CS622

More Undecidability

Monday, October 25, 2021

DEFINE DOES ITHALT (PROGRAM):
{

RETURN TRUE;
5

THE BIG PICTURE SOLUTION
To THE HALTING PROBLEM

%/{/{0«/{0@#(@/{13’
e HW5 In

* HW6 out
« Due Sunday 10/24 11:59pm EST

* Hw4 grades returned

last Tine: The Limits of Algorithms

* Apra = {(B,w)| B is a DFA that accepts input string w } Decidable

* Fpea = {(A)| AisaDFAand L(A) = 0} Decidable

* FEQpra = {(A,B)| Aand B are DFAs and L(A) = L(B)} Decidable

last Tine: The Limits of Algorithms

* Apra = {(B,w)| B is a DFA that accepts input string w } Decidable
« Acre = {(G,w)| G is a CFG that generates string w } Decidable
e Fpra = {(A)| AisaDFAand L(A) = 0} Decidable
* Ecre = {(G)| Gisa CFG and L(G) = 0} Decidable
* FEQpra = {(A,B)| Aand B are DFAs and L(A) = L(B)} Decidable

TBD |* EQcrc = {(G,H)| G and H are CFGs and L(G) = L(H)} Undecidable

TBD

last Tine: The Limits of Algorithms

Apra = {(B,w)| B is a DFA that accepts input string w }
Acre = {(G,w)| G is a CFG that generates string w}
Atm = {(M,w)| M is a TM and M accepts w}

Epra = {(A)| Aisa DFA and L(A) = 0}

Ecrc = {(G)| Gis aCFG and L(G) = 0}

Erv = {(M)| MisaTM and L(M) = ()}
EQpea = {(A, B)| Aand B are DFAsand L(A) = L(B)}
EQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)}

EQ+y = {(My, My)| My and My are TMs and L(M;) = L(M>,)}

Decidable
Decidable
Undecidable
Decidable
Decidable
Undecidable
Decidable
Undecidable
Undecidable

No Algorithms About Language of TMs

* REGULAR, = {<M>| MisaTM and L(M) is a regular language}
 CONTEXTFREE), = {<M>|MisaTMand L(M) is a CFL}
* DECIDABLE, = {<M> | M is a TM and L(M) is a decidable language}
* FINITE;,, = {<M>| MisaTM and L(M) is a finite language}
iguage about

xmantics” of
undecidable

Rice’s Theorem: ANYTHING,, 1S Undecidable

ANYTHINGy, = {<M>| MisaTM and ... anything ... about L(M)}

- “Anything”, more precisely:
« Forany M, M,, if L(M,) = L(M,) ...
. ...then M, € ANYTHING,,, & M, € ANYTHING;,,

* Also, anything must be “non-trivial”:
« ANYTHING), '={}
* ANYTHING), != set of all TMs

Rice’s Theorem: ANYTHING,, 1S Undecidable

ANYTHINGy, = {<M>| MisaTM and ... anything ... about L(M)}

Proof by contradiction

« Assume some lang satisfying ANYTHING-,, has a decider R.
« Since ANYTHING-, is non-trivial, then there exists M,,, € ANYTHINGqy,
« Where R accepts M,

 Use R to create decider for Aqy:
On input <M, w>:

* Create M ;| M.=oninputx If M accepts w: M,, = My
-Run M onw If M doesn’t accept w: M, accepts nothing

- If M rejects w: reject x —
- If M accepts w: Wait! What if the TM that accepts
Run M,,,on x and accept if it accepts, else reject nothing is in ANYTHING;,,!
e Run Ron MW Proof still works! Just use the

. . _ complement of ANYTHING;,, instead!
If 1t accepts, then M, =M,yy, SO M accepts w, SO accep! (see hws: complement closed for

* Else reject decidable languages)

Rice’'s Theorem Real-World Example

main()

{
printf ("hello, world\n");
+

Write a program that,
given another program as its argument,
returns TRUE if the argument prints
“Hello, World!”

4

TRUE

Rice’'s Theorem Example

{

}

If

Fermat's Last Theorem

main() ¢///

" +y" = z", for any integer n > 2

printf("hello, world\n");

Write a program that,

' ther program as its argument,
RUE if the argument prints
‘Hello, World!”

12

{<M> | Mis a TM that installs malware} Undecidable!
by Rice’'s Theorem

1f the number n 1s a prime

RANSOMWARE ATTACK /\

T
nmunlicate

YOUR FILES HAVE BEEN ENCRYPTED

Apea = {(B,w)| B is a DFA that accepts input string w} Decidable

Acre = {{(G,w)| G is a CFG that generates string w} Decidable
Atm = {(M,w)| M isa TM and M accepts w} yndecidable

* In hindsight, of course a restricted TM (a decider) shouldn’t be
able to simulate unrestricted TM (a recognizer)

e But could a restricted TM simulate an even more restricted TM?

Linear Bounded Automata

A linear bounded automaton is a restricted type of Turing machine
wherein the tape head isn’t permitted to move off the portion of
the tape containing the input. If the machine tries to move its head
off either end of the input, the head stays where it is—in the same
way that the head will not move off the left-hand end of an ordinary
Turing machine’s tape.

control —l

Context-Sensitive Languages

context-sensitive languages,
ecognized by linear bounded automata

-

Turing-recognizable

context-free

What exactly does it mean
to be context-free vs
context-sensitive?

Chomsky Hierarchy

Theorem: A, ga is decidable

Arga = {(M,w)| M is an LBA that accepts string w}

thstback: TM Configuration = State + Head + Tape

q7
101151111uuu3...
10119701111
Textual
representation 1st char after state is

of “configuration” current head position

How Many Possible Configurations ...

 Does an LBA have?

g states
« g tape alphabet chars
 tape of length n

 Possible Configurations = gng"
« g" = number of possible tape configurations
« gn = all the possible head positions

Theorem: A, ga is decidable

Arga = {(M,w)| M is an LBA that accepts string w}
Proof: Create decider for A ga

On input <M, w>:
* Simulate M on w.
« If M accepts w, then accept.
 If M runs > gng" steps then we are in a loop so halt and reject

Termination
argument?

Theorem: E, ga is undecidable

Eiga = {(MH M is an LBA where L(M) — @}

thstback: TM Configuration Sequences

M = (Q, E; F; 5; q05 Qaccept QTejGCt)

Next
Single-step "¢ config Extended
(Right) aqiaB F axgsf * Base (ase
0t € O write IF Ifor any 1D [

d(q,a) = (g2,%X,R)

xel a,pel” :
x o Recursive Case

(Left) abgraf = agbxp I E Jlif there exists some ID K
if 6(q1,a) = (g2,x,L) such that I - K and K ¥ J

read

Theorem: E, ga is undecidable

Eiga = {{M)| M is an LBA where L(M) = 0}

Proof, by contradiction:

« Assume Fj ga has decider R; use to create decider for At :

« On Input <M, w>, where M = (Q,%,1, 6,90, Guccept, dreject) -
e Construct LBA B:

« B accepts sequences of M configurations where M accepts w, i.e.|| B
 First configuration is gqowiws - - - Wy,
- Last configuration has state q,,
« Each pair of adjacent configs is valid according to M’'s §
« Run R with B as input:
* If R accepts B, then B’s language is empty
« So there's no sequence of M configs that accept w, so reject
 If Rrejects B, then B's language is not empty
« So there’s a sequence of M configs that accepts w, so accept

[T#[x[a]a]o]# [x]=[a]b[#]..]

hd Y
& v
C1 C‘i+1

Wait! So any language that
can be used to check
computation histories
must be undecidable

Theorem: ALLcrc is undecidable
ALLcre = {(G)| GisaCFG and L(G) = ¥*}

Proof, by contradiction

« Assume ALL; has a decider R. Use It to create decider for Ay

On input <M, w>: Can a PDA do this?

 Construct a PDA P that rejects sequences of M configs that accept w

» Convert P to a CFG G (previous class)

 Give G to R:
* If R accepts, then M has no accepting config sequences for w, so reject
* If R rejects, then M has an accepting config sequence for w, so accept

ALLcgg is undecidable

A PDA That Rejects TM M Conﬂg Sequences

e = = B == M = 8 o0 B U (Q E F 5 qd0, accept QTeject)
. C,
On input == S nondetermlnlstlcally:
* Reject if C, is not Qw1 Wy -+, : ,
‘ Why reject accepting
. Qe"ect If C, does not have Qaccept configuration sequences?
» Reject if any|C; and |C,,,|is invalid according to &:[could we create a PDA that
* Push C; onto the stack accepts accepting
configuration sequences?
« Compare C; with C,,, (reversed):
« Check that initial chars match But that would mean

. On first non-matching char, check that next 3 chars is valid ac Ecrs IS undecidable??
. E.ach possiblg & can beohfard—coded since § is finite Ecre = {(G)| Gis a CFG and L(G) = 0}
« Continue checking remaining chars

: .. : We alread d
* Reject whenever anything is invalid ElelECa CApIOVE

this is decidable!

Algorithms For CFLs

* Acre = {(G,w)| G is a CFG that generates string w } Decidable
+ Ecre = {(G)| Gis a CFG and L(G) = ()} < Already proved. Decidable

 ALLcre = {(G)| Gisa CFG and L(G) = X"} just proved this | Undecidable

is undecidable

Exploring the Limits of CFLs

This is similar to the

e This is a CFL; {wl#wg ‘ w1 7£ ‘LUQ} config-rejecting PDA
« PDA nondeterministically checks matching positions in 15t/2"d parts
« And rejects if any are not the same
 |.e., Each branch is “context free”

. . This is similar to the ww
* This I1s not a CFL: {w1#w2 ‘ w1 = ’wz} language (not pumpable)

« Can nondeterministically check matching positions

« But needs to accept only if all branches match Anlzotr)lfi[gjlaccl?pt{ng PDA
° 7] ” t

« |.e., each branch is not “context free e e s TR 1 TEREEs

... .., not a CFL!
Summary: CFLs cannot do (stack-based)
nondet. computation where a branch s [allse iy miTer i degar
depends on other branch results for CFLs but intersection is not)

Algorithms For CFLs

* Acrc = {(G,w)| G is a CFG that generates string w }
e Fcpg = {(GH (1 is 2 CFG and L(G) _ w} Already proved

this is decidable

« ALLcre = {(G)| Gisa CFG and L(G) = ¥*} Just proved this

is undecidable

* FQcrc = {(G,H)| G and H are CFGs and L(G) = L(H)}

(Still need to prove this is undecidable)

Decidable
Decidable
Undecidable
Undecidable?

28

Theorem: FQcgc is undecidable

EQcrc = {(G. H)| G and H are CFGs and L(G) = L(H)}

 Proof by contradiction: Assume EQ.; has a decider R
 Use R to create a decider for ALL g

On input <G>:
 Construct a CFG G,;; which generates all possible strings
* Run Rwith Gand G,;;

« Accept G if R accepts, else reject

Turing Unrecognizable?

Is there anything out here?

Atwm

' Turing-recognizable

decidable

context-free

Where do these go?

Erv = {{M)| M isaTMand L(M) = (0}
EQcrc = {(G,H)| G and H are CFGs and L(G) = L(H)}
EQ+y = {(My, My)| My and M, are TMs and L(M;) = L(M>)}

Thm: Some langs are not Turing-recognizable

Proof: requires 2 lemmas

« Lemma 1: The set of all languages is uncountable

« Proof: Show there is a bijection with another uncountable set ...
... The set of all infinite binary sequences

e Lemma 2: The set of all TMs is countable

* Therefore, some language is not recognized by a TM
(pigeonhole principle)

31

Mapping a Language to a Binary Sequence

All Possible Strings |
o >>=1{¢ 0 1, 00, 01, 10, 11, 000, 001, ---
ome Language o
(subset of above) A = { 0, 00, 01, 000, 001,
Its (unique) (XA = 0 1 0 1 1 0 0 1 1
Binary Sequence

Each digit represents one possible string:
- 1 if lang has that string,
- 0 otherwise

Thm: Some langs are not Turing-recognizable

Proof: requires 2 lemmas

« Lemma 1: The set of all languages is uncountable

« Proof: Show there is a bijection with another uncountable set ...

... The set of all infinite binary sequences
> Now just prove set of infinite binary sequences is uncountable (diagonalization)

« Lemma 2: The set of all TMs is countable
« Because every TM M can be encoded as a string <M>
« And set of all strings is countable

* Therefore, some language is not recognized by a TM =

Co-Turing-Recognizability

* A language is co-Turing-recognizable if ...
e ... It Is the complement of a Turing-recognizable language.

Thm: Decidable <& Recognizable & co-Recognizable

35

Thm: Decidable < Recognizable & co-Recognizable

= If a language is decidable, then it is recognizable and co-recognizable

 Decidable => Recognizable (hw5):
« Adecideris arecognizer, bc decidable langs are a subset of recognizable langs

« Decidable => Co-Recognizable:
 To create co-decider from a decider ... switch reject/accept of all inputs
« A co-decider is a co-recognizer, for same reason as above

< If a language is recognizable and co-recognizable, then it is decidable

Thm: Decidable < Recognizable & co-Recognizable

= If a language is decidable, then it is recognizable and co-recognizable
« Decidable => Recognizable:
« Adecideris arecognizer, bc decidable langs are a subset of recognizable langs

« Decidable => Co-Recognizable:
 To create co-decider from a decider ... switch reject/accept of all inputs
« A co-decider is a co-recognizer, for same reason as above

< If a language is recognizable and co-recognizable, then it is decidable
 Let M, = recognizer for the language,
- and M, = recognizer for its complement

e Decider M:

* Run 1steponM,,
* Run 1step on M,,
« Repeat, until one machine accepts. If it's M,, accept. If it's M,, reject

Termination Arg: Either M, or M, must accept and halt, so M halts and is a decider

A Turing-unrecognizable language

« We've proved:

At is Turing-recognizable

A+m 1s undecidable

e SO:

Atwm is not Turing-recognizable

« Because: recognizable & co-recognizable implies decidable

Is there anything out here?

ATm Arm

' Turing-recognizable

decidable

context-free

regular

Mapping Reducibility

Atm = {(M,w)| M isa TM and M accepts w}

Last te: “Reduced” 'l

HALT+ty = {(M,w)| M is a TM and M halts on input w}

Thm: HALTtwm is undecidable PROBLEM: What if it takes
Proof, by contradiction: forever to create this decider?
« Assume HALT+m has decider R; use to create Aty decider:

S = “On input (M, w), an encoding of a TM M and a string w:
1. Run TM R on input (M, w).<— Use R to first check if M will loop on w

2. If R rejects, reject. Then run M on w knowing it won’t loop
3. If R accepts, simulate M on w until it halts.

4. If M has accepted, accept; if M has rejected, reject.”

 Contradiction: Aqy, Is undecidable and has no decider!

We need a formal definition of “reducibility”

(tashback; Anpa 1s a decidable language
Anea = {(B, w)| B 1s an NFA that accepts input string w}

Decider for AI\IFA g

N = “On input (B, w), where B is an NFA and w is a string:
1. Convert NFA B to an equivalent DFA (', using the procedure

2 II:FA?A?\FAA;[i C We said this NFA>DFA
Y on tnput {C;). . e algorithm is a TM, but it
3. If M accepts, accept; otherwise, reject. oeait e reaE

More generally, we've been saying
“programs = TMs”,
but programs do more than accept/reject?

Computable Functions

« A TM that, instead of accept/reject, “outputs” final tape contents

A function f: ¥X*—3* is a computable function it some Turing
machine M, on every input w, halts with just f(w) on its tape.

« Example 1: All arithmetic operations

« Example 2: Converting between machines, like DFA>NFA
 E.g, adding states, changing transitions, wrapping TM in TM, etc.

Mapping Reducibility

Language A is mapping reducible to language B, written A <, B,
if there is a computable function f: ¥* — ¥* where for every w,

we€ A<+ f(w) € B.

The function f is called the reduction from A to B.

Arm = {{M,w)| M isa TM and M acce o HALTtv = {(M,w)| M isa TM and M halts on input w}

A function f: X*—3* is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

Thm: A+m1s mapping reducible to HALT twm

Arm = {(M,w)| M isa TM and M accepts w}

g
HALTtv = {{(M,w)| M isa TM and M halts on input w}

¢ TO ShOW: ATM Em HALTTM
« Want: computable fn f : arw) 2 (' .w') where:

. . f
(M, w) € Aty ifand only if (M’ w") € HALT 1\
The following machine F' computes a reduction f. ;
'/_—_—_—_‘\.
F = “On input (M, w):

1. Construct the following machine M’
M’ = “On input z:
1. Run M on z.
2. It M accepts, accept.
3. If M rejects, enter a loop.”

: Converts M to M’
Still need to show:

M acceptsw
if and only If
M’ halts on w

Language A is maning reducible to language B, written A <,,, B,
if there i a computable function f: ¥*—3*, where for every w,

2. Output (M",w).” | M’is like M, except it
always loops when it

Output new M’ doesn’t accept

we A= f(w) € B.
The function f is called the reduction from A to B.

A function f: ¥*— X" is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

= If M accepts w, then M’ halts on w
« M’ accepts (and thus halts) if M accepts

< If M’ halts on w, then M accepts w

< (Alternatively) If M doesn’t accept w, then M’ doesn’t halt on w (contrapositive)
« Two possibilities

1. M loops: M' loops and doesn’t halt |
2. Mrejects: M’ loops and doesn’t hali AMTW

The following machine F' computes a reduction f. A

F = “On input (M, w):
1. Construct the following machine M.
M’ = “On input z:
1. Run M on z.
2. It M accepts, accept.
3. If M rejects, enter a loop.”

2. Output (M’ w).”

46

Use Mapping Reducibility to Prove ..
« Decidability

« Undecidability

Thm: If A <., B and B is decidable, then A is decidable.

Has a decider

PROOF We let M be the decider for B and f be the reduction from A to B.
We describe a decider NV for A as follows.

N = “On input w:
1. Compute f(w).
decides| 2. Run M on input f(w) and output whatever M outputs.”

decides

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — 3%, where for every w,

we A< f(w) € B.
48

The function f is called the reduction from A to B.

COro: If A <., B and A is undecidable, then B is undecidable.

 Proof by contradiction.

« Assume B Is decidable.

* Then 4 is decidable (by the previous thm).

 Contradiction: we already said 4 is undecidable

If A <,, B and B is decidable, then A is decidable.

Summary: Mapping Reducibility Theorems

- If A <,, B and B is decidable, then A is decidable.

Known Unknown

« If A <, B and A is undecidable, then B is undecidable.

Alternate Proof: The Halting Problem

HA LT+ 1s undecidable

« If A<, B and A is undecidable, then B is undecidable.

¢ ATM <m HALTTM

e Since Aty is undecidable, then HALT 1y is undecidable

Flashback: EQ+y, is undecidable

EQ+y = {{(My, Ms)| My and M5 are TMs and L(M;) = L(M>)}

Proof by contradiction:

* Assume EQ+,, has decider R; use to create Et\u decider:
={(M)| MisaTMand L(M) = (0}

S = “On input (M), where M is a TM:
1. Run R on input (M, M), where M; is a TM that rejects all
inputs.
2. If R accepts, accept; it R rejects, reject.”

Alternate proof: Show: Ery Sm EQqty
« Computable fn f: (M) > (A]\/L Ml> Last step: show iff requirements of

mapping reducibility (exercise)

Reducing to complement: Bty is undecidable
Etm = {{M)| M isaTM and L(M) = 0}

Proof, by contradiction:

« Assume Etnm has decider R; use to create Aty decider:

S = “On input (M, w), an encoding of a TM M and a string w:

1. Use the description of M and w to construct the TM M,

M, = “On input z:

) 1. Ifx # w, reject.

2. Run Ron mput <J\/fl> 2. Ifz = w, run M on input w and accept if M does.”

3. If R accepts, reject; if R rejects, accept.”

If M acceptsw, M, notin Ep,!
Alternate proof: computable fn: (M, w) - (M)« 77?7
* So this only reduces A1m to Frm Last step: show iff requirements of

* It's good enough! Still proves FErp is undecidable mapping reducibility (exercise)
« Because undecidable langs are closed under complement

Undecidable Langs Closed under Complement
« E.g, if L is undecidable and L is decidable ...
. ... then we can create decider for L from decider for L ...

e ... which is a contradiction!

« Because decidable languages are closed under complement!

Use Mapping Reducibility to Prove ..
« Decidability

. Undecidability

« Recognizability

« Unrecognizability

More Helpful Theorems

It A <., B and B is Turing-recognizable, then A is Turing-recognizable.

If A <, Band A isnot Turing-recognizable, then B is not Turing-recognizable.

» Same proofs as:
If A <,, B and B is decidable, then A is decidable.

If A <,, B and A is undecidable, then B is undecidable.

T h M : EQ+p 1s neither Turing-recognizable nor co-Turing-recognizable

EQ+y = {(M, Mz)| My and M, are TMs and L(M1) = L(M,)}

1. EQ+p 1s not Turing-recognizable

Atwm

ATm

Turing-recognizable

decidable

context-free

ATM < EQ1pmA is not Turing-recognizable, th/Q) 1)y not Turing-recognizable.

Mapping Reducibility implies Mapping Red. of Complements

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — ¥* where for every w,

w e A<= f(w) € B.

The function f is called the reduction from A to B.

A<y, B

implies

A<, B

Thm: EQsy is neither Turing-recognizable nor co-Turing-recognizable.
EQ+y = { (M1, Mz)| My and M> are TMs and L(M;) = L(M2)}

1. EQ1\ 1s not Turing-recognizable
Two Choices:
 Create Computable fn: Atm 2 EQ+y

. Or Computable fn: Avm 2 EQy

Thm: EQ+y, is not ‘Turing-recognizable

EQ+y = {{(My, Mz)| My and My are TMs and L(M;) = L(Ma2)}

* Create Computable fn: Aty 2 EQ+y,
* (M,w) > (M, M) M and M, are TMs and L(M) % L(M,)

F' = “On input (M, w), where M is a TM and w a string:
1. Construct the following two machines, M; and Mo.
M; = “On any iﬂpllt:<— Accepts nothing
1. Reject.”
M5 = “On any input: Accepts nothing or everything
1. Run M on w. If it accepts, accept.”

2. Output (M, Ms).” . If M accepts w,

M, not equal to M, ;
« If M does not accept w, |

M, equal to M, 6,

Thm:EQ+y is neither Turing-recognizable nor co-Turing-recognizable.
EQTM == {<M1}ﬂ/f2)| ﬂ/fl and ﬂ/fg are TMs f:l]_'ld L(Ml) = L(ﬂ/fz)}

1. EQt)y 1s not Turing-recognizable

. Or Computable fn: Aty = EQry,

* DONE!

2. EQ+y is not ¢O-Turing-recognizable
(A lang is co-Turing-recog. if it is complement of Turing-recog. lang)

63

Prev: EQ+,, is not Turing-recognizable

EQty = {(M1, Ma)| My and Ms are TMs and L(M;) = L(Ma>)}

» Create Computable fn: Atm =2 EQ1y,
o (M,w)=> (M, M) M and M, are TMs and L(M,) ¥ L(M)

F' = “On input (M, w), where M is a TM and w a string:
1. Construct the following two machines, M; and Ms.
M = “On any input: «— Accepts nothing
1. Reject.”
M5 = “On any input: <— Accepts nothing or everything
1. Run M on w. If it accepts, accept.”
2. Ol]t:_)llt <J\/Ilj ﬂ/Ig).”

DONE!

NOW: EQ+y is not Turing-recognizable
EQty = {(M1, Ma)| My and Ms are TMs and L(M;) = L(Ma>)}

- Create Computable fn: Aty = EQ4y,

* (M,w) > (M, Msy) M and M, are TMs and L(M,) % L(M)

F' = “On input (M, w), where M is a TM and w a string:
1. Construct the following two machines, M; and Ms.

M; = “On any input: Accepts nothing everything
1. Accept.”

M5 = “On any input: Accepts nothing or everything
1. Run M on w. If it accepts, accept.”
2. Output (M;, M3).” « If M accepts w, f
M, equals to M, e a
« If M does not acceptw j
| ’ Z__q__ =
DONE! M, not equal to M, : :

Unrecognizable Languages?

ATm Arm

' Turing-recognizable

decidable

context-free

Where do these go?

Erv = {{M)| M isaTMand L(M) = (0}
EQcrc = {(G,H)| G and H are CFGs and L(G) = L(H)}
EQ+y = {(My, My)| My and M, are TMs and L(M;) = L(M>)}

Unrecognizable Languages

ATm Arm

' Turing-recognizable

decidable

context-free

Where do these go?

Erv = {{M)| M isaTMand L(M) = (0}
EQcrc = {(G,H)| G and H are CFGs and L(G) = L(H)}

Check-in Quiz 10/25

On gradescope

