UMB CS622
Turing Machines and Recursion

Monday, November 1, 2021

[WUY T VBVE NO FRIENDS, REASON #1739 |
UNIMPRESAWE MINDBLOWING EACTS

DID YOU KNOW TUKT

THE WORD “RECURSION” CONTAWNG
THE WORD “RECURSION
N /7SELF?

W OG0A .~
THATS AMAZ..
YOU'RE AN
PESSHOLE.

%/(/(ﬂa/(&@/f(e/(lf&

« Hw6 extended deadline:
« due Wed 11/3 11:59pm

Recursion In Programming

(define (n)
(1T (n)

(* n (factorial (n)))))

In most programming languages,
you can call a function recursively,
even before it's completely defined!

Turing Machines and Recursion

« We've been saying: “A Turing machine models programs.”

« Q: Is a recursive program modeled by a Turing machine?

A Turing machine is a 7-tuple, (Q,%, T, 5, o, Gaccept; Greject), Where
Q, X, I are all finite sets and

1. @ is the set of states,

o A: YeS! 2. X is the input alphabet not containing the blank symbol o,
S .« o 3. T is the tape alphabet, where u € I"'and X C T,
¢ BUt |t S nOt exp |.| Clt. 4, 5: Q xI'—@Q x T x {L, R} is the transition function,
) . . 5. qo € Q is the start state,
* In fact, it's a little complicated. ¢, cis e scceptsiate, and
° N eed to p rove It .. 7. Grejece € @ 1s the reject state, where Greject 7 Gaccept-

Where’s the recursion
in this definition???
» Today: The Recursion Theorem

The Recursion Theorem

* You can write a TM description like this:

B = “On input w:
1. Obtain, via the recursion theorem, own description (B).

Example Use Case

The Recursion Theorem

Arm = {(M,w)| M isaTM and M accepts w}

Prove A1y is undecidable, by contradiction:
assume that Turing machine H decides Aty

B = “On input w:
1. Obtain, via the recursion theorem, own descriptien<{B).
2. Run H on input (B w).

3. Do the opposite of what H says. Thatis, accept if H rejects and

reject it H accepts.”

This is the non-existent “D” machine

My M. M. M. D) 7 o .
M, <p>t <j2>t “;ft <]4>t <Lt the TM that does the opposite of itself,
) [s e defined using recursion!
My | accept accept reject reject aweept | (prev. defined using diagonalization)

D reject

reject

accept

accept

?

How can a TM “obtain it's own description?”

How does a TM even know about “itself”
before it's completely defined?

A Simpler Exercise Idea;

TMs can receive TMs as input;

Just assume input will be yourself!
Our Task:

* Create a TM that, without using recursion, prints itself.
« How does this TM get knowledge about “itself”?

: : “TM input” “TM”
« An example, In English: 'lnpm /

. . . z
Print out two copies of the following, the second one in quotes:

“Print out two copies of the following, the second one in quotes:”

. e , “argument”
* This TM knows about “itself”, (the T;\%\ gets itself

 but it does not explicitly use recursion! from its input!)

g creates a TM (that prints a string) 11,
and outputs it as a string (i.e,, it's “quoted”) 2]

Sel,f_Prl ntl ng TU rl ng I\/\aCh | ne So g(<M>) prints a “quoted” M

5]

|

“argument”
(the TM itself,
encoded as string)

The following TM) computes g(w).

@ = “On input string w:
1. Construct the following Turing machine P,.
P, = “On any input: 1]
1. Erase input.
2. Write w on the tape.
3. Halt.”
2. Output (P,).” | [2]

“TM"

>B = “On input (M), where M is a portion of a TM:

Second (quoted) copy Compute q((ﬂ/i’)).
— Firstcopy | Combine the result with (M) to make a complete TM.

(W;[{\Ablg Iiot:zl f 3. Print the description of this TM and halt.”

B

<_‘

rint out two copies of the following, the second on in quotes:

SELF, Defined With The Recursion Theorem

SELF = “On any input:
1. Obtain, via the recursion theorem, own description (SELF').
2. Print (SELF).”

« So a TM doesn’t need explicit recursion to call itself!

« What about TMs that do more than “print itself”?

The Recursion Theorem, Formally

Recursion theorem Let 7" be a Turing machine that computes a function
t: X% x ¥*——¥*. There is a Turing machine R that computes a function
r: X*— ¥* where for every w,

r(w) = t((R),w).

In English:
« If you want a TM R that can “obtain own description” ...

. ... Instead create a TM T with an extra “itself” argument ...

e ... then construct Rfrom T |2??

The Recursion Theorem, Pictorially

e To converta “T" to “R":

AN

A
(:P(HT})

4

b

control for R

-

AB = SELF (prev slide)

T = machine that gets
Itself as argument

R = Twithout explicit
self argument

1. Construct A = program constructing <BT>, and
2. Pass result to B (from before),

3. which passes “itself” to T

Recursion Theorem, A Concrete Example

Recursion
n) :: R Theorem
says you
* If you want: can
* Recursive fn n (factorial (n))))) convert

(define (ITSELF n) ;; T
* Instead create: (if (1))

« Non-recursive fn (

n (ITSELF (n)))))

It's not clear how the
recursion theorem applies
to real programs?

TMs and Recursive Programs

« So a TM doesn’t need explicit recursion to call itself!
» What about programs? (TMs = Programs)

« Can we write recursive programs
without using explicit recursion?

Interlude: Lambda

. A (very high-level)
« A =anonymous function, e.g. (A (x) x) Turing Machine

« C++: [](int x){ return x; }
.]ava;(x) -> { return Xx, }
 Python: Llambda x : X

¢ JS: (x) => { return x; }

A Self-Printing Program

Print out two copies of the_following, the second one in quotes:

“function”

First copy

T“P1rint out two copies of the following, the second one in quotes:”
Z \
“parameter”

“argument”

Could we write a program
that does something other
than print “itself”?

str)

29akRdaB] (could have inlined this)

Second copy (quoted)

Non-Printing Uses of SELF

« Program that prints “itself”:

((A (SELF) (print2x SELF))

) eta-expansion:
Any function f = Ax.(f x)

 Program that runs “itself” repeatedly (i.e,, it infinite loops):

((A (SELF) (SELF SELF) Call arg fn with itself as arg
(A (SELF) (SELF SELF))) Don’t convert arg to string

« Loop, but do something useful each time?

“package up” the
recursion

(A (f)

((A (SELF) (f (SELF SELF))) ((A (SELF) (f (A™(v) ((SELF SELF) v))))

(A (SELF) (f (SELF SELF))))) (A (SELF) (f (A (v) ((SELF SELF) v))))))

 None of these programs use explicit recursion! Y combinator

Recursion Theorem Proof: Coding Demo

* Program that passes “itself” to another function:
Y combinator

Pass to

e Function|that needs “itself”

(define ™ ITSELF n)

(if (n)

(* n (ITSELF (n)))))

Fixed Points

« Avalue x is a fixed point of a function fif f{x) =x

Recursion Theorem and Fixed Points

Let t: ¥*——Y* be a computable function. Then there is a Turing machine
F for which ¢((F)) describes a Turing machine equivalent to F. Here we’ll
assume that if a string isn’t a proper Turing machine encoding, it describes a
Turing machine that always rejects immediately.
Fixed pointis a

In this theorem, ¢ plays the role of the transformation, and F is the fixed point. TM that is

unchanged by
PROOF Let F' be the following Turing machine. the function
F' = “On input w:

1. Obtain, via the recursion theorem, own description (F’).
2. Compute t((F')) to obtain the description of a TM G.
3. Simulate G on w.”

Clearly, (F') and t((F)) = (G) cescribe equivalent Turing machines because
F' simulates G.

e |.e,, Recursion Theorem implies:

« “every TM that computes on TMs has a fixed point”
 As code: “every function on functions has a fixed point”

Y Combinator

 mk-recursive-fn =a “fixed point finder”

(define mk-recursive-fn
(A (T)

((A (x) (T
(A (x) (T

- factorial is the fixed point of mk-factorial

Summary: Where “Recursion” Comes From

A Turing machine is a 7-tuple, (Q,X, T, d, qo, Gaccepts reject), Where
Q, X, I are all finite sets and

1. Q is the set of states,
2. ¥ 1s the input alphabet not containing the blank symbol o,

° TMS are powe rfu l enough to: 3. F‘is the tape alphabet, whcrcn-JEFandZ“C; L, -
.) . 0:Q xI'— @ x I' x {L, R} 1s the transition function,
1. Recelve other TMs as input
2. CO nStI"U Ct Oth er TMS - Qreject € @ 1s the reject state, where grejece 7 Gaceept-
3. Simulate other TMs Where's the recursion???

.p.

5. qo € Q is the start state,
6. Gaccepr € Q is the accept state, and
7

PROBLEMS
WITH

» That's enough to achieve recursion! RECURSON

—~ PROBLEMS
WITH
REC\);QS\ON

|

J’P‘_&Se Loke one

Check-in Quiz 11/1

On gradescope

