UMB (CS622
Time Complexity

Monday, November 8, 2021

ALGORITHMS
BY COMPLEXIFY
LEFTPAD QUCKSORT G SELF GOOGLE SPRALILING EXCEL SPREADSHEET
MERGE DRVNG SEARCH BUIT UP OVER 2D YEARS BY A
CAR BACKEND CHURCH GROUP IN NEBRASKA TO
COORDINATE THEIR SCHEDULING

Aunoancements
« HW7 due Wed 11:59pm EST

« Submit “HW Solution Plans” to Piazza
« Not at the last minute please

« HW5 grades returned

Flasttack NOndet. TM = Deterministic TM

Nondeterministic
« To simulate NTM with Det. TM: computation
 Number the nodes at each step 1]
« Deterministically check every tree path, [l
in breadth-first order / j\
* Root node: 1 112

. 1-1 ; (l
oo (3

R

* accept

Flasttack NOndet. TM = Deterministic TM

Nondeterministic
* To simulate NTM with Det. TM: computation
 Number the nodes at each step 1
« Deterministically check every tree path, f \.
in breadth-first order v/;\v 2
* Root node: 1 11213 4

12 Y
reject '/ \'
R

* accept

Flasttack NOndet. TM = Deterministic TM

Nondeterministic
« To simulate NTM with Det. TM: computation
 Number the nodes at each step 15
« Deterministically check every tree path, f l
in breadth-first order v/1 \; N
* Root node: 1 11473 4
¢ 1-1 ;
12 | {
. 1121 |ATM and a NTM are “equivalent” ... (\'
reject e

.. but not if we care about the # of steps!

So how inefficient is it?

First, we need a formal way to count “# of steps” ...

\

* accept

A Simpler Example: 4 = {0*1%|k > 0}

My = “On input string w:
1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeatif both 0s and 1s remain on the tape:
3. Scan across the tape, crossing off a single 0 and a single 1.
4. If Os still remain after all the 1s have been crossed off, or if 1s
still remain after all the Os have been crossed off, reject. Other-
wise, if neither Os nor 1s remain on the tape, accept.”

of steps (worst case), n = length of input:

>TM Line 1:
* n steps to scan + n steps to return to beginning = 2n steps

A Simpler Example: 4 = {0*1%|k > 0}

M = “On input string w:
1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeatif both 0s and 1s remain on the tape:
3. Scan across the tape, crossing off a single 0 and a single 1.
4. If Os still remain after all the 1s have been crossed off, or if 1s
still remain after all the Os have been crossed off, reject. Other-
wise, if neither Os nor 1s remain on the tape, accept.”

of steps (worst case), n = length of input:

e TM Line 1:
* n steps to scan + n steps to return to beginning = 2n steps

>Lines 2-3 (loop):
« steps/iteration (line 3): n/2 steps to find “1” + n/2 steps to return = n steps
- # iterations (line 2): Each scan crosses off 2 chars, so at most n/2 scans
« Total = steps/iteration * # iterations = n (n/2) = n2/2 steps

A Simpler Example: 4 = {0*1%|k > 0}

My = “On input string w:
1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeatif both 0s and 1s remain on the tape:
P . P . n?/2 +3n
3. Scan across the tape, crossing off a single 0 and a single 1.
4. 1If Os still remain after all the 1s have been crossed off, or if 1s
still remain after all the Os have been crossed off, reject. Other-
wise, if neither Os nor 1s remain on the tape, accept.”

of steps (worst case), n = length of input:

e TM Line 1:
* n steps to scan + n steps to return to beginning = 2n steps

e Lines 2-3 (loop):
- steps/iteration (line 3): n/2 steps to find “1” + n/2 steps to return = n steps
- # iterations (line 2): Each scan crosses off 2 chars, so at most n/2 scans
 Total = steps/iteration * # iterations = n (n/2) = n2/2 steps

>Line 4
* n steps to scan input one more time

« Total: 2n + n?/2 + n=|n?/2 + 3n steps

Interlude: Polynomials

order/degree

Highest order term —>6_7’L3 -+ 2_7’),2 —+ 20_TL -+ 4_5

coefficients

A=

terms

10

Definition: Time Complexity

i.e., a decider (algorithm)

Let M be a deterministic Turing machine that halts on all in-
puts. The running time or time complexity of M is the function
f: N— N, where f(n) is the maximum number of steps that M
uses on any input of length n. If f(n) is the running time ot M,
we say that M runs in time f(n) and that M is an f(n) time Tur-
ing machine. Customarily we use n to represent the length of the
input.

Where Are We Now?

We are back in here now:

deterministic, single-tape deciders
(unless otherwise indicated)

Turing-recognizable

decidable

context-free

Definition: Time Complexity

NOTE: n has no units, it's only
roughly “length” of the input

" ?h;a:'gcl?tgzrs Let M be a deterministic Turing machine that halts on all in-
4 ctates. | puts. The running time or time complexity of M is the function
nodes. . f: N— N, where f(n) is the maximum number|of steps that M

uses on any input of length n. If f(n) is the running time of M,
We can useanyn |53y that M runs in time f(n) and that M is an f(n) time Tur-
that is correlated | machine. Customarily we use n to represent the length of the

with the input length [ut.

- Machine M, that decides A = {0F1%|k > 0}

* Running time / Time Complexity: n2/2+3n |"" = > urse

Scan across the tape and reject if a 0 is found to the right of a 1.
Repeat if both 0s and 1s remain on the tape:

Scan across the tape, crossing off a single 0 and a single 1.
If Os still remain after all the 1s have been crossed off, or if 1s
still remain after all the 0s have been crossed off; reject. Other-
wise, if neither 0s nor 1s remain on the tape, accept.”

SR TSI S I

Interlude: Asymptotic Analysis

Total: n2 +3n
e Ifn=1

e n?2=1
* 3n=3
« Total=4
e Ifn=10 . .
. n2=100 asymptotic analysis only cares about large n
- 3n=30
« Total=130
* Ifn=100
* n?=10,000
- 3n=300
« Total=10,300
* Ifn=1,000
- n2=1,000,000
e 3n=3,000
- Total = 1,003,000

n? +3n = n?as n gets large

Definition: Big-0 Notation

Let f and g be functions f, g: N— R ™. Say that f(n) = O(g(n))

if positive integers c and ng exist such that for every integer n > ny,

f(n) < cgn). “only care about large n*
When f(n) = O(g(n)), we say that g(n) is an upper bound tor
f(n), or more precisely, that g(n) is an asymptotic upper bound for
f(n), to emphasize that we are suppressing constant factors.

In other words: Keep only highest order term, drop all coefficients

» Machine M, that decides A = {0*1*| k& > 0}
* Is an n%? +3n time Turing machine
* Is an O(n?) time Turing machine
« Has asymptotic upper bound 0(n?)

Definition: Small-o Notation (less used)

Let f and g be functions f, g: N— R ™. Say that f(n) = o(g(n))
if
(n)

lim —— = 0.
n—so0 g(n)

In other words, f(n) = o(g(n)) means that for any real number
¢ > 0, a number ng exists, where f(n) < cg(n) for all n > ny.

Analogy: Big-0: <::small-o: <

Let f and g be functions f, g: N— R™. Say that f(n) = O(g(n))
if positive integers c and ng exist such that for every integer n > ny,
f(n) < cg(n).

When f(n) = O(g(n)), we say that g(n) is an upper bound for
f(n), or more precisely, that g(n) is an asymptotic ufiper bound for
f(n), to emphasize that we are suppressing constant factors.

Big-0 arithmetic

* 0(n?) + 0(n?)
= 0(n?)

* 0(n?) + O(n)
= 0(n?)

*2n=0(n)?

* TRUE

*2n=0(n?)?

* TRUE

. 1=0(n?)?

* TRUE

e 21 = O(n?) ?

* FALSE

Definition: Time Complexity Classes

Let t: N—R™ be a function. Define the time complexity class,
TIME(t(n)), to be the collection of all languages that are decid-
able by an O(t¢(n)) time Turing machine.

Remember: TMs have a time complexity (i.e,, a running time),
languages are in a time complexity class

The complexity class of a language is determined by the
time complexity (running time) of its deciding TM

- Machine M, decides language A = {0¥1*|k > 0}
M, has time complexity (running time) of 0(n?)
« Alisin time complexity class TIME(n?)

A Faster Machine? A = {0*1%|k > 0}

Previously:
— 1 1 °
Mj = “On input string w: - . - M = “On input string w:

1. Scan across the tape and reject if a 0 is found to the right of a 1. 1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeat as long as some 0s and some 1s remain on the tape: 2. Repeat if both 0s and 1s remain on the tane:
3. Scan across the tape, checking whether the total number of 3. Scan across the tape, crossing off a single 0 and a single 1.

0s and 1s remaining is even or odd. Ifit is odd, reject. 4. If.Os still remain after all the 1s have been crossed pff, orif 1s

) . . still remain after all the Os have been crossed off, reject. Other-

4. Scan again across the tape, crossing off every other 0 starting L P S

with the first 0, and then crossing off every other 1 starting

with the first 1.
5. If no 0s and no 1s remain on the tape, accept. Otherwise,

reject.”

A Faster Machine? A = {0*1%|k > 0}

My = “On input string w:
1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeat as long as some 0s and some 1s remain on the tape:

3. Scan across the tape, checking whether the total number of
0Os and 1s remaining is even or odd. If it is odd, reject.
4. Scan again across the tape, crossing off every other 0 starting

with the first 0, and then crossing off every other 1 starting
with the first 1.
5. If no 0s and no 1s remain on the tape, accept. Otherwise,
reject.”

Number of steps (worst case), n = length of input:

>Line 1
 n steps to scan + n steps to return to beginning = O(n) steps

A Faster Machine? A = {0*1%|k > 0}

Mj = “On input string w:
1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeat as long as some 0s and some 1s remain on the tape:

3. Scan across the tape, checking whether the total number of
0Os and 1s remaining is even or odd. If it is odd, reject.
4. Scan again across the tape, crossing off every other 0 starting

with the first 0, and then crossing off every other 1 starting
with the first 1.
5. If no 0s and no 1s remain on the tape, accept. Otherwise,
reject.”

Number of steps (worst case), n = length of input:

e Line 1
 n steps to scan + n steps to return to beginning = O(n) steps

>Lines 2-4 (loop):
- steps/iteration (lines 3-4): a scan takes O(n) steps
- #iters (line 2): Each iter crosses off half the chars, so at most O(log n) scans
« Total: O(n) * O(log n) = O(n log n) steps

Interlude: Logarithms

o If 2¥=y ...
e ...thenlog,y=x

* log, n = O(log n)
» “divide and conquer” algorithms = O(log n)
» £.g, binary search

* (In computer science, base-2 is the only base!)

A Faster Machine? A = {0*1%|k > 0}

Mj = “On input string w:
1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeat as long as some Os and some 1s remain on the tape:

3. Scan across the tape, checking whether the total number of
0Os and 1s remaining is even or odd. If it is odd, reject.
4. Scan again across the tape, crossing off every other 0 starting

with the first 0, and then crossing off every other 1 starting
with the first 1.
5. If no 0s and no 1s remain on the tape, accept. Otherwise,
reject.”

Number of steps (worst case), n = length of input:
e Line 1
 n steps to scan + n steps to return to beginning = O(n) steps
» Lines 2-4 (loop):
- steps/iteration (lines 3-4): a scan takes O(n) steps
- #iters (line 2): Each iter crosses off half the chars, so at most O(log n) scans
« Total: O(n) * O(log n) = O(n log n) steps

»Line b:
« O(n) steps to scan input one more time

A Faster Machine? A = {0*1%|k > 0}

Mj = “On input string w:
1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeat as long as some 0s and some 1s remain on the tape:

3. Scan across the tape, checking whether the total number of

0Os and 1s remaining is even or odd. If it is odd, reject. 0(" log n)
4. Scan again across the tape, crossing off every other 0 starting

with the first 0, and then crossing off every other 1 starting

with the first 1. Prev:n?/2 + 3n = 0(n?)
5. If no 0s and no 1s remain on the tape, accept. Otherwise,

reject.”
Number of steps (worst case), n = length of input:

e Line 1
 n steps to scan + n steps to return to beginning = O(n) steps

» Lines 2-4 (loop):
- steps/iteration (lines 3-4): a scan takes O(n) steps
- #iters (line 2): Each iter crosses off half the chars, so at most O(log n) scans

 Total: O(n) *O(log n) = O(n log n) steps

e Line 5:
* 0(n) steps 1o scan input one more time

» Total: O(n) + O(nlog n) + O(n) =

Terminology: Categories of Bounds

« Exponential time
« 0(2n%¢), for ¢ > 0, or 29" (always base 2)

* Polynomial time
e O(n°), forc>0
e Quadratic time (special case of polynomial time)
* 0(n?)
e Linear time (special case of polynomial time)
* O(n)
* Log time
* O(log n)

Multi-tape vs Single-tape TMs: # of Steps

011(0|1]|0|u]...

t(n) time | zy

— d(d|da (U] ...

O (n))|time [g]

 For single-tape TM to simulate 1 step of multi-tape:

» Scan to find all “heads” = O(length of all M’s ta

pes)

» “Execute” transition at all the heads = O(length of all M's tapes)
- # single-tape steps to simulate 1 multitape step (worst case)

« = O(length of all M's tapes)

« = 0(t(n)), It M spends all its steps expanding Its tapes

» Total steps (single tape): O(t(n)) per step x

t(n)

steps =

Flasttack NOndet. TM = Deterministic TM

Nondeterministic
« Simulate NTM with Det. TM: computation
 Number the nodes at each step 1
« Deterministically check every tree path, f \.
1 1 1 2
in breadth-first order v/*\v N
° 1 1 2 3 4
* 1-1 : l
* 1_2 '] M ” { ®
. 1-1-1 A TM and a NTM are “equivalent” ... (\'
: reject o
.. but not If we care about the # of steps
How inefficient is it? .\'

First, we need a formal way to count “# of steps” ... s eeeg

Flasttack NOndet. TM = Deterministic TM

t(n) time 20(t(n))[time Nondeterministic
* Simulate NTM with Det. TM: ST bl
 Number the nodes at each step 1
« Deterministically check every tree path, f \
In breadth-first order v/*\v \
: 1 1 1,23 <lMax hfightth)
S (l ongest pa

e 1-1-1 t(n)
reject o \'

Max # of paths
b = branching per level

pt(n) —|20(t(n))

*|accept

Summary: TM Variations

o If multi-tape TM: t(n) time

« Then equivalent single-tape TM: O(t*(n))
« Quadratically slower

* If non-deterministic TM: ¢(n) time

* Then equivalent single-tape TM: 20(t(n))
« Exponentially slower

Polynomial Time (P)

BRUTE -FORCE
SOL-UTTON:

o(n?)

DYNAMIC
PROGRAMMING
ALGORITHMS:

0 (n‘lzﬁ)

SELUNG ON EBAY:
0(1)

STILL WORKING
ON YOUR ROUTE?

\

~

SHUT THE
HEW VR

The Polynomial Time Complexity Class (P)

P is the class of languages that are decidable in polynomial time on
a deterministic single-tape 'Turing machine. In other words,

P = | TIME(n").
k

 Corresponds to “realistically” solvable problems:
 Problems in P = “solvable” or “tractable”
 Problems outside P = “unsolvable” or “intractable”

GREAT NEWS, EVERYONE/
(T TURNS QUT THE PROBLEM
WE SPENT QUR CAREERS
WORKING ON CAN'T

B8E sOLVED/

‘Unsolvable” Problems

» Unsolvable problems (those outside P):
« usually only have “brute force” solutions

Brute-force attack

e e, “try all possible inputs”

In cryptography, a brute-force attack consists of an attacker submitting many passwords or passphrases with the hope of

{3 ” M
® u n SO lva b le a p p ll eS O n ly to la rge n eventually guessing a combination correctly. The attacker systematically checks all possible passwords and passphrases until

the correct one is found. Alternatively, the attacker can attempt to guess the key which is typically created from the password
using a key derivation function. This is known as an exhaustive key search.

Amount of Time

“abcdefg” 7 characters @ .29 milliseconds

Do these problems exist???

“abcdefghi” 9 characters 5 CIG)'S

“abedefghij” 10 characters 4 months

“abcdefghijk” 11 characters 1 decade
36

“abcdefghijkl” 12 characters 2 centuries

3 Problems in P

* A Graph Problem:
PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

* ANumber Problem:
RELPRIME = {{x,y)| = and y are relatively prime}

A CFL Problem:

Every context-free language is a member of P

* To prove that a language isin P ...
* ... we construct a polynomial time algorithm deciding the language

* (These also have nonpolynomial, i.e., brute force, algorithms)
 Check all possible ... paths/numbers/strings ...

Interlude: Graphs (see Sipser Chapter 0)

edges

(undirected) wh nodes / vertices

We assume we have some string encoding of a graph
(i.e., <G>), when they are args to TMs, e.g.:

({1,2,3,4,5}, {(1,2), (2,3), (3,4), (4,5), (5,1)})

(but we usually don't care about the actual details)

- Edge defined by two nodes (order doesn’t matter)

« Formally, a graph = a pair (V, E)
 Where V = a set of nodes, E = a set of edges

Interlude: Weighted Graphs

Edge weights

Interlude: Subgraphs

Graph H

Subgraph G

shown darker

Interlude: Paths and other Graph Things

e Path

« A sequence of nodes connected by edges

* Cycle
* A path that starts/ends at the same node

-

» Connected graph
« Every two nodes has a path

-]

ree
« A connected graph with no cycles

Interlude: Directed Graphs

O

({1.2,3.4,5.6}, {(1,2),(15), (2.1), (24). (5.4), (5.6), (6.1), (6,3)})

Possible string encoding given to TMs:

 Directed graph = (V E)
« IV =set of nodes, E = set of edges

* An edge is a pair of nodes (u,v), order now matters| Each pair of nodes
e u="“from” node, v = “to” node Included twice

» “degree” of a node: number of edges connected to the node
« Nodes in a directed graph have both indegree and outdegree

Interlude: Graph Encodings

({1123"“135}* {(1.2), (2“3) (31 4)* (“L 5)* (51)})

* For graph algorithms, “length of input” n is usually # of vertices
* (Not number of chars in the encoding)

« So given graph G = (V, E), n = |V]

« Max edges?
* =0(|V]*) =0(n?)

» So if a set of graphs (call it lang L) is decided by a TM where
* # steps of the TM = polynomial in the # of vertices

« Or # steps of the TM = polynomial in the # of edges
e ThenLisinP

3 Problems in P

* A Graph Problem:
PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

* ANumber Problem:
RELPRIME = {{x,y)| = and y are relatively prime}

A CFL Problem:

Every context-free language is a member of P

P is the class of languages that are decidable in polynomial time on
a deterministic single-tape Turing machine. In other words,

P = TIME(n*).

A Graph Theorem: PATH € P *

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

« To prove that a language i1sin P ...

e ... we must construct a polynomial time algorithm deciding the lang

* A non-polynomial (i.e., "brute force”) algorithm:
« check all possible paths, and see if any connectsto t
 If n=# vertices, then # paths =~ n"

Check-in Quiz 11/8

On gradescope

