UMB CS622

Turing Machines and Recursion

Monday, November 1, 2021

Announcements

- Hw6 extended deadline:
 - due Wed 11/3 11:59pm

Recursion in Programming

In most programming languages, you can call a function recursively, even before it's completely defined!

Turing Machines and Recursion

• We've been saying: "A Turing machine models programs."

• **Q**: Is a recursive program modeled by a Turing machine?

- <u>A</u>: Yes!
 - But it's not explicit.
 - In fact, it's a little complicated.
 - Need to prove it ...

A *Turing machine* is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet not containing the *blank symbol* \sqcup ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- **5.** $q_0 \in Q$ is the start state,
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

Where's the recursion in this definition???

• **Today**: The Recursion Theorem

The Recursion Theorem

You can write a TM description like this:

B = "On input w:

1. Obtain, via the recursion theorem, own description $\langle B \rangle$.

The Recursion Theorem

Example Use Case

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$

Prove A_{TM} is undecidable, by contradiction: assume that Turing machine H decides A_{TM}

```
B = "On input w:
```

- 1. Obtain, via the recursion theorem, own description $\langle B \rangle$.
- **2.** Run H on input $\langle B, w \rangle$.
- 3. Do the opposite of what H says. That is, accept if H rejects and

reject if H accepts."

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	• • •	$\langle D \rangle$
M_1	accept	reject	accept	reject		accept
M_2	accept	\underline{accept}	accept	accept		accept
M_3	reject	reject	reject	reject		reject
M_4	accept	accept	\overline{reject}	reject		accept
:	:				••	
D	reiect	reject	accent	accent		? <

This is the non-existent "D" machine the TM that does the opposite of itself, defined using recursion!

(prev. defined using diagonalization)

How can a TM "obtain it's own description?"

How does a TM even know about "itself" before it's completely defined?

A Simpler Exercise

Idea:

TMs can receive TMs as input;
Just assume input will be yourself!

Our Task:

- Create a TM that, without using recursion, prints itself.
 - How does this TM get knowledge about "itself"?
- An example, in English:

"TM input"

Print out two copies of the following, the second one in quotes: "Print out two copies of the following, the second one in quotes:"

- This TM knows about "itself",
 - but it does not explicitly use recursion!

"argument"
(the TM gets itself from its input!)

"TM"

q creates a TM (that prints a string) [1], and outputs it as a string (i.e., it's "quoted") [2]

Self-Printing Turing Machine

So q(<M>) prints a "quoted" M

SELF, Defined With The Recursion Theorem

```
SELF = "On any input:
```

- 1. Obtain, via the recursion theorem, own description $\langle SELF \rangle$.
- **2.** Print $\langle SELF \rangle$."

- So a TM doesn't need explicit recursion to call itself!
- What about TMs that do more than "print itself"?

The Recursion Theorem, Formally

Recursion theorem Let T be a Turing machine that computes a function $t: \Sigma^* \times \Sigma^* \longrightarrow \Sigma^*$. There is a Turing machine R that computes a function $r: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$r(w) = t(\langle R \rangle, w).$$

In English:

- If you want a TM R that can "obtain own description" ...
- ... instead create a TM T with an extra "itself" argument ...
- ... then construct *R* from *T*

The Recursion Theorem, Pictorially

- 1. Construct $A = \text{program constructing } \langle BT \rangle$, and
- 2. Pass result to B (from before),
- 3. which passes "itself" to T

Recursion Theorem, A Concrete Example

- If you want:
 - Recursive fn

- Instead create:
 - Non-recursive fn

```
(define (factorial n) ;; R
  (if (zero? n)
      (* n (factorial (sub1 n)))))
(define (factorial/itself ITSELF n) ;; T
  (if (zero? n)
      (* n (ITSELF (sub1 n)))))
```

It's not clear how the recursion theorem applies to real programs?

Recursion Theorem says you can convert

TMs and Recursive Programs

So a TM doesn't need explicit recursion to call itself!

What about programs? (TMs = Programs)

 Can we write recursive programs without using explicit recursion?

Interlude: Lambda

• λ = anonymous function, e.g. (λ (x) x)

```
• C++: [](int x){ return x; }
```

- **Java**: (x) -> { return x; }
- Python: lambda x : x
- **JS**: (x) => { return x; }

A (very high-level)
Turing Machine

A Self-Printing Program

Non-Printing Uses of *SELF*

Program that prints "itself":

```
((λ (SELF) (print2x SELF))
"(λ (SELF) (print2x SELF))")
```

```
eta-expansion:
Any function f = \lambda x \cdot (f x)
```

• Program that runs "itself" repeatedly (i.e., it infinite loops):

```
((λ (SELF) (SELF SELF)) Call arg fn with itself as arg
(λ (SELF) (SELF SELF)) Don't convert arg to string
```

• Loop, but do something useful each time?

"package up" the recursion

```
((λ (SELF) (f (SELF SELF)))
(λ (SELF) (f (SELF SELF))))) (λ (SELF) (f (λ (ν) ((SELF SELF) ν))))
```

None of these programs use explicit recursion!

Y combinator

Recursion Theorem Proof: Coding Demo

• Program that passes "itself" to another function:

() (f)
((λ (x) (f (λ (v) ((x x) v))))
(λ (x) (f (λ (v) ((x x) v)))))

Function that needs "itself"

Pass to

Y combinator

Fixed Points

• A value x is a fixed point of a function f if f(x) = x

Recursion Theorem and Fixed Points

Let $t: \Sigma^* \longrightarrow \Sigma^*$ be a computable function. Then there is a Turing machine F for which $t(\langle F \rangle)$ describes a Turing machine equivalent to F. Here we'll assume that if a string isn't a proper Turing machine encoding, it describes a Turing machine that always rejects immediately.

In this theorem, t plays the role of the transformation, and F is the fixed point.

PROOF Let F be the following Turing machine.

F = "On input w:

- 1. Obtain, via the recursion theorem, own description $\langle F \rangle$.
- 2. Compute $t(\langle F \rangle)$ to obtain the description of a TM G.
- 3. Simulate G on w."

Clearly, $\langle F \rangle$ and $t(\langle F \rangle) = \langle G \rangle$ describe equivalent Turing machines because F simulates (7.

- I.e., Recursion Theorem implies:
 - "every TM that computes on TMs has a fixed point"
 - As code: "every function on functions has a fixed point"

Fixed point is a TM that is unchanged by the function

Y Combinator

• mk-recursive-fn = a "fixed point finder"

```
(define mk-recursive-fn
   (λ (f)
        ((λ (x) (f (λ (v) ((x x) v))))
        (λ (x) (f (λ (v) ((x x) v))))))
```

factorial is the fixed point of mk-factorial

Summary: Where "Recursion" Comes From

- TMs are powerful enough to:
 - 1. Receive other TMs as input
 - 2. Construct other TMs
 - 3. Simulate other TMs

A *Turing machine* is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet not containing the **blank symbol** \sqcup ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- **5.** $q_0 \in Q$ is the start state,
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

Where's the recursion???

• That's enough to achieve recursion!

Check-in Quiz 11/1

On gradescope