UMB CS622
Mapping Reducibility

& Unrecognizability
Wednesday, October 27, 2021

%/{/{0«/{0@#(@/{13’

« HW6 due date extended
« Due Wed 11/3 11:59pm

* New required reading:
 Plazza posts about induction

last Time: Undecidability By Checking TM Configs

ALLcre = {(G)| GisaCFG and L(G) = ¥*}
Proof, by contradiction
« Assume ALLqr; has a decider R. Use it to create decider for Ay

On input <M, w>:
« Construct a PDA P that rejects sequences of M configs that accept w

e Convert Pto a CFG G (prev ClaSS) Any machine that can validate
] TM config sequences could be
e GIve G to R: used to prove undecidability?

* If R accepts, then M has no accepting config sequences for w, so reject
* If R rejects, then M has an accepting config sequence for w, so accept

last Tire: AlgOrIthms For CFLS

* Acre = {(G,w)| G is a CFG that generates string w } Decidable
+ Ecre = {(G)| Gis a CFG and L(G) = 0} < Why is this Decidable
« ALLcre = {(G)| Gisa CFG and L(G) = X"} S s)2 Undecidable

undecidable?

last tine: EXPLlOTING the Limits of CFLS

— This is like the TM-config-rejecting
* This 1s a CFL: {wl#wg ‘ w1 75 ”LUQ} PDA used to prove ALLq s undecidable

« PDA nondeterministically checks matching positions in 15t/2"d parts
« And rejects if any pair of chars are not the same
* |.e., Each branch is “context free”

There's no TM-config-accepting PDA

. . because this language is not a CFL!
* This Is not a CFL: {w1#w2 ‘ wy = ’wz} So it's ok that E . is decidable

« Can nondeterministically check matching positions [Thisis similar to the ww
« But needs to accept only if all branches match language (not pumpable)
 |.e. each branch is not “context free”

Summary: CFLs cannot do (stack-based) | |{Thisisalsowhy unionis closed
. for CFLs but intersection is not)

nondet. computation where a branch

depends on other branch results

last tine; AlgOrithms For CFLs

* Acre = {(G,w)| G is a CFG that generates string w } Decidable

e Ecrg = {{G)| Gis a CFG and L(G) = 0} Decidable

e ALLcrg = {(G)| Gisa CFG and L(G) = X*} Undecidable
* EQcrc = {(G,H)| G and H are CFGs and L(G) = L(H)} Undecidable?

(Still need to prove this is undecidable)

35

Theorem: FQcgc is undecidable

EQcrc = {(G. H)| G and H are CFGs and L(G) = L(H)}

Proof by contradiction: Assume EQ.. has a decider R
 Use R to create a decider for ALL g

On input <G>:
 Construct a CFG G,;; which generates all possible strings
 Run R (EQ.;'s decider) on <G, G,;,;>
« Accept G if R accepts, else reject

The Post Correspondence Problem
(PCP)

A Non-Formal Languages Undecidable Problem: PCP

* Let P be a set of “dominos” {{H [Z_Q} {Z_ﬂ}
« Where each t; and b, are strings 1 2 :

eep={[2) (3] 2] [29)

« A match is:
. A sequence of dominos with the same top and bottom strings | ReéPeats

allowed
e RIRIRIGIEE » Ll

* Then: PCP = { <P> | Pis a set of dominos with a match }

Theorem: PCP is undecidable

Proof by contradiction:
Assume PCP has a decider R and use to create decider for Ay,

On input <M, w>:

1. Construct a set of dominos P that
has a match only when M accepts w

2. Run R with P as input

3. Accept If R accepts, else reject

P has M's TM configurations as its domino strings

A match is a sequence of configs showing M accepting w!

| M = (Q,E;F;(sa QOaQacceptaQre]’ect)
PCP Dominos

* First domino: [# }
#gowiws - - - wp#

« Key idea: add dominos representing valid TM steps:

it 6(q,a) = (r,b,R), put Z—a] into P

L 0T
: rcqgal .
= — P

if 5(¢,a) = (r,b,L), put _mb] into

 For the tape cells that don’t change: put _g} into P

« Top can only “catch up” if there is an accepting config sequence

PCP Example

qo0

* Letw=10100and d(qg,0) = (g7, 2,R) so{—} in P

Top starts
to catch up

Bottom is valid
transition

#

g0 1 0 0

2q7

Fill in with
unchanged tape

PCP DOomINOS (accepting)

* When accept state reached, let top “catch” up:

Foreverya €T,

put QA Qaccept } and [Qaccept a

} into P | Bottom “eats” one char
(accept

Only possible match is accepting Qaccept

sequence of TM configs

#

2 1 q;lccept O 2

“eat” one char

Mapping Reducibility

Atm = {(M,w)| M is a TM and M accepts w}

Flasttack: “Reduced” 3

HALT+y = {(M,w)| M is a TM and M halts on input w}

Thm: HALTtwm is undecidable PROBLEM: What if it takes
Proof, by contradiction: forever to create this decider?
« Assume HALT+m has decider R; use to create Aty decider:

S = “On input (M, w), an encoding of a TM M and a string w: |
1. Run TM R on input (M, w). Use R to first check if M will loop on w

2. If R rejects, reject. Then run M on w knowing it won't loop
3. If R accepts, simulate M on w until it halts.
4. 1If M has accepted, accept; it M has rejected, reject.”

 Contradiction: Aqy, Is undecidable and has no decider!
We need a formal definition of “reducibility”

[lashback: Anpa is a decidable language

Anra = {(B,w)| B is an NFA that accepts input string w }

Decider for AI\IFA g

N = “On input (B, w), where B is an NFA and w is a string:
1. Convert NFA B to an equivalent DFA (', using the procedure

2 EFA?B\FAA} i C We said this NFA>DFA
Y on tnput {C;). . e algorithm is a TM, but it
3. If M accepts, accept; otherwise, reject. oeait e reaE

More generally, we've been saying
“programs = TMs”,
but programs do more than accept/reject?

Computable Functions

« A TM that, instead of accept/reject, “outputs” final tape contents

A function f: ¥X*—3* is a computable function it some Turing
machine M, on every input w, halts with just f(w) on its tape.

« Example 1: All arithmetic operations

« Example 2: Converting between machines, like DFA>NFA
 E.g, adding states, changing transitions, wrapping TM in TM, etc.

Mapping Reducibility

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — ¥* where for every w,

we A<= f(w) € B.

The function f is called the reduction from A to B.

Arm = {{M,w)| M isa TM and M acce o HALTtv = {(M,w)| M isa TM and M halts on input w}

A function f: X*—3* is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

Thm: A+m1s mapping reducible to HALT twm

Atm = {(M,w)| M is a TM and M accepts w}

¥
 To show: Atm <wm HALTtm HALTty = {(M,w)| M isa TM and M halts on input w}
« Want: computable fn f : @rw) 2 (', w) where:
(M,w) € At if and only if (M, w') € HALT 1\ !
The following machine F' computes a reduction f. ;
'/_—_—_—_\.
F = “On input (M, w):
1. Construct the following machine M’ Converts M to M’
Still need to show: | M’ = “On input z:
M accepts w 1. Run M on z.
if and only if 2. It M accepts, accept.)
M’ haltS onw 3. If M rejects, enter a IOOp. Language A is mabbing reducible to language B, written A <., B,

if there i a computable function f: ¥*—3*, where for every w,

| 2. OlltpU.t <MI, ’LU>.” M’ |S |.|ke M, except |t w € A+ f(w) € B.

d lways loo pS Wh en it The function f is called the reduction from A to B.
Outp ut new M’ doesn’t acce pt A function f: ¥*— ¥* is a computable function if some Turing

machine M, on every input w, halts with just f(w) on its tape.

= If M accepts w, then M’ halts on w
« M’ accepts (and thus halts) if M accepts

< If M’ halts on w, then M accepts w

< (Alternatively) If M doesn’t accept w, then M’ doesn’t halt on w (contrapositive)
« Two possibilities

1. M loops: M’ loops and doesn’t halt |
2. Mrejects: M’ loops and doesn’t hali AMTW

The following machine F' computes a reduction f. A

F = “On input (M, w):
1. Construct the following machine M.

M'" = “On input z:
1. Run M on z.

2. If M accepts, accept.
3. If M rejects, enter a loop.”

2. Output (M’ w).”

49

Use Mapping Reducibility to Prove ..
« Decidability

« Undecidability

Thm: If A <., B and B is decidable, then A is decidable.

Has a decider

PROOF We let M be the decider for B and f be the reduction from A to B.
We describe a decider NV for A as follows.

N = “On input w:
1. Compute f(w).
decides| 2. Run M on input f(w) and output whatever M outputs.”

decides

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — 3%, where for every w,

w e A<= f(w) € B.
51

The function f is called the reduction from A to B.

COro: If A <., B and A is undecidable, then B is undecidable.

 Proof by contradiction.

« Assume B Is decidable.

* Then 4 is decidable (by the previous thm).

 Contradiction: we already said 4 is undecidable

If A <,, B and B is decidable, then A is decidable.

Summary: Mapping Reducibility Theorems

- If A <,, B and B is decidable, then A is decidable.

Known Unknown

- If A <, B and A is undecidable, then B is undecidable.

Be careful with the direction of the reduction!

Alternate Proof: The Halting Problem

HA LT+ 1s undecidable

« If A<, B and A is undecidable, then B is undecidable.

¢ ATM <m HALTTM

e Since Aty is undecidable, then HALT 1y is undecidable

Flashback: EQ+y, is undecidable

EQ+y = {{(My, Ms)| My and M5 are TMs and L(M;) = L(M>)}

Proof by contradiction:

* Assume EQ+,, has decider R; use to create Et\u decider:
={(M)| MisaTMand L(M) = (0}

S = “On input (M), where M is a TM:
1. Run R on input (M, M;), where M is a TM that rejects all
inputs.
2. If R accepts, accept; it R rejects, reject.”

Alternate proof: Show: Ery Sm EQqty
« Computable fn f: (M) > (J\/L Ml> Last step: show iff requirements of

mapping reducibility (exercise)

Reducing to complement: Bty is undecidable
Erm = {(M)| M isaTM and L(M) = 0}

Proof, by contradiction:
« Assume Etnm has decider R; use to create Aty decider:

S = “On input (M, w), an encoding of a TM M and a string w:

1. Use the description of M and w to construct the TM M,
M, = “On input z:

) 1. Ifx # w, reject.
2. Run Ron mput <J\/fl> 2. Ifz = w, run M on input w and accept if M does.”

3. If R accepts, reject; if R rejects, accept.”. |
If M acceptsw, M, notin Ep,!

Alternate proof: computable fn: (M, w) - (M)« 77?7
» So this only reduces Atpm to T Last step: show iff requirements of

* It's good enough! Still proves FErp is undecidable mapping reducibility (exercise)
« Because undecidable langs are closed under complement

Undecidable Langs Closed under Complement
« E.g, if L is undecidable and L is decidable ...
. ... then we can create decider for L from decider for L ...

e ... which is a contradiction!

« Because decidable languages are closed under complement!

Unrecognizability

Turing Unrecognizable?

Is there anything out here?

Atwm

' Turing-recognizable

decidable

context-free

Where do these go?

Erv = {{M)| M isaTMand L(M) = (0}
EQcrc = {(G,H)| G and H are CFGs and L(G) = L(H)}
EQ+y = {(My, My)| My and M, are TMs and L(M;) = L(M>)}

Thm: Some langs are not Turing-recognizable

Proof: requires 2 lemmas

« Lemma 1: The set of all languages is uncountable

« Proof: Show there is a bijection with another uncountable set ...
... The set of all infinite binary sequences

e Lemma 2: The set of all TMs is countable

* Therefore, some language is not recognized by a TM
(pigeonhole principle)

61

Mapping a Language to a Binary Sequence

All Possible Strings | _
v >>=1{¢ 0 1, 00, 01, 10, 11, 000, 001, ---
ome Language o
(subset of above) A = { 0, 00, 01, 000, 001,
Its (unique) |[XA = 0 1 0 1 1 0 0 1 1
Binary Sequence

Each digit represents one possible string:
- 1 if lang has that string,
- 0 otherwise

Thm: Some langs are not Turing-recognizable

Proof: requires 2 lemmas

« Lemma 1: The set of all languages is uncountable

« Proof: Show there is a bijection with another uncountable set ...

... The set of all infinite binary sequences
> Now just prove set of infinite binary sequences is uncountable (diagonalization)

« Lemma 2: The set of all TMs is countable
« Because every TM M can be encoded as a string <M>
« And set of all strings is countable

* Therefore, some language is not recognized by a TM =

Co-Turing-Recognizability

* A language is co-Turing-recognizable if ...
e ... It Is the complement of a Turing-recognizable language.

Thm: Decidable <& Recognizable & co-Recognizable

65

Thm: Decidable < Recognizable & co-Recognizable

= If a language is decidable, then it is recognizable and co-recognizable

 Decidable => Recognizable (hw5):
« A decider isjust a recognizer that halts

« Decidable => Co-Recognizable:
 To create co-decider from a decider ... switch reject/accept of all inputs
« A co-decider is a co-recognizer, for same reason as above

< If a language is recognizable and co-recognizable, then it is decidable

Thm: Decidable < Recognizable & co-Recognizable

= If a language is decidable, then it is recognizable and co-recognizable

 Decidable => Recognizable (hw5):
« A decider isjust a recognizer that halts
« Decidable => Co-Recognizable:

 To create co-decider from a decider ... switch reject/accept of all inputs
« A co-decider is a co-recognizer, for same reason as above

< If a language is recognizable and co-recognizable, then it is decidable
 Let M, = recognizer for the language,
- and M, = recognizer for its complement

e Decider M:

* Run 1step on M, | Termination Arg: Either M; or M, must accept
« Run 1step on M,, | and halt, so M halts and is a decider

« Repeat, until one machine accepts. If it's M,, accept. If it's M,, reject
67

A Turing-unrecognizable language

Recognizable & co-recognizable implies decidable

« We've proved:

At is Turing-recognizable

A+wm 1s undecidable

e So:

A1m is not Turing-recognizable

Is there anything out here?

ATm Arm

' Turing-recognizable

decidable

context-free

regular

Use Mapping Reducibility to Prove ..
« Decidability

. Undecidability

« Recognizability

« Unrecognizability

More Helpful Theorems

It A <., B and B is Turing-recognizable, then A is Turing-recognizable.

If A <, Band A isnot Turing-recognizable, then B is not Turing-recognizable.

» Same proofs as:
If A <,, B and B is decidable, then A is decidable.

If A <,, B and A is undecidable, then B is undecidable.

T h M : EQ+p 1s neither Turing-recognizable nor co-Turing-recognizable

EQ+y = {(M, Mz)| My and M, are TMs and L(M1) = L(M,)}

1. EQ+p 1s not Turing-recognizable

Atwm

ATm

Turing-recognizable

decidable

context-free

ATM < EQ1pmA is not Turing-recognizable, th/Q) 1)y not Turing-recognizable.

Mapping Reducibility implies Mapping Red. of Complements

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — ¥* where for every w,

w e A<= f(w) € B.

The function f is called the reduction from A to B.

A<y, B

implies

A<, B

Thm: EQsy is neither Turing-recognizable nor co-Turing-recognizable.
EQ+y = { (M1, Mz)| My and M> are TMs and L(M;) = L(M2)}

1. EQ1\ 1s not Turing-recognizable
Two Choices:
 Create Computable fn: Atm 2 EQ+y

. Or Computable fn: Avm 2 EQy

Thm: EQ+y, is not ‘Turing-recognizable

EQ+y = {{(My, Mz)| My and My are TMs and L(M;) = L(Ma2)}

* Create Computable fn: Aty 2 EQ+y,
* (M,w) > (M, M) M and M, are TMs and L(M) % L(M,)

F' = “On input (M, w), where M is a TM and w a string:
1. Construct the following two machines, M; and Mo.
M; = “On any iﬂpllt:<— Accepts nothing
1. Reject.”
M5 = “On any input: Accepts nothing or everything
1. Run M on w. If it accepts, accept.”

2. Output (M, Ms).” . If M accepts w,

M, not equal to M, ;
« If M does not accept w, |

M, equal to M, 6=

Thm:EQ+y is neither Turing-recognizable nor co-Turing-recognizable.
EQTM == {<M1}ﬂ/f2)| ﬂ/fl and ﬂ/fg are TMs f:l]_'ld L(Ml) = L(ﬂ/fz)}

1. EQt)y 1s not Turing-recognizable

. Or Computable fn: Aty = EQry,

* DONE!

2. EQ+y is not ¢O-Turing-recognizable
(A lang is co-Turing-recog. if it is complement of Turing-recog. lang)

77

Prev: EQ+,, is not Turing-recognizable

EQty = {(M1, Ma)| My and Ms are TMs and L(M;) = L(Ma>)}

» Create Computable fn: Atm =2 EQ1y,
o (M,w)=> (M, M) M and M, are TMs and L(M,) ¥ L(M)

F' = “On input (M, w), where M is a TM and w a string:
1. Construct the following two machines, M; and Ms.
M = “On any input: «— Accepts nothing
1. Reject.”
M5 = “On any input: <— Accepts nothing or everything
1. Run M on w. If it accepts, accept.”
2. Ol]t:_)llt <J\/Ilj ﬂ/Ig).”

DONE!

NOW: EQ+y is not Turing-recognizable
EQty = {(M1, Ma)| My and Ms are TMs and L(M;) = L(Ma>)}

- Create Computable fn: Aty = EQ4y,

* (M,w) > (M, Msy) M and M, are TMs and L(M,) % L(M)

F' = “On input (M, w), where M is a TM and w a string:
1. Construct the following two machines, M; and Ms.

M; = “On any input: Accepts nothing everything
1. Accept.”

M5 = “On any input: Accepts nothing or everything
1. Run M on w. If it accepts, accept.”
2. Output (M;, M3).” « If M accepts w, f
M, equals to M, e a
« If M does not acceptw j
| ’ Z__q__ =
DONE! M, not equal to M, : :

Unrecognizable Languages?

ATm Arm

' Turing-recognizable

decidable

context-free

Where do these go?

Erv = {{M)| M isaTMand L(M) = (0}
EQcrc = {(G,H)| G and H are CFGs and L(G) = L(H)}
EQ+y = {(My, My)| My and M, are TMs and L(M;) = L(M>)}

Unrecognizable Languages

ATm Arm

' Turing-recognizable

decidable

context-free

Where do these go?

Erv = {{M)| M isaTMand L(M) = (0}
EQcrc = {(G,H)| G and H are CFGs and L(G) = L(H)}

Thm: EQ.¢; IS not Turing-recognizable

Recognizable & co-recognizable implies decidable

« We've proved:
FEQ e 1s undecidable

==) « \\le now prove:
EQc¢ 1S co-Turing recognizable

e So:

* EQ.c IS Not Turing recognizable

Thm: EQ.¢: 1S co-Turing-recognizable

EQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)}

Recognizer for EQ

« On input <G, H>:
 For every possible string w:

 Acceptifw e L(G) and w & L(H) Acrc = {(G,w)| G is a CFG that generates string w}
« OracceptifwelL(H)andw ¢ L(G)

* Else reject

This is only a recognizer because
it loops for ever when L(G) = L(H)

Unrecognizable Languages

ATm Arm

' Turing-recognizable

decidable

context-free

Where do these go?

Etm ={(M)| MisaTMand L(M) = ()}
?? EQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)}

Unrecognizable Languages

Where do these go?

Erm = {{M)| M isaTM and L(M) = 0}

Thm: E;, Is not Turing-recognizable

Recognizable & co-recognizable implies decidable

« We've proved:
« E- I1s undecidable

== « \We now prove:
E;y 1S CO-Turing recognizable

e So:

« E-y IS not Turing recognizable

Thm: E;,, IS co-Turing-recognizable

Erm ={(M)| MisaTMand L(M) = 0}

Recogn izer fO I ETM: Let s1, s2, ... be a list of all strings in ¥*

“On input (M), where M is a TM:
1. Repeat the following fori =1,2,3,....
2. Run M for i steps on each input, s1, S2, . . ., Si.
3. If M has accepted any of these, accept. Otherwise, continue.”

This is only a recognizer because it
loops for ever when L(M) is empty

Unrecognizable Languages

Check-in Quiz 10/27

On gradescope

