CS622

Regular Languages and Finite Automata

Monday, September 13, 2021 UMass Boston Computer Science

Logistics

- HW1 released
 - Due Sun 9/19 11:59pm on gradescope
 - Don't forget: submit README with solutions
 - Who you worked with
 - External resources consulted
 - Time spent on assignment
- Lecture 1 video recording posted
 - See Blackboard / Echo360
- Office Hours: Tues Fri 4-5:30pm EST
- Logistics issues? Other questions?
 - Accounts working?

Last Time: Formal Definition of a Language

- A language is a (possibly infinite) set of <u>strings</u>
 - <u>E.g.</u>, the set of all binary numbers
- A **string**/word is a (finite) sequence of chars from an <u>alphabet</u>
 - <u>E.g.</u>, **010101**
- An alphabet is a (finite, non-empty) set of chars/symbols
 - <u>E.g.</u>, **{0, 1}** (binary digits, the alphabet of computers)

Computation Models Languages Last Time: Turing machines recursively enumerable Linear bounded automaton context-sensitive mildly Embedded bounded automaton context-sensitive Pushdown automata context-free We'll start here regular/ Finite state automata finite-state strictly locally Local automata testable finite languages The Chomsky Hierarchy of Languages

"Regular" Languages

Commonly used in search and text processing tools

• E.g., grep, sed, awk

A regular language is recognized by a **finite state automaton** computer

Finite State Automaton

- A.k.a., "finite automaton",
 "finite state machine" (FSM),
 "deterministic finite state automaton" (DFA)
- Key characteristic:
 - Has a finite number of states
 - I.e., it's a computer with a finite amount of memory
 - Can't dynamically allocate
- Often used for text matching

Finite Automata: State Diagram

Finite Automata: The Formal Definition

DEFINITION 1.5

5 components

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the **states**,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

State Diagram vs Formal Description

Formal description

 $M_1 = (Q, \Sigma, \delta, q_1, F)$, where

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

State diagram

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

$$M_1 = (Q, \Sigma, \delta, q_1, F)$$
, where

1.
$$Q = \{q_1, q_2, q_3\},\$$

2.
$$\Sigma = \{0,1\}$$
, Input chars

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the **states**,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

$$M_1 = (Q, \Sigma, \delta, q_1, F)$$
, where

1.
$$Q = \{q_1, q_2, q_3\},\$$

2.
$$\Sigma = \{0,1\},$$

3. δ is described as

"And this is next input symbol"

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the **states**,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

$$M_1 = (Q, \Sigma, \delta, q_1, F)$$
, where

1.
$$Q = \{q_1, q_2, q_3\},\$$

2.
$$\Sigma = \{0,1\},$$

3. δ is described as

	0	1
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	q_2 ,

4. q_1 is the start state, and

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set called the **states**,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

 $M_1 = (Q, \Sigma, \delta, q_1, F)$, where

1.
$$Q = \{q_1, q_2, q_3\},\$$

2.
$$\Sigma = \{0,1\},$$

3. δ is described as

	0	1
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	q_2 ,

4. q_1 is the start state, and

5.
$$F = \{q_2\}.$$

"Running" an FSM "Program" (JFLAP demo)

• Program: "1101"

Running an FSM Program: Formal Model

Define the extended transition function: $\delta: Q \times \Sigma^* \to Q$

- Inputs:
 - Some beginning state $q \in Q$ (not necessarily the start state)
 - Input string $w = a_1 a_2 \cdots a_n$ where $a_i \in \Sigma$
- Output:
 - Some ending state (not necessarily an accept state)

(Defined recursively, on the length of the input string)

• Base case: $\hat{\delta}(q,\epsilon) = q$

First chars

Last char

• Recursive case: $\hat{\delta}(q,w'a_n)= \underline{\delta}(\hat{\delta}(q,w'),a_n)$ where $w'\in \Sigma^*=a_1\cdots a_{n-1}$ and $a_n\in \Sigma$

FSM Computation Model: Summary

Informally

- <u>Computer</u> = a finite automata
- <u>Program</u> = input string of chars To run a program:
- Start in "start state"
- Read 1 char at a time, changing states according to <u>transition</u> table
- Result =
 - "Accept" if last state is "Accept" state
 - "Reject" otherwise

Formally

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$
- $r_0 = q_0$
- $\delta(r_i, w_{i+1}) = r_{i+1}$, for i = 0, ..., n-1• Or $\hat{\delta}(r_0, w)$
- M accepts w if $\hat{\delta}(q_0, w)$ is in F

A Finite Automaton's Language

• A machine M accepts w if $\hat{\delta}(q_0, w)$ is in F

• Language of $M = L(M) = \{w | M \text{ accepts } w\}$

"the set of all ..."

"such that ..."

A language is called a *regular language* if some finite automaton recognizes it.

A *language* is a set of strings.

M recognizes language A if $A = \{w | M \text{ accepts } w\}$

Is it Regular?

- If given: Finite Automata M
 - We know: the language recognized by M is a regular language
- <u>If given</u>: some Language *A*
 - Is A is a regular language?
 - Not necessarily
 - How do we determine, i.e., prove, that A is a regular language?

A language is called a *regular language* if some finite automaton recognizes it.

Designing Finite Automata: Tips

- Input may only be read once, one char at a time
- Must decide accept/reject after that
- States = the machine's **memory**!
 - Machine has finite amount of memory, and must be allocated in advance
 - · So think about what information must be remembered.
- Every state/symbol pair must have a transition (for DFAs)
- Example: a machine that accepts strings with odd number of 1s

Design a DFA: accepts strs with odd # 1s

- States:
 - 2 states:
 - seen even 1s so far
 - seen odds 1s so far

Alphabet: 0 and 1

• Transitions:

Is our machine "correct"?

We have to prove it!

Proof by Induction

- To prove that a property P is true for a thing x:
 - 1. Prove P for the base case of x (usually easy)
 - 2. Prove P for the inductive case:
 - Assume the <u>induction hypothesis</u> (IH):
 - Assume $P(x_{smaller})$ true for some measure of "smaller"
 - E.g., if x is string, then "smaller" = length of string
 - Use IH to prove P(x)
 - Usually involves a <u>case analysis</u> on all possible ways to go from x_{smaller} to x
- Why can we assume IH is true???
 - Because we can always start at base case,
 - Then use it to prove for slightly larger case,
 - Then use that to prove for slightly larger case ...

Odd # 1s DFA: Proof of Correctness

P(x) = M accepts strings x with odd # of 1s, else rejects

- Base case (the smallest string):
 - Let $x = \varepsilon$ (the empty string!)
 - x has even 1s and M rejects, so P(x) = TRUE

Odd # 1s DFA: Proof of Correctness

P(x) = M accepts strings x with odd # of 1s, else rejects

- Induction step:
 - Let x = x'a, where a = 0 or 1
 - Induction Hypothesis (IH): Assume P(x') = TRUE

- Use P(x') to prove P(x), analyzing all possible ways to get x from x':
 - If x' has odd # 1s, then M is in state q_{odd} :
 - Let x = x'0: M stays in q_{odd} and accepts, so P(x) = TRUE
 - Let x = x'1: M goes to q_{even} and rejects, so P(x) = TRUE
 - If x' has even # 1s, then M is in state q_{even} :
 - Let x = x'0: M stays in q_{even} and rejects, so P(x) = TRUE
 - Let x = x'1: M goes to q_{odd} and accepts, so P(x) = TRUE

Thus we have proven that machine *M* recognizes the language of strings containing an odd # 1s

Next time: Combining DFAs

From: https://www.umb.edu/it/password

It would be nice if we could just combine them all together into one big DFA!

Next time: Combining DFAs

Problem:

Once we enter one of the machines, we can't go back to the other one!

Solution:

Nondeterminism: allows being in multiple states, i.e., multiple machines, at once!

In-class Quiz 9/13

See gradescope