UMB CS622 Regular Expressions

Wednesday September 22, 2021

Announcements

- HW1 graded
 - Use gradescope for grade questions / disputes
- HW2 due Sun 9/26 11:59pm EST

HW1 Review: Inductive Proofs

Must state:

- Induction on what
 - Often, "length of input string"
 - But not always!
- Base Case
- Inductive Case
 - with inductive hypothesis

Every statement and logical step <u>must have justification</u> Usually taken from:

- Other theorems
- Definitions
- Given assumptions

HW1 Review: Problem 4

Prove that if some DFA $M=(Q,\Sigma,\delta,q_0,F)$ has a state q such that $\delta(q,a)=q$, for all $a\in \Sigma$, then $\hat{\delta}(q,w)=q$ for all possible strings $w\in \Sigma^*$. Use induction on the length of w.

A: Claim. If a DFA has a state q such that $\forall a \in \Sigma \ \delta(q, a) = q$, then $\forall w \in \Sigma^* \ \hat{\delta}(q, w) = q$.

Proof. By induction on w.

Basis: Trivially, $\hat{\delta}(q, \epsilon) = q$ by the definition of $\hat{\delta}$.

Induction step: Let w = w'x where $x \in \Sigma$, assume the inductive hypothesis $\hat{\delta}(q, w') = q$. The objective is to show $\hat{\delta}(q, w) = q$ using the claim's precondition $\forall a \ \delta(q, a) = q$.

$$\hat{\delta}(q, w) = \hat{\delta}(q, w'x)$$
 by substitution of $w = w'x$

$$= \delta(\hat{\delta}(q, w'), x)$$
 by the definition of $\hat{\delta}$

$$= \delta(q, x)$$
 by the inductive hypothesis
$$= q$$
 by the precondition

Clearly stated base case and inductive step, with IH

Every logical step has justification

HW1 Review: Problem 3 (part 2)

Prove that the following language is regular:

 $\{w \mid w \text{ has exactly two 1s}\}$

Q:

In other words:

- 1. Design a DFA that recognizes the language; and
- 2. give an inductive proof that the DFA does indeed recognize the language.

Assume the language contains strings from alphabet $\Sigma = \{\mathtt{0},\mathtt{1}\}$

<u>A</u>:

Claim. $\forall w \in \Sigma^* P(w)$, where $P(w) = w \in L(M) \leftrightarrow w \in A$.

Proof. By induction on w.

Basis: $P(\epsilon)$ holds true as $\epsilon \notin L(M)$ (the start state q_0 is not accepting) and $\epsilon \notin A$ (ϵ does not have two 1s).

Induction step: Let w = w'a where $a \in \Sigma$. Assume P(w'), and consider P(w) throughout the following case analysis.

- If w' has zero 1s, then M is in state q_0 .
- Let a = 0: M stays in q_0 and rejects with zero 1s.
- Let a = 1: M enters q_1 and rejects with one 1.
- If w' has one 1, then M is in state q_1 .
- Let a = 0: M stays in q_1 and rejects with one 1.
- Let a = 1: M enters q_2 and accepts with two is.
- If w' has two 1s, then M is in state q_2 .
- Let a = 0: M stays in q_2 and accepts with two 1s.
- Let a = 1: M enters q_3 and rejects with three 1s.

Not strong enough! (needs to say what each state represents)

These need justification (should come from IH)

So Far: Regular Language Representations

A practical application: text search ... it doesn't fit!

Find and Replace

Find vhat:

Quick Find - A Quick Replace -

Formal description

- 1. $Q = \{q_1, q_2, q_3\},\$
- **2.** $\Sigma = \{0,1\},$
- **3.** δ is described as

These define a computer (program) that finds strings containing **001**

2.

	0	1
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	$q_2,$

- **4.** q_1 is the start state, and
- 5. $F = \{q_2\}.$
- 3. $\Sigma^* 001 \Sigma^*$

 $setLayer({.+})$ Replace with: GREP(1) General Commands Manual GREP(1) Z=\1; grep, egrep, fgrep, rgrep - print lines matching a pattern Look in: FILE] [FILE...] -e PATTERN Current Project searches the named input FILEs (or standard input if no files are Find options named, or if a single hyphen-minus (-) is given as file name) for lines Match case Match whole w Search up / Use: Regular expressions Find Next Replace

Replace All

Need a more concise notation

Regular Expressions Are Widely Used

- Perl
- Python
- Java
- Every lang!

Regular Expressions: Formal Definition

```
R is a regular expression if R is

1. a for some a in the alphabet \Sigma, (A lang containing a) length-1 string

2. \varepsilon, (A lang containing) the empty string

3. \emptyset, The empty set (i.e., a lang containing no strings)

union

4. (R_1 \cup R_2), where R_1 and R_2 are regular expressions, concat

5. (R_1 \circ R_2), where R_1 and R_2 are regular expressions, or star

6. (R_1^*), where R_1 is a regular expression.
```

Base cases plus union, concat, and Kleene star can express <u>any regular language!</u>

(But we have to prove it)

Regular Expression: Concrete Example

- Operator <u>Precedence</u>:
 - Parens
 - Star
 - Concat (sometimes implicit)
 - Union

Thm: A lang is regular iff some reg expr describes it

⇒ If a language is regular, it is described by a reg expression

← If a language is described by a reg expression, it is regular

• Easy!

For a given regexp, construct the equiv NFA!

How to show that a lang is regular?

(we mostly did it already when discussing closed ops)

Construct DFA or NFA!

RegExpr→NFA

R is a *regular expression* if R is

1. a for some a in the alphabet Σ ,

5. $(R_1 \circ R_2)$, where R_1 and R_2 and

6. (R_1^*) , where R_1 is a regular exp

Thm: A lang is regular iff some reg expr describes it

- ⇒ If a language is regular, it is described by a reg expression
 - Harder!
 - Need to convert DFA or NFA to Regular Expression
 - To do so, need new kind of machine: a GNFA
- ← If a language is described by a reg expression, it is regular
 - Easy!
 - Construct the NFA! (Done)

Generalized NFAs (GNFAs)

• GNFA = NFA with regular expression transitions

Want to convert GNFAs to Reg Exprs

GNFA→RegExpr function

On GNFA input G:

• If G has 2 states, return the regular expression transition, e.g.:

- Else:
 - "Rip out" one state
 - "Repair" the machine to get an equivalent GNFA G'
 - Recursively call GNFA→RegExpr(G')

before

To <u>convert</u> a GNFA to a regular expression:

"rip out" states, and then

"repair" until only 2 states remain

before

before

before

Before:

- path through q_{rip} has 3 transitions
- One is self loop

before

Before:

- path through $q_{\rm rip}$ has 3 transitions
- One is self loop

Now lets formally prove correctness of GNFA→RegExpr

GNFA→RegExpr "Correctness"

• Where "Correct" means:

Use Proof by induction ... on size of G

LANGOF (G) = LANGOF (GNFA \rightarrow RegExpr(G))

This is the property we want to prove

i.e., GNFA→RegExpr must not change the language!

Previously: Recursive (Inductive) Definitions

- Have (at least) two parts:
 - Base case
 - Inductive case
 - Self-reference must be "smaller"

This is exactly the structure of an inductive proof!

• Example:

<u>Def</u>: **GNFA→RegExpr**: input G is a GNFA with n states:

Base case If n = 2: return the regular expression on the transition

Inductive case Else (G has n > 2 states):

- "Rip" out one state and "Repair" to get G'
- Recursively Call GNFA→RegExpr(G')← "smaller" self-reference

```
Want to LANGOF (G)

prove: =

LANGOF (GNFA→RegExpr(G))
```

```
<u>Def</u>: GNFA→RegExpr: input G is a GNFA with n states:

If n = 2: return the regular expression on the transition Else (G has n > 2 states):

"Rip" out one state and "Repair" to get G'

Recursively Call GNFA→RegExpr(G)
```

ightharpoonup (by induction on size of G):

```
Want to LANGOF (G)

prove: =

LANGOF (GNFA→RegExpr(G))
```

<u>Def</u>: GNFA \rightarrow RegExpr: input G is a GNFA with n states:

If n = 2: return the regular expression on the transition

Else (G has n > 2 states):

"Rip" out one state and "Repair" to get G'

Recursively Call GNFA \rightarrow RegExpr(G')

- **Proof** (by induction on size of *G*):
 - ➤ Base case: *G* has 2 states

• LangOf (G) = LangOf ($GNFA \rightarrow RegExpr(G)$) is true, by def of GNFA!

```
Want to LANGOF (G)
prove: =

LANGOF (GNFA→RegExpr(G))
```

```
<u>Def</u>: GNFA→RegExpr: input G is a GNFA with n states:

If n = 2: return the regular expression on the transition

Else (G has n > 2 states):

"Rip" out one state and "Repair" to get G'

Recursively Call GNFA→RegExpr(G')
```

 $(R_1)(R_2)^*(R_3) \cup (R_4)$

- **Proof** (by induction on size of *G*):
 - Base case: G has 2 states
 - LangOf (G) = LangOf ($GNFA \rightarrow RegExpr(G)$) is true!
 - \succ IH: Assume LangOf (G') = LangOf ($GNFA \rightarrow RegExpr(<math>G'$))
 - For some *G'* with <u>*n*-1</u> states

Want to LANGOF (G)
prove: =

LANGOF (GNFA→RegExpr(G))

<u>Def</u>: GNFA→RegExpr: input G is a GNFA with n states:

If n = 2: return the regular expression on the transition

Else (G has n > 2 states):

"Rip" out one state and "Repair" to get G'

Recursively Call GNFA→RegExpr(G')

 $(R_1)(R_2)^*(R_3) \cup (R_4)$

- **Proof** (by induction on size of *G*):
 - Base case: G has 2 states
 - LangOf (G) = LangOf ($GNFA \rightarrow RegExpr(G)$) is true!
 - IH: Assume LangOf (G') = LangOf ($GNFA \rightarrow RegExpr(G')$)
 - For some *G*' with <u>*n*-1</u> states
 - \triangleright Induction Step: Prove it's true for G with n states

Want to LANGOF (G)

prove: =

LANGOF (GNFA→RegExpr(G))

<u>Def</u>: GNFA→RegExpr: input G is a GNFA with n states:

If n = 2: return the regular expression on the transition Else (G has n > 2 states):

"Rip" out one state and "Repair" to get G Recursively Call GNFA→RegExpr(G)

- **Proof** (by induction on size of *G*):
 - Base case: G has 2 states
 - LangOf (G) = LangOf ($GNFA \rightarrow RegExpr(G)$) is true!
 - IH: Assume LangOf (G') = LangOf ($GNFA \rightarrow RegExpr(G')$)
 - For some G' with $\underline{n-1}$ states
 - \triangleright Induction Step: Prove it's true for G with n states
 - After "rip/repair" step, we have exactly a GNFA G with $\underline{n-1}$ states
 - And we know LangOf (G') = LangOf ($GNFA \rightarrow RegExpr(G')$) from the IH!

 $(R_1)(R_2)^*(R_3) \cup (R_4)$

```
Want to LANGOF (G)

prove: =

LANGOF (GNFA→RegExpr(G))
```

<u>Def</u>: GNFA \rightarrow RegExpr: input G is a GNFA with n states:

If n = 2: return the regular expression on the transition Else (G has n > 2 states):

"Rip" out one state and "Repair" to get G'

Recursively Call GNFA \rightarrow RegExpr(G)

- **Proof** (by induction on size of *G*):
 - Base case: G has 2 states
 - LangOf (G) = LangOf ($GNFA \rightarrow RegExpr(G)$) is true!
 - IH: Assume LangOf (G') = LangOf ($GNFA \rightarrow RegExpr(G')$)
 - For some *G'* with <u>*n*-1</u> states
 - Induction Step: Prove it's true for G with n states
 - After "rip/repair" step, we have exactly a GNFA G with $\underline{n-1}$ states
 - And we know LangOf (G') = LangOf ($GNFA \rightarrow RegExpr(G')$) from the IH!

 $(R_1)(R_2)^*(R_3) \cup (R_4)$

 \triangleright To go from G to G': just need to prove correctness of "rip/repair" step

GNFA→RegExpr: "rip/repair" correctness

before

Must prove:

 q_i

- Every string accepted <u>before</u>, is accepted <u>after</u>
- 2 cases:
 - Accepted string does not go through $q_{
 m rip}$

 $(R_1)(R_2)^*(R_3) \cup (R_4)$

after

- Acceptance unchanged (both use R_4 transition part)
- \triangleright String goes through $q_{\rm rip}$
 - Acceptance unchanged?

Mostly done this already!

Just need to state more formally

 q_j

Thm: A lang is regular iff some reg expr describes it

- ⇒ If a language is regular, it is described by a reg expr
 - Harder!
 - Need to convert DFA or NFA to Regular Expression
 - Use GNFA→RegExpr to convert GNFA to regular expression! (Done!)
- ← If a language is described by a reg expr, it is regular
 - Construct the NFA! (Done)

Now we may use regular expressions to represent regular langs. So a regular

So a regular language has these equivalent representations:

- DFA
- NFA
- Regular Expression

I.e., we have another way to prove things about reg langs!

Thm: Reverse is Closed for Regular Langs

• For any string $w = w_1 w_2 \cdots w_n$, the **reverse** of w, written $w^{\mathcal{R}}$, is the string w in reverse order, $w_n \cdots w_2 w_1$. For any language A, let $A^{\mathcal{R}} = \{w^{\mathcal{R}} | w \in A\}$

• Theorem: if A is regular, so is $A^{\mathcal{R}}$

• Proof (by induction on regular expressions):

Remember: A language is regular iff it has a regular expression representation

Thm: Reverse is Closed for Regular Langs

if A is regular, so is $A^{\mathcal{R}}$

Case Analysis, assume some regular language A is represented with the regular expression ...

- Base cases 1. a for some a in the alphabet Σ , same reg. expr. represents $A^{\mathcal{R}}$ so it is regular

 - **2.** ε , same reg. expr. represents $A^{\mathcal{R}}$ so it is regular
 - **3.** \emptyset , same reg. expr. represents $A^{\mathcal{R}}$ so it is regular

cases

- Inductive 4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
 - **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
 - **6.** (R_1^*) , where R_1 is a regular expression.

Other cases will use similar reasoning

"smaller"

Need to show: if $A_1 \cup A_2$ is a regular language, then $(A_1 \cup A_2)^{\mathcal{R}}$ is regular

 $\underline{\mathsf{IH}}$: if A_1 and A_2 are the regular languages represented by R_1 and R_2 , then A_1^R and A_1^R are regular too

<u>Proof</u>: $(A_1 \cup A_2)^{\mathcal{R}} = A_1^{\mathcal{R}} \cup A_2^{\mathcal{R}}$, because reversal and union don't affect each other and are interchangeable A_1^R and A_2^R are regular (from IH) and union is closed for regular langs (class thm), so $A_1^R \cup A_2^R$ is regular

In-Class quiz 9/22

See gradescope