Non-Regular Languages

Announcements

HW2 due yesterday

• HW3 released, due Sun 10/3 11:59pm EST

- First in-person class: next Monday 10/4
 - McCormack M01-0209

So Far: Regular or Not?

- Many ways to prove that a language is regular:
 - Construct a <u>DFA</u> or <u>NFA</u> (or GNFA)
 - Come up with a regular expression describing the language
- But how to show that a language is not regular?
 - E.g., HTML / XML is not a regular language
 - Can't be represented with a regular expression (common mistake)!

Flashback: Designing DFAs or NFAs

- Each state "stores" some information
 - E.g., q_0 = "seen zero 1s", q_1 = "seen one 1", q_2 = "seen two 1s" etc.
 - Finite states = finite amount of info (decided in advance)
- This means <u>DFAs can't keep track of an arbitrary count!</u>
 - would require infinite states

A Non-Regular Language

$$L = \{ \mathbf{0}^n \mathbf{1}^n \mid n > = \mathbf{0} \}$$

- A DFA recognizing L would require infinite states! (impossible)
 - States representing zero 0s, one 0, two 0s, ...
- This language represents the essence of many PLs, e.g., HTML!
 - To better see this replace:
 - "0" -> "<tag>" or "("
 - "1" -> "</tag>" or ")"

Still, how do we prove non-regularness?

- The problem is tracking the **nestedness**
 - Regular languages cannot count arbitrary nesting depths
 - So most programming language syntax is not regular!

A Lemma About Regular Languages

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- **1.** for each $i \geq 0$, $xy^iz \in A$,
- 2. |y| > 0, and 3. $|xy| \le p$.

All regular languages satisfy these three conditions!

> Specifically, strings in the language longer than length p satisfy the conditions

> > Lemma doesn't tell you an exact p! (just that there exists "some" p)

The Pumping Lemma: Finite Langu

The pumping lemma is only interesting for infinite langs! (containing strings with repeatable parts)

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- **1.** for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and **3.** $|xy| \le p$.

In finite langs, these are true for all strings "of length at least p" (for some p)

What's a possible *p*? **Length of longest string + 1**

strings in the language with at least length p? None!

Therefore, <u>all</u> strings with length at least *p* satisfy the pumping lemma conditions! ©

Example: a finite language {"ab", "cd"}

• All finite langs are regular (can easily construct DFA/NFA recognizing them)

The Pumping Lemma, a Closer Look

Pumping lemma If A is a regular lang pumping length) where if s is any string in divided into three pieces, s = xyz, satisfyin

nber p (the en s may be s:

- 1. for each $i \geq 0$, $xy^iz \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \le p$.

"long enough" strings, should have a repeatable ("pumpable") part; "pumped" string is still in the language

Strings that have a <u>repeatable</u> part can be split into:

- *x* = the part <u>before</u> any repeating
- y = the repeated part
- z =the part <u>after</u> any repeating

This makes sense because DFAs have a finite number of states, so for "long enough" (i.e., some length *p*) inputs, some state must repeat

e.g., "long enough length" = # of states +1

(The Pigeonhole Principle)

The Pumping Lemma: Infinite Languages

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- 1. for each $i \ge 0$, $xy^iz \in A$, 2. |y| > 0, and "pumpable" part of string 3. $|xy| \le p$. "pumpable" part cannot be empty

Example: infinite language {"00", "010", "0110", "01110", ...}

- Language is regular bc it's described by the regular expression 01*0
- Notice that the middle part is pumpable!
- E.g., "010" in the language can be split into three parts: x = 0, y = 1, z = 0
 - Any pumping (repeating) of the middle part creates a string that is still in the language
 - $i = 1 \rightarrow "010"$, $i = 2 \rightarrow "0110"$, $i = 3 \rightarrow "01110"$

<u>Summary:</u> The Pumping Lemma ...

• ... states properties that are true for all regular languages

IMPORTANT:

• The Pumping Lemma cannot prove that a language is regular!

• But ... we can use it to prove that a language is not regular

Poll: Conditional Statements

Equivalence of Conditional Statements

- Yes or No? "If X then Y" is equivalent to:
 - "If Y then X" (converse)
 - No!
 - "If not X then not Y" (inverse)
 - No!
 - "If not Y then not X" (contrapositive) ← Proof by contradiction
 - Yes!

Pumping Lemma: Proving Non-Regularity

... then the language is **not** regular

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- **1.** for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \leq p$.

If any of these are **not** true ...

Contrapositive:

"If X then Y" is equivalent to "If **not** Y then **not** X"

Pumping Lemma: Non-Regularity Example

Let B be the language $\{0^n 1^n | n \ge 0\}$. We use the pumping lemma to prove that B is not regular. The proof is by contradiction.

How To Do Proof By Contradiction

Assume the opposite of the statement to prove

Show that the assumption <u>leads to a contradiction</u>

Conclude that the original statement must be true

... then **not** true

rumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- 1. for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \le p$.

p 1s

Contrapositive: If **not** true ...

<u>Reminder</u>: Pumping lemma says strings >= length *p* splittable into *xyz* where *y* is pumpable

Possible Split: y = all 0s

Proof (by contradiction):

- Assume: $0^n 1^n$ is a regular language
 - So it must satisfy the pumping lemma
 - I.e., all strings length p or longer are pumpable p 0s

• Counterexample = $0^p 1^p$

• Choose xyz split so y contains:

• all 0s

- Pumping y: produces a string with more 0s than 1s
 - Which is <u>not</u> in the language 0^n1^n
 - This means that 0^p1^p does <u>not</u> satisfy the pumping lemma
 - Which means that that 0^n1^n is a <u>not</u> regular language
 - This is a **contradiction** of the assumption!

BUT ... pumping lemma requires only one pumpable splitting

So the proof is not done!

Is there another way to split into xyz?

Possible Split: y = all 1s

<u>Proof</u> (by contradiction):

- <u>Assume</u>: $0^n 1^n$ **is** a regular language
 - So it must satisfy the pumping lemma
 - I.e., all strings length p or longer are pumpable p 0s
- Counterexample = $0^p 1^p$
- Choose xyz split so y contains:
 - all 1s

- Is this string pumpable?
 - No!
 - By the same reasoning as in the previous slide

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s=xyz, satisfying the following conditions:

- **1.** for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- **3.** $|xy| \leq p$.

p 1s

Is there another way to split into xyz?

- **1.** for each $i \geq 0$, $xy^iz \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \leq p$.

Possible Split: y = 0s and 1s

Proof (by contradiction):

- Assume: $0^n 1^n$ is a regular language
 - So it must satisfy the pumping lemma
 - I.e., all strings length p or longer are pumpable p 0s

p 1s

- Counterexample = $0^p 1^p$
- Choose xyz split so y contains:
 - both 0s and 1s

Did we examine every possible splitting?

Yes! QED

- Is this string pumpable?
 - No!
 - Pumped string will have equal 0s and 1s
 - But they will be in the wrong order: so there is still a contradiction!

But maybe we did't have to ...

The Pumping Lemma: Condition 3

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- **1.** for each $i \geq 0$, $xy^iz \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \leq p$.

Repeating part y ... must be in the first *p* characters!

y must be in here! 192

The Pumping Lemma: Pumping Down

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- 1. for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \le p$.

Repeating part y must be non-empty ... but can be repeated zero times!

Example: $L = \{0^i 1^j | i > j\}$

Pumping Down

Proof (by contradiction):

- <u>Assume</u>: L is a regular language
 - · So it must satisfy the pumping lemma
 - I.e., all strings length p or longer are pumpable p+1 0s p 1s
- Counterexample = $0^{p+1}1^p$
- Choose xyz split so y contains:
 - all 0s
 - (Only possibility, by condition 3)

- Repeat y zero times (pump down): produces string with 0s =< 1s
 - Which is <u>not</u> in the language $\{0^i1^j \mid i>j\}$
 - This means that $\{0^i1^j \mid i>j\}$ does <u>not</u> satisfy the pumping lemma
 - Which means that that it is a not regular language
 - This is a contradiction of the assumption!

Pumping Lemma Doesn't Always Work!

• What if you can't figure out a counterexample?

Another Way to Prove Regularity

- A set of strings S is "representative" of a language L if:
 - Every possible string $w \in \Sigma^*$ maps to a string s in S via REP where ...
 - REP(w) = s, if for every possible string z, $wz \in L$ iff $sz \in L$

For regular languages, strings in the "representative" set correspond to states in a DFA!

S contains one string that reaches each state

Then REP(w) = s if w reaches the same state that s represents

Then for any string z, $wz \in L$ iff $sz \in L$ because they started in the same state!

A language is regular if this number of groups is finite, i.e. it

distinct groups

has a finite representative set!

Another Way to Prove Non-Regularity

- A set of strings S is "representative" of a language L if:
 - Every possible string $w \in \Sigma^*$ maps to a string s in S via REP where ...
 - REP(w) = s, if for every possible string z, $wz \in L$ iff $sz \in L$

$$L = \{ \mathbf{0}^n \mathbf{1}^n \mid n > = \mathbf{0} \}$$

- There must be a REP(0^k) every k ...
 - Because for every two strings $\mathbf{0}^k$ and $\mathbf{0}^m$...
 - ... there's some z that completes it such that $0^k z \in L$ but $0^m z$ is not
 - E.g., let $z = \mathbf{1}^k$, then $\mathbf{0}^k \mathbf{1}^k \in L$ but $\mathbf{0}^m \mathbf{1}^k$ is not in L

The representative set is infinite!

So the language is not regular!

Check-in Quiz 9/27

On gradescope