CS622

Regular Languages and

Finite Automata

Monday, September 13, 2021
UMass Boston Computer Science

Logistics

* HW1 released

e Due Sun 9/19 11:59pm on gradescope

« Don't forget: submit README with solutions
« Who you worked with
« External resources consulted
« Time spent on assignment

 Lecture 1video recording posted
 See Blackboard / Echo360

 Office Hours: Tues Fri 4-5:30pm EST

* Logistics issues? Other questions?
« Accounts working?

last Time: FOrmal Definition of a Language

- A language is a (possibly infinite) set of strings
« E.g, the set of all binary numbers

» A string/word is a (finite) sequence of chars from an alphabet
. g, 010101

- An alphabet is a (finite, non-empty) set of chars/symbols
- Eg, {0, 1) (binary digits, the alphabet of computers)

Last [ine.

Languages

recursively enumerable

context-sensitive <€

Computation Models

Turing machines

— ——
—
- -~

-~
P mildly

-~
s

Y

L

Linear bounded automaton

context-sensitive

context-free <€

e

-~

Embedded bounded automaton

L=
=

regular/

A

A
/ 7|
”~

-
”
-

Pushdown automata

finite-state

strictly locally

e
[

Finite state automata

——----.

testable

finite
languages

Local automata

-
- -
e - -

“Regular” Languages

« Commonly used in search and text processing tools

* kg, grep, sed, awk (@ 50a -)
v File Search Task S Git Search Java Search
Cor [
- Case sensit ve
acter, \ = escape for literals: * 7 \ Regular expression Regu la r la ngu age
| m
C se..
=3 h ludin
Cor
ccccc
w pace Sel d E 1
Working se t Choose...
Customize. Replace... Search Cancel

A regular language is recognized by a finite state automaton computer

Finite State Automaton

Aka., “finite automaton”,
“finite state machine” (FSM),
“deterministic finite state automaton” (DFA)

« Key characteristic:
e Has a finite number of states

. le, It's a computer with a finite amount of memory
« Can't dynamically allocate

» Often used for text matching SH—Qﬁ@L@ﬂ

Finite Automata: State Diagram

Accept State
! 1
1 y
Start State " _Reading this input causes

this state transition
States

Finite Automata: The Formal Definition

- 45 components
DEFINITION 1.5

A finite automaton is a S-tuple (Q, X, 9, qo, F'), where

1. @ is a finite set called the states,

2. Y is a finite set called the alphabet,

3. 0: Q x X—(Q is the transition function,
4. qo € Q 1s the start state, and

5. F C Q is the set of accept states.

DEFINITION 1.5

A finite automaton is a 5-tuple (Q, X, 6, qo, F'), where Sta:e D l ag ra m VS
1. @ is a finite set called the states, FO r T] a l D escrl ptl O ﬂ

2. ¥ is a finite set called the alpbabet,

3. 0: Q X ¥— () is the transition function,
4. qo € Q is the start state, and

5. F C @ is the set of accept states.

DEFINITION 1.5 Formal description

A finite automaton is a 5-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (5, qi, F), where

1. @ is a finite set called the states,

2. ¥ is a finite set called the alpbabet,

3. 0: Q X ¥— () is the transition function,
4. qo € Q is the start state, and

5. F C @ is the set of accept states.

State diagram

DEFINITION 1.5
A finite automaton is a 5-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (5, qi, F), where

1. Q) is a finite set called the states, 1 _
2. ¥ is a finite set called the alpbabet, - @ {Ql 42, 43 }’
3. 0: Q X ¥—Q is the transition function, 2. Y = {031}, Input chars

4. qo € Q) is the start state, and
5. F C @ is the set of accept states.

Input chars

DEFINITION 1.5
A finite automaton is a 5-tuple (Q, X, 6, qo, F'), where

1. @ is a finite set called the states,

2. Y is a finite set called the alphabet,

3. 0: Q X ¥— () is the transition function,
4. qo € Q is the start state, and

5. F C @ is the set of accept states.

“And this is next
0 1 input symbol”

“If in this

state” “Then go to
this state”

M, =(Q,%,9,q1, F'), where
1. Q ={q1,92,q3},

2.5 ={0,1},
3.) is described as [upogthisie next
0 1 input symbol”
qd1 | d1 g2
“If in this
state” 92 | 93«42 “Then go to
q3 | 42 (42, this state”

DEFINITION 1.5
A finite automaton is a 5-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (5, qi, F), where

1. @ is a finite set called the states, 1 _
2. ¥ is a finite set called the alpbabet, . Q {Ql 42, 43 }’
3. 0: Q X ¥— () is the transition function, 2. X = {Oa]—}a
4. do € Q 1S the Sta”Stﬂte, and 3‘ 5 iS descrijed 1S
5. F C @ is the set of accept states.
O 1
0 qd1 |1 91 g2
q2 | 43 42
1 43 | 42 42,
q1

4. ¢ 1s the start state, and

Start state

DEFINITION 1.5
A finite automaton is a 5-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (5, qi, F), where

1. @ is a finite set called the states, 1 _
2. ¥ is a finite set called the alpbabet, Q {Ql 42, 43 }’
3. 0: Q X ¥— () is the transition function, 2.) = {Oa]—}a
4. qo € Q is the start state, and 3. §1s described as
5. F C @ is the set of accept states.
o) 1
0 q1 [91 42
q2 | 43 Q2
1 43 | 92 42,
q1 :
4. ¢ 1s the start state, and

5. F = {QQ}.

Accept state(s)

“‘Running” an FSM “Program” (JFLAP demo)

0 1
/\
.Computer: 1 e
0

* Program: “1101"

d: Q X ¥—Q is the transition function

Running an FSM Program: Formal Model

Define the extended transition function: ¢ : QXY —Q

 Inputs:
« Some beginning state ¢ & Q (not necessarily the start state)

- Input stringw = ayas - - - a, where a; € X

* Qutput:
- Some ending state (not necessarily an accept state)

(Defined recursively, on the length of the input string)

 Base case: (q,€) = ¢ First chars | | Last char

where w' € ¥* =aqy--- a1

+ Recursive case: 0(q, W' an) = 0(0(q, W), an) e cs

Single transition step Recursive call

FSM Computation Model: Summary

Informally Formally

 Computer = a finite automata M = (Q,%,0,q,F)

« Program = input string of chars ¢ W = WiwW2 - Wy

To run a program:

e Start in “start state” * 70 = qo

« Read 1 char at a time, changing states e §(ri,wit1) =Tiz1, fori=0,...,n—1
according to transition table * Or §(rg, w)

* Result = * M accepts w if S(qgj w) is in F

* “Accept” If last state is “Accept” state
« “Reject” otherwise

A language is a set of strings.

A Finite Automaton’s Language
* A machine M accepts w if 6(qo,w) is in F

 Language of M = L(M) = {w| M accepts w}

“the set of all ...” “such that ...

A language is called a regular language

if some finite automaton recognizes it.

A language is a set of strings.

M recognizes langnage A

|S |t RegUlar? it A = {w| M accepts w}

e If given: Finite Automata M
« We know: the language recognized by M is a regular language

« If given: some Language A

* Is A Is a regular language?
« Not necessarily

« How do we determine, i.e., prove, that A is a regular language?

A language is called a regular language

if some finite automaton recognizes it.

Designing Finite Automata: Tips
 Input may only be read once, one char at a time

« Must decide accept/reject after that

- States = the machine’s memory!
« Machine has finite amount of memory, and must be allocated in advance
« So think about what information must be remembered.

e Every state/symbol pair must have a transition (for DFAs)

« Example: a machine that accepts strings with odd number of 1s

Design a DFA: accepts strs with odd # 1s

e States:

e 2 states:
e seen even 1s so far

e seen odds 1s so far

* Alphabet: @ and 1
O 0

e Transitions: @.@

Is our machine “correct”?
» Start / Accept states: —" . We have to prove it!

Proof by Induction

* To prove that a property P is true for a thing x:
1. Prove P for the base case of x (usually easy)

2. Prove P for the inductive case:

« Assume the induction hypothesis (IH):
« Assume P(x,.;..) true for some measure of “smaller”
« E.g,if xisstring, then “smaller” = length of string
* Use IH to prove P(x)
« Usually involves a case analysis on all possible ways to go from x

to x

smaller

« Why can we assume IH Is true???
» Because we can always start at base case,
« Then use it to prove for slightly larger case,
« Then use that to prove for slightly larger case ...

Odd # 1s DFA: Proof of Correctness

P(x) = M accepts strings x with odd # of 1s, else rejects

e Base case (the smallest string): O . O
e Let x = £ (the empty string!) . -
« x has even 1s and M rejects, so P(x) = TRUE
1

DFA M

Odd # 1s DFA: Proof of Correctness

P(x) = M accepts strings x with odd # of 1s, else rejects

* Induction step:

0 0
e a0
 Let x=x'a, wherea=0or 1 @-
1

» Induction Hypothesis (IH): Assume P(x’) = TRUE

DFA M

« Use P(x’) to prove P(x), analyzing all possible ways to get x from x”:

 If X’ has odd # 1s,then M s in state q 44
+ Letx =x0: M stays in q,,, and accepts, so P(x) = Trug | 1NUS We have proven that

« Letx=x'1: M goes to q.,., and rejects, so P(x) = TRUE machine M recognizes the
 If x' has even # 1s, then M is in state g, language of strings

« Letx=x'0: M stays in q,,., and rejects, so P(x) = TRUE Containing an odd # 1s

» Letx=x'1: M goes to q 44 and accepts, so P(x) = TRUE
“Q.E.D.”

Newt tie: COMDINING DFAS

From: https://www.umb.edu/it/password

Password Requirements

e DFA

» Passwords must have a minimum length of ten (10) characters - but more is better!
» Passwords must include at least 3 different types of characters:
» upper-case letters (A-Z) <— DFA

DEA ——»>|ower-case letters (a-z)

» symbols or special characters (%, &, *, $, etc.) €<— DFA
» numbers (0-9) «— DFA

» Passwords cannot contain all or part of your email address<— DFA

» Passwords cannot be FE-USE‘C](— DFA

It would be nice if we could just combine
them all together into one big DFA!

30

https://www.umb.edu/it/password

Newt tie: COMDINING DFAS

/

Combined machine
adds new start state

M : Check special chars

M,: Check uppercase

Problem:
Once we enter one of the
machines, we can'’t go
back to the other one!

Solution:
Nondeterminism: allows
being in multiple states, I.e.,
multiple machines, at once!

31

In-class Quiz 9/13

See gradescope

