabetX, L ¥

» A string/word is a (finite) sequence of chars from an alphabet

- E.g, 910101
. hello
. e (sometimes 1) is the empty string (length zero string)

- An alphabet is a (finite, non-empty) set of chars/symbols
- F.o. {0,1} (binary digits, the alphabet of computers)
. {a,b, .., z} (lowercase letters)
. set of ASCII chars

« Alphabets are often denoted with the X symbol

Theory

(In mathematical logic)
A theory consists of:
« Axioms
« Accepted facts and definitions
* Theorems
« |.e, additional facts derived from axioms and previous theorems
« Using a deductive system
e, “if pthen q” and “p”, then “q” (modus ponens)

Each of these language classes corresponds to a different kind of computer!

Why study languages formally?

1. To communicate with computers!
\ « We need to know what “languages” they can understand

» £.8., Python, C++, Java programs?

recursively enumerable

context-sensitive

- — - —
-~ - = =~ ~
P mildly ~
/ . e N
- context-sensitive \
\
\
- te

regular/
finite-state

\ \ Simpler languages are often more convenient

» E.g., text search, arithmetic =

strictly locally
testable

Don't want to
write Python here

Google

finite
languages

« Different languages require different
computing power to understand/recognize

So the formal study of languages is also
the formal study of computation!

“Chomsky” hierarchy

Why study computers formally?

2. To predict what programs will do
 (without running them!

1f the number n 1s a prime

RANSOMWARE ATTACK

T
nmunlicate

YOUR FILES HAVE BEEN ENCRYPTED

Why study computers formally?

3. To know the limits of computers
* |l.e., what they can’t do -

= httpsr//j

« More practically, resource-limited computers

* l.e., what can | compute with ... :
e ...a certain amount of time? - et
* ...a certain amount of memory space?)

* ...acertain probability?

context-sensitive

— ——
—
- -~

’ .
P mildly N
context-sensitive

context-free

regular/
finite-state

strictly locally
testable

—
— ——

finite
languages

e ...a limited circuit size?

Why study languages formally?

4. Many, many practical applications

 E.g., Can we formally model ...
e ... human spoken language?
e ...animal communication?
¢ ...Mmusic?

recursively enumerable

context-sensitive

-
-
-‘"— -

- mildly ~

language context-sensitive

context-free

regular/
) finite-state
animal
vocalization
strictly locally
testable
music

finite
languages

- =

. 13
Rohrmeier et al. 2015

More Practical Applications
Writing secure software:

The LANGSEC (Language-Theoretic Security) community
posits that the only path to trustworthy software ...

... Is treafing all valid inputs as a formal language ...

... where input-parsing is handled by automata with the
required computation power.
————— langsec.org

Applications of Formal Langs: Beyond CS

recursively enumerable

* Lindenmeyer grammars model plant growth

variables : X F

context-sensitive

———

- -

constants : + - [] mildly

start : X context-sensitive
rules : (X — F+[[X]-X-F[-FX]+X), (F — FF)
angle :25° context-free

regular/
finite-state

« Many fractal patterns in nature are CFGs

strictly locally
testable

finite
languages

- DNA has its own formal language

Bulletin of Mathematical Biology

£ b

Formal language theory and DNA: An analysis of’
the generative capacity of specific recombinant
behaviors

Languages Computation Models

In this class

recursively enumerable

Turing machines

context-sensitive <€

Linear bounded automaton

— -,
/'— T~
~
~

L

’ .
P mildly N
context-sensitive

Embedded bounded automaton

/
—

context-free <€

Pushdown automata

/|
I'd
rd
-
-
-

regular/
finite-state

A

Finite state automata

e
[

-
- -
e - -

_—---‘

strictly locally
testable

Local automata

finite
languages

CS420

VS

CS622
« Deeper topics, faster paced

* More proofs (so brush up on
CS220/CS320)

20

Course Logistics

Course website:

https://www.cs.umb.edu/~stchang/cs622/f21/

21

https://www.cs.umb.edu/~stchang/cs420/f20/index.html
https://www.cs.umb.edu/~stchang/cs420/f20/index.html
https://www.cs.umb.edu/~stchang/cs420/f20/index.html
https://www.cs.umb.edu/~stchang/cs420/f20/index.html

Quiz 9/8

See gradescope.com

22

