Regular Expressions
Wednesday September 22, 2021

Expressions
Small Reg |
Expression Expression
$4.23 A\ {2}/

Large

Expression

U

$6.23

UMB CS622

124

%/{/{0«/{0@#(@/{13’

« HW1 graded
« Use gradescope for grade questions / disputes

« HW2 due Sun 9/26 11:59pm EST

7 Rewew: INdUuctive Proofs

Must state:

e Induction on what

« Often, “length of input string”
e But not always!

 Base Case

* Inductive Case
« with inductive hypothesis

Every statement and logical step must have justification
Usually taken from:
* Other theorems
 Definitions
« Given assumptions

7 Pesiew: Problem 4

Prove that if some DFA M = (Q, X, 4, qo, I') has a state g such that

Q: d(q,a) = g, foralla € X, then S(q, w) = q for all possible strings w € X*.
Use induction on the length of w.

Claim. If a DFA has a state g such that Va € X §(q,a) = q,
A- then Vw € £* §(q,w) =g¢.

Proof. By induction on w.

Basis: Trivially, §(q, €) = q by the definition of 6. Clearly stated base case and inductive step, with IH

Induction step: Let w = w'x where x € X, assume the
inductive hypothesis (g, w’) = g. The objective is to show
d(g, w) = q using the claim’s precondition Ya 6(q, a) = q.

5(q, w) = 5(q, w’x) by substitution of w = w'x
= 5(8(¢w"),x) by the definition of § <—— Every logical step has justification
=d(q,x) by the inductive hypothesis
=q by the precondition

127

#W7 Feview: Problem 3 (part 2

Q:

Prove that the following language is regular:
{w | w has exactly two 1s}
In other words:
1. Design a DFA that recognizes the language; and
2. give an inductive proof that the DFA does indeed recognize the language.
Assume the language contains strings from alphabet 3 = {0,1}
0 0 0 0,1
q0 L q% ! % L qs3
N
Claim. Yw € 3* P(w), where P(w) =w € L(M) & w € A\ Not stro ng enough!
Proof. By induction on w. (n eeds to Say what
Basis: P(€) holds true as € ¢ L(M) (the start state g is each state representS)

not accepting) and € ¢ A (e does not have two 1s).
Induction step: Let w = w’a where a € 2. Assume P(w’),
and consider P(w) throughout the following case analysis.

e If w’ has zero 1s, then M is in state go.
— Let a = 0: M stays in g(and rejects with
— Let a = 1: M enters q; and rejects with one 1.

e If w" has one 1, then M is in state q;. <€
— Let a = 0: M stays in g; and rejects with one 1.
— Let a = 1: M enters g2 and accepts with tw

e If w” has two 1s, then M is in state gs.
— Let a = 0: M stays in g2 and accepts with two 1s. 128
— Let a = 1: M enters g3 and rejects with three 1s.

1s.

These need justification
(should come from IH)

$o Far: Regular Language Representations

0,1

State diagram
(NFA/DFA)

A practical application:
text search ... it doesn’t fit!

1.

These define a computer
(program) that finds strings

Formal 1. Q = {Q1,Q2aQ3},

Find and Replace v E1;X

description 2y {0,1}’
2 3. J is described as

containing 001

Reglace with REP(1) General Commands Manual GREP(1)

a1 1|91 Qg2 Z=\1; A L _
grep, egrep, fgrep, rgrep - prmt 11"&5 matchmg a pattern

q2 | 43 qz2 Look in: SYNOPSTS
= grep [OPTIONSE PATTERN [FILE.Q.]
- re| OPTION -e PATTERN FILE FILE. ..
q3 | 92 [Current Project = : ' s |]
DESCRIPTION
A 2 grep searches the named input FILEs (or standard input if no files are
4 . th d E] Flnd gptlons named, or if a single hyphen-minus (-) is given as file name) for lines
. q1 IS e Start State, aIl containing a match to the given PATTERN. By default, grep prints the
1 matching lines.
"] Match case

5. F = {g).

bk In addition, three variant programs egrep, fgrep and rgrep are
[IMatch whole available. egrep is the same as grep -E. fgrep is the same as
= S grep -F. rgrep is the same as grep -r. Direct invocation as either
egrep or fgrep is deprecated, but is provided to allow historical
applications that rely on them to run unmodified.

[use:
Regular expressions v

L Find Next] l Replace I

| Search up

3. XT001XF

Need a more concise notation
|

l Replace All j

Regular Expressions Are Widely Used

Perl
Python
Java

Every lang!

NAME

perlre - Perl regular expressions

@ Python » | English v|[3.8.6rc1 v |Documentation » The Python Standard Library » Text Processing Services » Qui
Table of Contents re — Regular expression operations
re — Regular expression
operations
= Regular Expression Source code: Lib/re.py
Syntax

= [odule Contents

= Regular Expression This module provides regular expression matching operations similar to those found in Perl.

java.util.regex

Class Pattern

java.lang.Object
java.util.regex.Pattern

130

Regular Expressions: Formal Definition

R is a regular expression if R is
1. a for some a in the alphabet 3, (A lang containing a) length-1 string

2. €, | (Alang containing) the empty string
3. 0, Theempty set (ie, a lang containing no strings)
union ~~4. (R, U Ry), where R; and R; are regular expressions,
concat [—>5, (R; o Rs), where R; and Rs are regular expressions, or
star ~76. (R7), where R; is a regular expression.

Base cases plus union, concat, and Kleene
star can express any regular language!

(But we have to prove it)

Regular Expression: Concrete Example

Entire reg expr: represents lang whose
strings are strings from these langs
concat’ed together (implicit concat op)

the lang {“0”, "1"} (O L 1)0* the lang {*”, 70", “00”, ...}

the lang {“0”} the lang {“1”}

» Operator Precedence:
* Parens
e Star
 Concat (sometimes implicit)
e Union

Thm: A lang I1s regular iff some reg expr describes it

= If a language is regular, it is described by a reg expression

&< If a language is described by a reg expression, it is regular

* Easy! How to show that a
« For a given regexp, construct the equiv NFA! lang is regular?

 (we mostly did it already when discussing closed ops)

Construct DFA or NFA!

RegEXpr->NFA

R is a regular expression it R is

. a
1 a for some a in the alphabet &,)—’©
@ \ Construction of N to recognize Ay o Ay
N(N
?

3 — O 5 @}
~O o °. 0 o

4 (Ry U Ry), where oy and Ry a | /|0 -J% e

5.

6.

(R1 0 R2), where Ry and Ry a1 | | —— | expregione o=
5 . oy e
(RY), where R; is a regular exj 2, © ofe i }

@) O @

. /

Thm: A lang I1s regular iff some reg expr describes it

= If a language is regular, it is described by a reg expression
« Harder!
« Need to convert DFA or NFA to Regular Expression
e To do so, need new kind of machine: a GNFA

&< If a language is described by a reg expression, it is regular
e Easy!
» Construct the NFA! (Done)

Generalized NFAs (GNFASs)

ab U ba

Want to convert

* GNFA = NFA with regular expression transitions GNFAs to Reg Exprs

GNFA->RegExpr function

On GNFA input G:

* If G has 2 states, return the regular expression transition, e.g.:
Equivalent Regular expression

@ (R) (R)* (Ry) U (R GNFA
* Else:

« “Rip out” one state
« “Repair” the machine to get an equivalent GNFA G’
« Recursively call GNFA»RegExpr(G)

GNFA->RegExpr: “Rip/Repair” step

N @ (Ry) (Ro)* (R3) U (Ry)
RS

after

To convert a GNFA to a regular expression:
“rip out” states, and then
before “repair” until only 2 states remain

GNFAéRegExpr: “Rip/Repair” step

Before: two paths from g; to g;:
1. Not through q,,

2. Through g,
/ Q (Ry) ()™ (R3) U (Ry)

after

before

GNFA->RegExpr: “Rip/Repair” step

After: still two “paths” from g; to g;
1. Not through q,,

1y

Rl @
R

2

before

2. Through g,

T~

(121) (Ro)™ (123)

0

after

U 1:R4)

GNFA->RegExpr: “Rip/Repair” step

Ry
o) LED B BV (R
o @ s after
R

2

before Before:
- path through g,;, has 3 transitions

- One s self loop

GNFAéRegExpr: “Rip/Repair” step

After:

- Self loop becomes star operation
o o - Others are concat’ed together

Rl @
R

2

before

This “informal”
reasoning helps
our intuition

path through q,;, has 3 transitions
One is self loop

(1)) (Ro)™ (R3)|U (Ry)
Q@))
I3
concat after
Star operation
Before:

Now lets formally
prove correctness of
GNFA->RegEXxpr

GNFA>RegExpr “Correctness”

* Where “Correct” means: Use Proof by induction ... on size of G

LANGOF (G) = LANGOF (GNFA>RegEXpr(G))

This is the property we want to prove

* I.e., GNFA>RegExpr must not change the language!

Previnsty: Recursive (Inductive) Definitions

 Have (at least) two parts:

« Base case
e Inductive case
« Self-reference must be “smaller” This is exactly the
structure of an
inductive proof!
« Example: :

Def: GNFA>RegEXpr: input G is a GNFA with n states:
Base case |If n = 2: return the regular expression on the tr

sition

Inductive case |Else (G has n > 2 states):

« “Rip” out one state and “Repair” to get ¢’
« Recursively Call GNFA®RegEXpr (G}« “smaller” self-reference

Wantto LANGOF (G)

GNFA>RegEXxpr IS correct

LANGOF (GNFA>RegEXpr(G))

Def: GNFA->RegEXpr: input G is a GNFA with n states:
If n = 2: return the regular expression on the transition
Else (G has n > 2 states):
“Rip” out one state and “Repair” to get ¢’
Recursively Call GNFA»RegExpr(G)

» Proof (by induction on size of G):

Wantto LANGOF (G)

GNFA>RegEXxpr IS correct

LANGOF (GNFA>RegEXpr(G))

Def: GNFA»>RegEXpr: input G is a GNFA with n states:
If n = 2: return the regular expression on the transition
Else (G has n > 2 states):

“Rip” out one state and “Repair” to get ¢’

Recursively Call GNFA»RegExpr(G)

* Proof (by induction on size of G): B (R () ()
>Base case: G has 2 states @ @
* LANGOF (G) = LANGOF (GNFA>RegEXxpr(G)) is true, by def of GNFA!

Wantto LANGOF (G)

GNFA>RegEXxpr IS correct

LANGOF (GNFA>RegEXpr(G))

Def: GNFA®>RegEXpr: input G is a GNFA with n states:
If n = 2: return the regular expression on the transition
Else (G has n > 2 states):
“Rip” out one state and “Repair” to get ¢’
Recursively Call GNFA»RegExpr(G)

* Proof (by induction on size of G): P
» Base case: G has 2 states @ @
* LANGOF (G) = LANGOF (GNFA>RegEXpr(G)) Is true!
»IH: Assume LANGOF (G’) = LANGOF (GNFA>RegEXxpr(G’))
« For some G with n-1 states

GNFA>RegEXxpr IS correct

Wantto LANGOF (G)
prove: _

LANGOF (GNFA>RegEXpr(G))

Def: GNFA®>RegEXpr: input G is a GNFA with n states:

Else (G has n > 2 states):
“Rip” out one state and “Repair” to get ¢’
Recursively Call GNFA»RegExpr(G)

If n = 2: return the regular expression on the transition

e Base case: G has 2 states
* LANGOF (G) = LANGOF (GNFA>RegEXpr(G)) Is true!

* Proof (by induction on size of G): C (R (Ry* (Ry) U (R Q
qi b

« For some G’ with n-1 states
»Induction Step: Prove it's true for G with n states

149

GNFA>RegEXxpr IS correct

Wantto LANGOF (G)
prove: _

LANGOF (GNFA>RegEXpr(G))

Def: GNFA®>RegEXpr: input G is a GNFA with n states:

Else (G has n > 2 states):
“Rip” out one state and “Repair” to get ¢’
Recursively Call GNFA»RegExpr(G)

If n = 2: return the regular expression on the transition

e Base case: G has 2 states
* LANGOF (G) = LANGOF (GNFA>RegEXpr(G)) Is true!

* Proof (by induction on size of G): O (R (Ry* (Ry) U (R Q
qi b

« For some G’ with n-1 states
»Induction Step: Prove it's true for G with n states

« After “rip/repair” step, we have exactly a GNFA G’ with n-1 states
* And we know LANGOF (G’) = LANGOF (GNFA®RegEXxpr(G’)) from the [H!

150

Wantto LANGOF (G)

GNFA>RegEXxpr IS correct

LANGOF (GNFA>RegEXpr(G))

Def: GNFA®>RegEXpr: input G is a GNFA with n states:
If n = 2: return the regular expression on the transition
Else (G has n > 2 states):
“Rip” out one state and “Repair” to get ¢’
Recursively Call GNFA»RegExpr(G)

* Proof (by induction on size of G): P
» Base case: G has 2 states @ @
* LANGOF (G) = LANGOF (GNFA>RegEXpr(G)) Is true!
* [H: Assume LANGOF (G") = LANGOF (GNFA>RegEXxpr(G’))
« For some G’ with n-1 states
» Induction Step: Prove it's true for G with n states
« After “rip/repair” step, we have exactly a GNFA G’ with n-1 states

* And we know LANGOF (G’) = LANGOF (GNFA®RegEXxpr(G’)) from the IH!
> To go from G to G’: just need to prove correctness of “rip/repair” step 151

GNFA->RegExpr: “rip/re

These are equivalent

nalr’ correctness

ORI

\\A

(Ry) (Ro)* (R3)|U (Ry)

after

Must prove:

2

before

R, Rs
@ . 2 cases:
R °

Acceptance unchanged (both use R, transition part)

« Every string accepted before, is accepted after

» Accepted string does not go through q,;,

> String goes through g,

| Acceptance unchanged?

Mostly done this already!
Just need to state more formally

Thm: A lang I1s regular iff some reg expr describes it

= If a language is regular, it is described by a reg expr
« Harder!
« Need to convert DFA or NFA to Regular Expression
 Use GNFA>RegEXxpr to convert GNFA to regular expression! (Done!)

&< If a language is described by a reg expr, it is regular
» Construct the NFA! (Done)

Now we may use regular expressions to
e p rese nt regu la r la ngs. So a regular language has these

equivalent representations:
DFA
l.e., we have another way to i NFA

prove things about reg langs! - Regular Expression

Thm: Reverse I1s Closed for Regular Langs

R

® For any string w = wjws - - - Wy, the reverse of w, written w™, is the string w in reverse order, w, - - - waw.

For any language A, let A™ = {w™| w € A}

» Theorem: if A is regular, so is A™

» Proof (by induction on regular expressions):

Remember: A language is regular iff it
has a regular expression representation

Thm: Reverse I1s Closed for Regular Langs
if A is regular, so is A™

Case Analysis, assume some regular language A is represented with the regular expression ...
Base cases | 1. @ for some a in the alphabet 3, | same reg. expr. represents 4™ so it is regular
2. €, | same reg. expr. represents A® so it is regular

3. (D, same reg. expr. represents A® so it is regular

inductive |4. (27 U Rs), where R; and R, are regular expressions, ¢m=

cases i
5. (R1 o R2), where Ry and R are regular expressions, or | other cases

) . will use

6. (R7), where R; is a regular expression. similar
reasoning

Need to show: if A; U 4, is a regular language, then (4, U A,)® is regular
IH: if A, and A, are the regular languages represented by R, and R,, then A,® and A, ® are regular too

“smaller”

Proof: (A, UA,)®=A4,%UA,%, because reversal and union don’t affect each other and are interchangeable
A,®and A, R are regular (from IH) and union is closed for regular langs (class thm), so 4,%U A, R is regular

In-Class quiz 9/22

See gradescope

