Mapping Reducibility & Unrecognizability Wednesday, October 27, 2021

 $\begin{array}{c|c} A & f \\ \hline \bullet & \\ \hline \end{array}$

Announcements

- HW6 due date extended
 - Due Wed 11/3 11:59pm
- New <u>required</u> reading:
 - Piazza posts about induction

Last Time: Undecidability By Checking TM Configs

 $ALL_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \Sigma^* \}$

Proof, by contradiction

• Assume ALL_{CFG} has a decider R. Use it to create decider for A_{TM} :

On input <*M*, *w*>:

- Construct a PDA P that rejects sequences of M configs that accept w
- Convert P to a CFG G (prev class)
- Give *G* to *R*:

- Any machine that can validate TM config sequences could be used to prove undecidability?
- If R accepts, then M has <u>no accepting config sequences</u> for w, so reject
- If R rejects, then M has an accepting config sequence for w, so accept

Last Time: Algorithms For CFLS

- $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$
- $E_{\mathsf{CFG}} = \{ \langle G \rangle | \ G \text{ is a CFG and } L(G) = \emptyset \}$ Why is this decidable?
- $ALL_{\mathsf{CFG}} = \{\langle G \rangle | \ G \text{ is a CFG and } L(G) = \Sigma^* \}$ But this is undecidable?

Decidable

Decidable

Undecidable

Last time: Exploring the Limits of CFLs

- This is a CFL: $\{w_1 \# w_2 \mid w_1 \neq w_2\}$
- This is like the $\underline{\mathsf{TM-config-rejecting}}$ $\underline{\mathsf{PDA}}$ used to prove ALL_{CFG} undecidable
- PDA nondeterministically checks matching positions in 1st/2nd parts
- And rejects if **any** pair of chars are not the same
- I.e., Each branch is "context free"
- This is <u>not</u> a CFL: $\{w_1 \# w_2 \mid w_1 = w_2\}$

There's no <u>TM-config-accepting PDA</u> because this language is not a CFL! So it's ok that E_{CFG} is decidable

- Can nondeterministically check matching positions
- · But needs to accept only if all branches match

This is similar to the ww language (not pumpable)

• I.e., each branch is not "context free"

Summary: CFLs cannot do (stack-based) nondet. computation where a branch depends on other branch results

(This is also why union is closed for CFLs but intersection is not)

Last time: Algorithms For CFLS

- $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$
- $E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$
- $ALL_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \Sigma^* \}$
- $EQ_{\mathsf{CFG}} = \{ \langle G, H \rangle | \ G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}$

(Still need to prove this is undecidable)

Decidable

Decidable

Undecidable

Undecidable?

Theorem: EQ_{CFG} is undecidable

 $EQ_{\mathsf{CFG}} = \{ \langle G, H \rangle | \ G \ \text{and} \ H \ \text{are CFGs and} \ L(G) = L(H) \}$

Proof by contradiction: Assume EQ_{CFG} has a decider R

• Use *R* to create a decider for *ALL*_{CFG}:

On input <*G*>:

- Construct a CFG G_{ALL} which generates all possible strings
- Run R (EQ_{CFG} 's decider) on $\langle G, G_{ALL} \rangle$
- Accept G if R accepts, else reject

The Post Correspondence Problem (PCP)

A Non-Formal Languages Undecidable Problem: *PCP*

- Let P be a set of "dominos" $\left\{ \begin{bmatrix} t_1 \\ \overline{b_1} \end{bmatrix}, \begin{bmatrix} t_2 \\ \overline{b_2} \end{bmatrix}, \dots, \begin{bmatrix} t_k \\ \overline{b_k} \end{bmatrix} \right\}$ Where each t_i and b_i are strings

• E.g.,
$$P = \left\{ \left[\frac{b}{ca} \right], \left[\frac{a}{ab} \right], \left[\frac{ca}{a} \right], \left[\frac{abc}{c} \right] \right\}$$

- A match is:
 - A sequence of dominos with the same top and bottom strings

Repeats allowed

• E.g.,
$$\left[\frac{a}{ab}\right] \left[\frac{b}{ca}\right] \left[\frac{ca}{a}\right] \left[\frac{a}{ab}\right] \left[\frac{abc}{c}\right]$$

• Then: $PCP = \{ \langle P \rangle \mid P \text{ is a set of dominos with a match } \}$

Theorem: PCP is undecidable

Proof by contradiction:

Assume *PCP* has a decider R and use to create decider for A_{TM} :

On input <*M*, *w*>:

- 1. Construct a set of dominos *P* that has a match <u>only when *M* accepts *w*</u>
- 2. Run R with P as input
- 3. Accept if *R* accepts, else reject

P has M's TM configurations as its domino strings

A match is a sequence of configs showing M accepting w!

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$$

PCP Dominos

- First domino: $\left[\frac{\#}{\#q_0w_1w_2\cdots w_n\#}\right]$
- Key idea: add dominos representing valid TM steps:

if
$$\delta(q, a) = (r, b, R)$$
, put $\left[\frac{qa}{br}\right]$ into P if $\delta(q, a) = (r, b, L)$, put $\left[\frac{cqa}{rcb}\right]$ into P

- For the tape cells that don't change: put $\left[\frac{a}{a}\right]$ into P
- Top can only "catch up" if there is an accepting config sequence

PCP Example

• Let w = 0100 and $\delta(q_0, 0) = (q_7, 2, \mathbf{R}) \, \operatorname{so} \left[\frac{q_0 0}{2q_7} \right] \, \operatorname{in} P$

PCP Dominos (accepting)

When accept state reached, let top "catch" up:

For every $a \in \Gamma$,

put $\left[\frac{a \, q_{\text{accept}}}{q_{\text{accept}}}\right]$ and $\left[\frac{q_{\text{accept}} \, a}{q_{\text{accept}}}\right]$ into P Bottom "eats" one char

Only possible match is accepting sequence of TM configs

Mapping Reducibility

Flashback: "Reduced"

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ halts on input } w \}$

<u>Thm</u>: *HALT*_{TM} is undecidable <u>Proof</u>, by contradiction:

PROBLEM: What if it takes forever to create this decider?

• Assume $HALT_{TM}$ has decider R; use to create A_{TM} decider:

S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

- **1.** Run TM R on input $\langle M, w \rangle$. Use R to first check if M will loop on w
- 2. If R rejects, reject.

Then run *M* on *w* knowing it won't loop

- 3. If R accepts, simulate M on w until it halts. \checkmark
- 4. If M has accepted, accept; if M has rejected, reject."
- Contradiction: A_{TM} is undecidable and has no decider!

We need a formal definition of "reducibility"

Flashback: A_{NFA} is a decidable language

 $A_{\mathsf{NFA}} = \{ \langle B, w \rangle | \ B \text{ is an NFA that accepts input string } w \}$

Decider for A_{NFA} :

N = "On input $\langle B, w \rangle$, where B is an NFA and w is a string:

- 1. Convert NFA B to an equivalent DFA C, using the procedure NFA \rightarrow DFA
- **2.** Run TM M on input $\langle C, w \rangle$.
- 3. If M accepts, accept; otherwise, reject."

We said this NFA→DFA algorithm is a TM, but it doesn't accept/reject?

More generally, we've been saying "programs = TMs", but programs do more than accept/reject?

Computable Functions

• A TM that, instead of accept/reject, "outputs" final tape contents

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

- Example 1: All arithmetic operations
- Example 2: Converting between machines, like DFA→NFA
 - E.g., adding states, changing transitions, wrapping TM in TM, etc.

Mapping Reducibility

Language A is *mapping reducible* to language B, written $A \leq_{\mathrm{m}} B$, if there is a computable function $f \colon \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

Thm: A_{TM} is mapping reducible to $HALT_{TM}$

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$

• To show: $A_{\mathsf{TM}} \leq_{\mathsf{m}} HALT_{\mathsf{TM}}$

- $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$
- Want: computable fn $f: \langle M, w \rangle \rightarrow \langle M', w' \rangle$ where:

 $\langle M, w \rangle \in A_{\mathsf{TM}}$ if and only if $\langle M', w' \rangle \in HALT_{\mathsf{TM}}$

The following machine F computes a reduction f.

F = "On input $\langle M, w \rangle$:

M accepts *w*

if and only if

M' halts on w

- Still need to show:

 1. Construct the following machine M' M' = "On input x:
 - **1.** Run *M* on *x*.
 - **2.** If M accepts, accept.
 - **3.** If *M* rejects, enter a loop."

Output $\langle M', w \rangle$." M' is like M.

Output new M'

M' is like M, except it always loops when it doesn't accept

Converts M to M'

Language A is *mapping reducible* to language B, written $A \leq_{\text{m}} B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

- \Rightarrow If M accepts w, then M' halts on w
 - M' accepts (and thus halts) if M accepts
- \Leftarrow If M' halts on w, then M accepts w
- \leftarrow (Alternatively) If M doesn't accept w, then M' doesn't halt on w (contrapositive)
 - Two possibilities
 - 1. M loops: M' loops and doesn't halt
 - 2. M rejects: M' loops and doesn't halt

The following machine F computes a reduction f.

$$F =$$
 "On input $\langle M, w \rangle$:

1. Construct the following machine M'.

$$M' =$$
 "On input x :

- **1.** Run *M* on *x*.
- 2. If M accepts, accept.
- **3.** If M rejects, enter a loop."
- **2.** Output $\langle M', w \rangle$."

Use Mapping Reducibility to Prove ...

Decidability

Undecidability

Thm: If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

Has a decider

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

- 1. Compute f(w).
- decides 2. Run M on input f(w) and output whatever M outputs."

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

Coro: If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

Proof by contradiction.

• Assume B is decidable.

• Then A is decidable (by the previous thm).

• <u>Contradiction</u>: we already said *A* is undecidable

Summary: Mapping Reducibility Theorems

• If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

Known

Unknown

• If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

Be careful with the direction of the reduction!

Alternate Proof: The Halting Problem HALT_{TM} is undecidable

• If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

• $A_{\mathsf{TM}} \leq_{\mathrm{m}} HALT_{\mathsf{TM}}$

• Since A_{TM} is undecidable, then $HALT_{\mathsf{TM}}$ is undecidable

Flashback: EQ_{TM} is undecidable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

Proof by contradiction:

• Assume EQ_{TM} has decider R; use to create E_{TM} decider:

 $= \{ \langle M \rangle | \ M \text{ is a TM and } L(M) = \emptyset \}$

S = "On input $\langle M \rangle$, where M is a TM:

- 1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
- 2. If R accepts, accept; if R rejects, reject."

Alternate proof: Show: $E_{\mathsf{TM}} \leq_{\mathsf{m}} EQ_{\mathsf{TM}}$

• Computable fn $f: \langle M \rangle \rightarrow \langle M, M_1 \rangle$

<u>Last step</u>: show iff requirements of mapping reducibility (exercise)

Reducing to complement: E_{TM} is undecidable

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Proof, by contradiction:

• Assume E_{TM} has decider R; use to create A_{TM} decider:

```
S = "On input \langle M, w \rangle, an encoding of a TM M and a string w:
```

1. Use the description of M and w to construct the TM M_1

 $M_1 =$ "On input x:

- 2. Run R on input $\langle M_1 \rangle$.

 1. If $x \neq w$, reject.
 2. If x = w, run M on input w and accept if M does."
- **3.** If R accepts, reject; if R rejects, accept."

If M accepts w, M_1 not in E_{TM} !

<u>Last step</u>: show iff requirements of

mapping reducibility (exercise)

Alternate proof: computable fn: $\langle M, w \rangle \rightarrow \langle M_1 \rangle$

- So this only reduces A_{TM} to $\overline{E_{\mathsf{TM}}}$
- It's good enough! Still proves E_{TM} is undecidable
 - Because undecidable langs are closed under complement

Undecidable Langs Closed under Complement

- E.g., if L is undecidable and \overline{L} is decidable ...
- ... then we can create decider for L from decider for \overline{L} ...
- ... which is a contradiction!

Because decidable languages are closed under complement!

Unrecognizability

Turing Unrecognizable?

Thm: Some langs are not Turing-recognizable

Proof: requires 2 lemmas

- Lemma 1: The **set of all languages** is uncountable
 - Proof: Show there is a bijection with another uncountable set ...
 - ... The set of all infinite binary sequences
- Lemma 2: The set of all TMs is countable

• Therefore, some language is not recognized by a TM (pigeonhole principle)

Mapping a Language to a Binary Sequence

```
 \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline \text{All Possible Strings} \\ \hline \hline Some Language \\ (subset of above) \\ \hline \hline \\ \text{Its (unique)} \\ \hline \text{Binary Sequence} \end{array} \begin{array}{|c|c|c|c|c|c|} \hline \Sigma^* = \left\{ \begin{array}{c} \pmb{\varepsilon}, & 0, & 1, & 00, & 01, & 10, & 11, & 000, & 001, & \cdots \\ \hline 0, & & & & & & & & & & & & & \\ \hline 0, & & & & & & & & & & & & \\ \hline 0, & & & & & & & & & & & & \\ \hline 0, & & & & & & & & & & & \\ \hline 0, & & & & & & & & & & & \\ \hline 0, & & & & & & & & & & \\ \hline 0, & & & & & & & & & & \\ \hline 0, & & & & & & & & & & \\ \hline 0, & & & & & & & & & \\ \hline 1, & & & & & & & & & & \\ \hline 0, & & & & & & & & & \\ \hline 0, & & & & & & & & & \\ \hline 1, & & & & & & & & & \\ \hline 0, & & & & & & & & \\ \hline 0, & & & & & & & & \\ \hline 0, & & & & & & & & \\ \hline 1, & & & & & & & & \\ \hline 0, & & & & & & & & \\ \hline 0, & & & & & & & & \\ \hline 1, & & & & & & & & \\ \hline 0, & & & & & & & \\ \hline 0, & & & & & & & \\ \hline 1, & & & & & & & \\ \hline 0, & & & & & & & \\ \hline 0, & & & & & & & \\ \hline 0, & & & & & & & \\ \hline 0, & & & & & & & \\ \hline 1, & & & & & & & \\ \hline 0, & & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ 0
```

Each digit represents one possible string:

- 1 if lang has that string,
- 0 otherwise

Thm: Some langs are not Turing-recognizable

Proof: requires 2 lemmas

- Lemma 1: The set of all languages is uncountable
 - Proof: Show there is a bijection with another uncountable set ...
 - ... The set of all infinite binary sequences
 - > Now just prove set of infinite binary sequences is uncountable (diagonalization)
- Lemma 2: The set of all TMs is countable
 - Because every TM *M* can be encoded as a string *<M>*
 - And set of all strings is countable
- Therefore, some language is not recognized by a TM

Co-Turing-Recognizability

- A language is **co-Turing-recognizable** if ...
- ... it is the <u>complement</u> of a Turing-recognizable language.

<u>Thm</u>: Decidable ⇔ Recognizable & co-Recognizable

<u>Thm</u>: Decidable ⇔ Recognizable & co-Recognizable

- \Rightarrow If a language is **decidable**, then it is **recognizable** and **co-recognizable**
 - Decidable => Recognizable (hw5):
 - A decider is just a recognizer that halts
 - Decidable => Co-Recognizable:
 - To create co-decider from a decider ... switch reject/accept of all inputs
 - A co-decider is a co-recognizer, for same reason as above
- ← If a language is **recognizable** and **co-recognizable**, then it is **decidable**

<u>Thm</u>: Decidable ⇔ Recognizable & co-Recognizable

- \Rightarrow If a language is decidable, then it is recognizable and co-recognizable
 - Decidable => Recognizable (hw5):
 - A decider is just a recognizer that halts
 - Decidable => Co-Recognizable:
 - To create co-decider from a decider ... switch reject/accept of all inputs
 - A co-decider is a co-recognizer, for same reason as above
- \leftarrow If a language is **recognizable** and **co-recognizable**, then it is **decidable**
 - Let M_1 = recognizer for the language,
 - and M_2 = recognizer for its complement
 - Decider M:
 - Run 1 step on M_1 , Termination Arg: Either M_1 or M_2 must accept
 - and halt, so M halts and is a decider • Run 1 step on M_2 ,
 - Repeat, until one machine accepts. If it's M_1 , accept. If it's M_2 , reject

A Turing-unrecognizable language

Recognizable & co-recognizable implies decidable

We've proved:

 A_{TM} is Turing-recognizable

 A_{TM} is undecidable

• So:

 $\overline{A_{\mathsf{TM}}}$ is not Turing-recognizable

Is there anything out here? $\overline{A_{\mathsf{TM}}}$ A_{TM} Turing-recognizable decidable context-free regular

Use Mapping Reducibility to Prove ...

Decidability

Undecidability

Recognizability

Unrecognizability

More Helpful Theorems

If $A \leq_{\mathrm{m}} B$ and B is Turing-recognizable, then A is Turing-recognizable.

If $A \leq_{\mathrm{m}} B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

Same proofs as:

If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

$\overline{\prod m}$: EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable.

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

1. EQ_{TM} is not Turing-recognizable

 $\overline{A_{\mathsf{TM}}}$

 $\overline{A_{\mathsf{TM}}} \leq_{\mathrm{m}} EQ_{\mathsf{TM}}A$ is not Turing-recognizable, th EQ_{TM} not Turing-recognizable.

Mapping Reducibility implies Mapping Red. of Complements

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

$\square h m$: EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable.

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

- 1. EQ_{TM} is not Turing-recognizable Two Choices:
 - Create Computable fn: $\overline{A}_{TM} \rightarrow EQ_{TM}$
 - Or Computable fn: $A_{\mathsf{TM}} \to \overline{EQ_{\mathsf{TM}}}$

Thm: EQ_{TM} is not Turing-recognizable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

- Create Computable fn: $A_{\mathsf{TM}} \to \overline{EQ_{\mathsf{TM}}}$
- $\langle M, w \rangle \rightarrow \langle M_1, M_2 \rangle$ M_1 and M_2 are TMs and $L(M_1) \neq L(M_2)$

F = "On input $\langle M, w \rangle$, where M is a TM and w a string:

1. Construct the following two machines, M_1 and M_2 .

$$M_1 =$$
 "On any input: \leftarrow Accepts nothing

1. Reject."

$$M_2$$
 = "On any input: \leftarrow Accepts nothing or everything

- 1. Run M on w. If it accepts, accept."
- 2. Output $\langle M_1, M_2 \rangle$."
- If M accepts w,
 M₁ not equal to M₂
- If M does not accept w,
 M₁ equal to M₂

$\square \square \square : EQ_{\mathsf{TM}}$ is neither Turing-recognizable nor co-Turing-recognizable.

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

1. EQ_{TM} is not Turing-recognizable

- Create Computable fn: $\overline{A}_{TM} \rightarrow EQ_{TM}$
- Or Computable fn: $A_{TM} \rightarrow \overline{EQ_{TM}}$
- DONE!
- 2. $\overline{EQ}_{\mathsf{TM}}$ is not C_{A} -Turing-recognizable
 - (A lang is co-Turing-recog. if it is complement of Turing-recog. lang)

Prev: EQ_{TM} is not Turing-recognizable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

- Create Computable fn: $A_{\mathsf{TM}} \to \overline{EQ_{\mathsf{TM}}}$
- $\langle M, w \rangle \rightarrow \langle M_1, M_2 \rangle$ M_1 and M_2 are TMs and $L(M_1) \neq L(M_2)$

```
F = "On input \langle M, w \rangle, where M is a TM and w a string:
```

1. Construct the following two machines, M_1 and M_2 .

```
M_1 = "On any input: \leftarrow Accepts nothing
```

1. Reject."

$$M_2 =$$
 "On any input: \leftarrow Accepts nothing or everything

- 1. Run M on w. If it accepts, accept."
- **2.** Output $\langle M_1, M_2 \rangle$."

NOW: EQ_{TM} is not Turing-recognizable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

- Create Computable fn: $A_{TM} \rightarrow EQ_{TM}$
- $\langle M, w \rangle \rightarrow \langle M_1, M_2 \rangle$ M_1 and M_2 are TMs and $L(M_1) \neq L(M_2)$

F = "On input $\langle M, w \rangle$, where M is a TM and w a string:

1. Construct the following two machines, M_1 and M_2 .

 $M_1 =$ "On any input: \leftarrow Accepts nothing everything

1. Accept."

 $M_2 =$ "On any input: \leftarrow Accepts nothing or everything

1. Run M on w. If it accepts, accept."

2. Output $\langle M_1, M_2 \rangle$."

- If *M* accepts *w*, M_1 equals to M_2
- If *M* does not accept *w*, M_1 not equal to M_2

Unrecognizable Languages?

Unrecognizable Languages

Thm: EQ_{CFG} is not Turing-recognizable

Recognizable & co-recognizable implies decidable

• We've proved: EQ_{CFG} is undecidable

• We now prove: EQ_{CFG} is co-Turing recognizable

- So:
 - *EQ*_{CFG} is not Turing recognizable

Thm: EQ_{CFG} is co-Turing-recognizable

 $EQ_{\mathsf{CFG}} = \{ \langle G, H \rangle | \ G \ \text{and} \ H \ \text{are CFGs and} \ L(G) = L(H) \}$

Recognizer for \overline{EQ}_{CFG} :

- On input <*G*, *H*>:
 - For every possible string w:
 - Accept if $w \in L(G)$ and $w \notin L(H)$ $A_{CFG} = \{\langle G, w \rangle | G \text{ is a CFG that generates string } w\}$
 - Or accept if $w \in L(H)$ and $w \notin L(G)$
 - Else reject

This is only a **recognizer** because it loops for ever when L(G) = L(H)

Unrecognizable Languages

Unrecognizable Languages

Thm: E_{TM} is not Turing-recognizable

Recognizable & co-recognizable implies decidable

- We've proved:
 - E_{TM} is undecidable
- We now prove: E_{TM} is co-Turing recognizable
 - So:
 - E_{TM} is not Turing recognizable

Thm: E_{TM} is co-Turing-recognizable

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Recognizer for $\overline{E_{\mathsf{TM}}}$: Let s_1, s_2, \ldots be a list of all strings in Σ^*

"On input $\langle M \rangle$, where M is a TM:

- 1. Repeat the following for $i = 1, 2, 3, \ldots$
- 2. Run M for i steps on each input, s_1, s_2, \ldots, s_i .
- 3. If M has accepted any of these, accept. Otherwise, continue."

This is only a **recognizer** because it loops for ever when L(M) is empty

Unrecognizable Languages

Check-in Quiz 10/27

On gradescope