UMBC(CS622

Non-Regular Languages
Monday September 27, 2021

Turing-recognizable

decidable

context-free

?
0

Aunowncements
« HW2 due yesterday
« HW3 released, due Sun 10/3 11:59pm EST

* First in-person class: next Monday 10/4
 McCormack M01-0209

$ fa Regular or Not?

« Many ways to prove that a language Is regular:
« Construct a DFA or NFA (or GNFA)
« Come up with a regular expression describing the language

« But how to show that a language is not regular?
« E.g, HTML / XML is not a regular language
 Can't be represented with a regular expression (common mistake)!

RegEx match open tags except XHTML self-contained tags

Asked 11 years, 10 months ago Active 1 month age Viewed 3.2m times 37 AnSWe rs Active Oldest Votes
I need to match all of these opening tags: 5 Next
1831 :f’hre::_foo”> You can't parse [XJHTML with regex. Because HTML can't be parsed by regex. Regex is not a tool
that can be used to correctly parse HTML. As I have answered in HTML-and-regex questions here
BUt not these: 4412 so many times before, the use of regex will not allow you to consume HTML. Regular expressions
are a tool that is insufficiently sophisticated to understand the constructs employed by HTML.

 HTML is not a regular language and hence cannot be parsed by regular expressions. egex
< clesssreet 1> V queries are not equipped to break down HTML into its meaningful parts. so many times but it is

o o ‘ naot getting to me. Even enhanced irregular regular expressions as used by Perl are not up to the
I came up with this and wanted to make sure I've got it right. Tam only capturing the a-z.
task of parsing HTML. You will never make me crack. HTML is a language of sufficient complexity

([a-2]+) *[*/]*?> that it cannot be parsed by regular expressions. Even Jon Skeet cannot parse HTML using regular

avhraccinne Fuarny fime wvnn atfamnt tn narca HTMI with renilar avnraccinne the ninhnhy child

thstback: DesigNIing DFAS or NFAS

« Each state “stores” some information
- Eg,q,="“seen zero 1s", q, = “seen one 1", q, = “seen two 1s” etc.

* Finite states = finite amount of info (decided in advance)

* This means DFAs can't keep track of an arbitrary count!
« would require infinite states

A Non-Regular Language
L={0"1" | n>=0}

» A DFA recognizing L would require infinite states! (impossible)
« States representing zero 0s, one 0, two 0s, ...

* This language represents the essence of many PLs, e.g, HTML!
« To better see this replace:
. uOn -> u<tag>u or u(u
° uln -S> “</tag>" Oru)n .
Still, how do we

- The problem is tracking the nestedness SHENE BT e e

« Regular languages cannot count arbitrary nesting depths
* So most programming language syntax is not regular!

A Lemma About Regular Languages

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = xyz, satistying the tollowing conditions:

1. for each i > 0, xy'z € A,

2. |y| > 0, and All regular languages satisfy
3. |zy| < p. these three conditions!

Specifically, strings in the language
longer than length p
satisfy the conditions

Lemma doesn’t tell you an exact p!
(just that there exists “some” p)

The pumping lemma
is only interesting for

The Pumping Lemma: Finite Langy [mhntelanes

with repeatable parts)

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

1. for each i > 0, 'z € A, What's a possible p?
Length of longest string + 1

2. |y| > 0, and # strings in the language

3. |zy| < p. with at least length p? None!
In finite langs, these are true for Therefore, all strings with
all strings “of length at least p” length at least p satisfy the

(for some p) pumping lemma conditions! ©

Example: a finite language {“ab”, “cd”}

« All finite langs are regular (can easily construct DFA/NFA recognizing them)

The Pumping Lemma, a Closer Look

\

Pumping lemma If A is a regular lang SO nber p (the
pumping length) where if s is any string in| r;jjn.; 'n s may be
divided into three pieces, s = zyz, satisfyin . /= | s:

1. foreachi > 0, 29z € A, ¥_J@ -)

2. |y| > 0, and “long enough” strings, should have a

3. |zy| < p. repeatable (“pumpable”) part;

“pumped” string is still in the language

Strings that have a repeatable part can be split into:

e x=the part before any repeating This makes sense because DFAs have a finite
.« y= the repeated part number of states, so for “long enough” (i.e.,

. some length p) inputs, some state must repeat
« z=the part after any repeating

e.g, “long enough length” = # of states +1
(The Pigeonhole Principle)

The Pumping Lemma: Infinite Languages

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

1. for each i > 0, xy'z € A,

2. |y| > 0,.and “sumpable” part of string

3. |zy| < p. ™ “pumpable” part cannot be empty

Example: infinite language {“00”,“010”,“0110”, “01110”", ...}
« Language is regular bc it's described by the regular expression 01*0
« Notice that the middle part is pumpable!
« E.g, “010” in the language can be split into three parts: x=0,y=1,z=0

 Any pumping (repeating) of the middle part creates a string that is still in the language
e j=1->“010" i=2->“0110" i=3->“01110"

Summary: The Pumping Lemma ...

. ... states properties that are true for all regular languages

IMPORTANT:
« The Pumping Lemma cannot prove that a language is regular!

« But ... we can use It to prove that a language is not regular

Poll: Conditional Statements

183

Equivalence of Conditional Statements

* Yes or No? “If X then Y” Is equivalent to:

e “IfY then X" (converse)
e No!

e “If not X then not Y” (inverse)
 No!

* “If not Y then not X" (contrapositive)<— Proof by contradiction
* Yes!

Pumping Lemma: Proving Non-Regularitv

... then the language is not regular

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satisfying the following conditions:

1. for each i > 0, xy'z € A,

2. |y| > 0, and

3. |zy| < p.
If any of these are not true ...

Contrapositive:
“If X then Y” Is equivalent to “If not Y then not X"

Pumping Lemma: Non-Regularity Example

Let B be the language {0"1"|n > 0}. We use the pumping lemma to prove that
B 1s not regular. The proof is by contradiction.

How To Do Proof By Contradiction

« Assume the opposite of the statement to prove

« Show that the assumption leads to a contradiction

« Conclude that the original statement must be true

Want to prove: 071" is not a regular language

Possible Split: y = all 0s

Proof (by contradiction):

e Assume: 0"1" is a regular language
« So it must satisfy the pumping lemma

... then not true Pumping lemma - If A is a regular language, then there is a number p (the

 |.e, all strings length p or longer are pumpable p 0s

« Counterexample = 0r1?

« Choose xyz split so y contains:

OO\ 0’11 1 splitting

pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satisfying the following conditions:
1. for each i > 0, zy'z € A,

2. |y| >0, and .
3. |zy| < p. Contrapositive: If not true ...

Reminder: Pumping lemma says
strings >= length p splittable
into xyz where y is pumpable

p 1s BUT ... pumping
lemma requires

only one pumpable

 all 0s | So the proof is not
done!
X Yy Z
. . . Is there another way
* Pumping y: produces a string with more 0s than 1s to split into xyz ?

« Which is not in the language 071"

« This means that 0r1» does not satisfy the pumping lemma
Which means that that 0717 is a not regular language

* This is a contradiction of the assumption!

Pumping lemma If A is a regular language, then there is a number p (the

V\/a nt tO D rove. On 111 iS I'IOt d regu la r l.a ngU age pumping length) where if s is any string in A of length at least p, then s may be

divided into three pieces, s = xyz, satisfying the following conditions:

1. for each i > 0, zy'z € A,
2. |y| >0, and

Possible Split: y = all 1s

Proof (by contradiction):

« Assume: 0"1" is a regular language

« So it must satisfy the pumping lemma
 |.e, all strings length p or longer are pumpable p 0s p 1s

« Counterexample = 0r1?
00..011...1

« Choose xyz split so y contains:
e all 1s |
X y Z
. . Is there another way
* |s this string pumpable? to split into xyz ?
* No!

« By the same reasoning as in the previous slide

Pumping lemma If A is a regular language, then there is a number p (the

Wa nt tO D rove. On 111 iS I'IOt d regu la r l.a ngU age pumping length) where if s is any string in A of length at least p, then s may be

divided into three pieces, s = xyz, satisfying the following conditions:

1. for each i > 0, zy'z € A,
2. |y| >0, and

Possible Split: y=0s and 1s -

Proof (by contradiction):

« Assume: 0"1" is a regular language

« So it must satisfy the pumping lemma
 |.e, all strings length p or longer are pumpable p 0s p 1s

« Counterexample = 0r1°
) . O O O 1 1 1 Did we examine
» Choose xyz split so y contains: e [every possible

* both Os and 1s | splitting?

X y Z Yes! QED

e |s this string pumpable?
* No!
* Pumped string will have equal 0s and 1s
« But they will be in the wrong order: so there is still a contradiction!

But maybe we
did’t have to ...

The Pumping Lemma: Condition 3

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satisfying the following conditions:

1. for each i > 0, xy'z € A,

2. ly| > 0, and
3. |$y‘ < D. p 0s
Repeating party ... OO 011 1
must be in the first p characters! \—Y—’

y must be in here!

The Pumping Lemma: Pumping Down

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistfying the following conditions:

1. for each i > 0, 2y'z € A,

2. |y| > 0, and

3. |zy| < p.

Repeating part y must be non-empty ...
but can be repeated zero times!

Example: L = {01 |i>]}

Want to prove: L = {0V | i >} is not a regular language

Pumping Down

Proof (by contradiction):

« Assume: L is a regular language

« So it must satisfy the pumping lemma
 |.e, all strings length p or longer are pumpable p+1 0s p 1s

« Counterexample = 0r*11°
* Choose xyz split so y contains: OO, . 011 ...1

e all 0s
« (Only possibility, by condition 3)

X y Z

 Repeat y zero times (pump down): produces string with 0s =< 1s
« Which is not in the language {01/ | i >}
« This means that {01/ | i >} does not satisfy the pumping lemma
e Which means that that it is a not regular language
 This is a contradiction of the assumption!

Pumping Lemma Doesn't Always Work!

« What if you can’t figure out a counterexample?

Myhill-Nerode Theorem

Another Way to Prove Regularity

A set of strings S Is “representative” of a language L If:
« Every possible string w € X" maps to a string s in Svia REP where ...

« REP(w) =s, If for every possible string z, wz € L iff sz € L

For regular languages, strings in
the “representative” set
correspond to states in a DFA!

start —| 4o

L=01* 1 S contains one string
Representative set S = {, 0, 1} guEfreachicsicdciiate

Viewed this way a language 0.1 Then REP(w) = s if w reaches the
organizes all strings into same state that s represents

distinct groups Then for any string z, wz € L iff

A language is regular if this sz € L because they started in
number of groups is finite, i.e. it the same state!
has a finite representative set!

Myhill-Nerode Theorem

Another Way to Prove Non-Regularity

A set of strings S Is “representative” of a language L If:
« Every possible string w € X" maps to a string s in Svia REP where ...
« REP(w) =s, If for every possible string z, wz € L iff sz € L

L={0"1" | n>=0}

* There must be a REP(0X) every k...
« Because for every two strings 0xand 0™ ...
« ... there's some z that completes it such that 0%z € L but 0™z is not

« E.g, let z= 1% then 0X1k € L but 0m1*is notin L The representative
set is infinite!

So the language is not regular!

Check-in Quiz 9/27

On gradescope

