UMB CS622
Space Complexity

Wed, November 24, 2021

OPACE.

WITHOUT THE SF’PLCE

%/{/{0«/{0@#(@/{13’

« HW 9 due Sun 11:59pm EST
- (after break)

« Happy Thanksgiving!

frst: ONe More NP-Complete Problem

o SUBSET-SUM = {(S,t)| S ={z1,...,2x}, and for some
* (reduce from 3SAT)

* VERTEX-COVER = {(G, k)| G is an undirected graph that

has a k-node vertex cover}

® (reduce from 3SAT)

Theorem: VERTEX-COVER is NP-complete

VERTEX-COVER = {(G, k)| G is an undirected graph that
has a k-node vertex cover}

A vertex cover of a graph is ...
e ... a subset of its nodes where every edge touches one of those nodes

THEOREM --

It B is NP-complete and B <p C for C in NP, then C' is NP-complete.

3 steps to prove a language is NP-complete:

1. Show Cis in NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

Theorem: VERTEX-COVER is NP-complete

VERTEX-COVER = {(G, k)| G is an undirected graph that

has a k-node vertex cover}

3 steps to prove VERTEX-COVER is NP-complete:
VI 1. Show VERTEX-COVER is in NP

vl 2. Choose the NP-complete problem to reduce from: 3SAT
3. Show a poly time mapping reduction from 3SAT to VERTEX-COVER

To show poly time mapping reducibility:
1. create computable fn,
2. show that it runs in poly time,
3. then show forward direction of mapping red,,
4. and reverse direction

2?72 (or contrapositive of forward direction)

(£1 VEZZVT3) A (23 V5V 26) A (3 vmvm)
| °/fg\

Theorem: VERTEX-COVER is NP-complete

VERTEX-COVER = {(G, k)| G is an undirected graph that

has a k-node vertex cover}

A vertex cover of a graph is ...
* ... a subset of its nodes where every edge touches one of those nodes

Proot Sketch: Reduce 3SAT to VERTEX-COVER
* The reduction maps:

» Variable x, > 2 connected nodes
« corresponding to the var and its negation, e.g,,

* Clause - 3 connected nodes
« corresponding to its literals, e.g,

- Additionally,
« connect var and clause gadgets by ... -
* ... connecting nodes that correspond to the same literal

VERTEX-COVER example

VERTEX-COVER = {(G, k)| G is an undirected graph that
has a k-node vertex cover}

p=(x1VaxiVay) N (T1VT2VT2) A (T1Vas V)

¥

@ - Variable /@\ -
\/ | gadgets |

VERTEX-COVER example

VERTEX-COVER = {(G, k)| G is an undirected graph that

has a k-node vertex cover}

O = (581 \/.“171\/$2) N\ (:1:_1\/5\/@) N\ ($_1V372V$2)

(1)
Clause
gadgets

VERTEX-COVER example

VERTEX-COVER = {(G, k)| G is an undirected graph that
has a k-node vertex cover}

p=(x1VaxiVay) N (T1VT2VT2) A (T1Vas V)

Extra edges
connecting
variable and
clause gadgets
together

10

dp=(x1VaxrVa) AN (TIVITIVT) A (TT VeV x)

VERTEX-COVER example D
If f Q—@
e If formula has ... \

e m= H# variables

« I =# clauses .
* Then graph has ... o)

« ## nodes =2 X #vars + 3 x #clauses = 2m + 31
= If satisfying assignment, then there Is a k-cover, where k=m + 21

* Nodes in the cover are:
* In each of m var gadgets, choose 1 node corresponding to TRUE literal
« For each of I clause gadgets, ignore 1 TRUE literal and choose other 2
« Since there is satisfying assignment, each clause has a TRUE literal
« Total nodes in cover =m + 21

VERTEX-COVER = {(G, k)| G is an undirected graph that

has a k-node vertex cover}

¢=(x1Vr1Va) AN (@IVT2VT2) A (T1VayV)
VERTEX-COVER example D

e If formula has ...

e m = #t variables
Example:
e I = # clauses v = FALSE Cﬁi
=
* Then graph has ... |x,=TRUE YO H

* # nodes =2m + 31
= If satisfying assignment, then there is a k-cover, where k=m + 21

* Nodes in the cover are:
* In each of m var gadgets, choose 1 node corresponding to TRUE literal
« For each of I clause gadgets, ignore 1 TRUE literal and choose other 2
« Since there is satisfying assignment, each clause has a TRUE literal
« Total nodes in cover =m + 21

VERTEX-COVER = {(G, k)| G is an undirected graph that

has a k-node vertex cover}

dp=(x1VaxrVa) AN (TIVITIVT) A (TT VeV x)

VERTEX-COVER example B D
e If formula has ...
« m = # variables
Example:
- I=# clauses X, = FALSE Cﬁ@
* Then graph has... |x,=TRUE YO H

* # nodes =2m + 31
& If thereisa k=m + 21 cover,

« Then it can only be a k-cover as described on the last slide ...
* 1 node (and only 1) from each, of “var” gadgets
» 2 nodes (and only 2) from each “clause” gadget
« Any other set of k nodes is not\a cover

» Which means that input has satisfying assignment:

EX-COVER = {(G, k)| G is an undirected graph that
* X = TRUE |f node X; |S |n cover, else X; = FALSE has a k-node vertex cover}

last Time: NP-COmpleteness

DEFINITION

A language B is NP-complete if it satisfies two conditions:

1. Bisin NP, and
2. every A in NP is polynomial time reducible to B.

These are the “hardest” problems (in NP) to solve

NP-Completeness vs NP-Hardness

DEFINITION

A language B is NP-complete if it satisfies two conditions:

1. Bisin NP, and
“NP-Hard" 2. every A in NP is polynomial time reducible to B.

“NP-Complete” = in NP + “NP-Hard”

So a language can be NP-hard but not NP-complete!

thstback: The Halting Problem

HALT vy = {(M,w)| M isa TM and M halts on input w}
Thm: HA LT\ 1s undecidable
Proof, by contradiction:

« Assume HALTtm has decider R; use it to create decider for At :

 But A, Is undecidable and has no decider!

thstback: The Halting Problem

HALT vy = {(M,w)| M isa TM and M halts on input w}
Thm: HALT 1\ is undecidable
Proof, by contradiction:

« Assume HALTtm has decider R; use it to create decider for At :

S = “On input (M, w), an encoding of a TM M and a string w:
1. Run TM R on input (M, w).
2. If R rejects, reject. This means M loops on input w
3. If R accepts, simulate M on w until it halts.<{ This step always halts
4. If M has accepted, accept; if M has rejected, reject.”

thstback: The Halting Problem

HALT vy = {(M,w)| M isa TM and M halts on input w}

Thm: HA LT\ is undecidable
Proof, by contradiction:

« Assume HALTtm has decider R; use it to create decider for At :

“On input (M, w), an encoding of a TM M and a string w:
on input (M, w).

2. If R rejects, reject:
3. If R accepts, simulate M on w

* But 4., Is undecidable!
* |.e, this decider that we just created cannot exist! So HALT 1\ is undecidable

The Halting Problem 1s NP-Hard

HALT vy = {(M,w)| M isa TM and M halts on input w}
Proof: Reduce 3SAT to the Halting Problem

(Why does this prove that the
Halting Problem is NP-hard?)

Because 3SAT is NP-complete!
(so every NP problem is poly
time reducible to 3SAT)

A B

(x1 VZZVT3) A (T3 VT Vag) A (T3 VT V 24)) " HALTTy = {{(M,w)| M isa TM and M halts on input w}

The Halting Problem 1s NP-Hard

HALT vy = {(M,w)| M isa TM and M halts on input w}

Computable function, from 3SAT — HALT,:
On input ¢, a formula in 3cnf:

e Construct TM M

M =on input ¢

e Try all assignments This loops when there is
: no satisfying assignment!
* If any satisfy ¢, then accept

« When all assignments have been tried, start over

. = If ¢ has a satisfying assignment, then M halts on ¢
OUtpUt <M, ¢ > & If ¢ has no satisfying assignment, then M loops on ¢

ReV| oW DEFINITION

A language B is NP-complete if it satisfies two conditions:

mms) 1. Bisin NP, and

2. every A in NP is polynomial time reducible to B.

So a language can satisfy condition #2 but not condition #1

But can a language satisfy condition #1 but not condition #2?
) Yes, every language in P ... }

... unless P = NP NP-Hard

NP-Hard

NP-Complete

NP

Can a non-P language satisfy condition #1 but not condition #2?

P=NP
YeS ooo = NP-Complete

... but that implies P # NP,

so it's not known for sure
P # NP P = NP

NP-Completeness vs NP-Hardness

P=NP
= NP-Complete

NP

NP-Complete

On to Space ...

FINAL REMAINING “FIRONTIERS"
ACCORDING TO POPULAR USAGE

Flaskback- Dynamic Programming Example

e Chomsky Grammar G:

« S> AB|BC
« A>BA]Ja
« B2>CC|b
« C>AB|a

« Example string: baaba
« Store every partial string and their generating variables in a table

Substring
start char

We are gaining time ...

... by spending more space!

Substring end char

QO T 9 Qv T

vars for “b” vars for “ba”

“u_n

vars for “a

vars for “aa”

vars for “baa”

vars for “aab”

25

Space Complexity, Formally

TMs have a space
complexity

DEFINITION

Let M be a deterministic Turing machine that halts on all inputs.
The space complexity of M is the function f: N— N, where f(n)
is the maximum number of tape cells that M scans on any input ot
length n. It the space complexity ot M is f(n), we also say that M
runs in space f(n).

It M is a nondeterministic Turing machine wherein all branches
halt on all inputs, we define its space complexity f(n) to be the
maximum number of tape cells that M scans on any branch of its
computation for any input of length n.

Space Complexity Classes

Languages are in a
space complexity class

DEFINITION

Let f: N—R™" be a function. The space complexity classes,
SPACE(f(n)) and NSPACE(f(n)), are defined as follows.

SPACE(f(n)) = {L| L is a language decided by an O(f(n)) space

deterministic Turing machine}.

NSPACE(f(n)) = {L| L is a language decided by an O(f(n)) space

nondeterministic Turing machine}.

Compare:

Let t: N—R™ be a function. Define the time complexity class, _ . : :
TIME(t(n)), to be the collection of all languages that are decid- NTIME(t(m)) = {L| L is a language decided by an O(¢(n)) time

able by an O(t(n)) time Turing machine. nondeterministic Turing machine}.

Example: SAT Space Usage

SAT = {(¢)| ¢ is a satishiable Boolean formula}

20(m) exponential
time machine

M; =¥On input (¢), where ¢ is a Boolean formula:
1. " For each truth assignment to the variables x1, . . ., x,, of ¢:
2. Evaluate ¢ on that truth assignment. Each loop iteration requires O(m) space
3. If ¢ ever evaluated to 1, accept; if not, reject.”

But the space is re-used on each loop!
(nothing is stored from the last loop)

So the entire machine only needs O(m) space!

Example: Nondeterministic Space Usage
ALLnea = {(A)| Aisan NFA and L(A) = ©*}

Nondeterministic decider for ALLnra Machine tracks
— S — _—— — — | “current” states of NFA:
| N = “On input (M), where M is an NFA: q states = 24 possible
| 1. Place a marker on the start state of the NFA. combinations
| 2. Repeat 27 times, where ¢ is the number of states of M: 50 Eponeila. Lire)
Additionally, |3 l\Top(Eleterministically select an input Symboloand change Fhe M Each loop uses only
need a counter positions of the markers on M’s states to simulate reading | 0(q) space!
to count to 2¢: that symbol.
feglliss 4. Accept if stages 2 and 3 reveal some string that M rejects; that
bl =q is, if at some point none of the markers lie on accept states of
extra space . s |
C— M. Otheiwise,_'r’eject. - I

So the whole machine runs in (nondeterministic) linear O(q) space!

Flaskieck TM Variations and Time

« If a multi-tape TM runs in: ¢(n) time

* Then an equivalent single-tape TM runs in: O(t*(n))
« Quadratically slower

* If a non-deterministic TM runs in: t(n) time

* Then an equivalent deterministic TM runs in: 20(t(n))
« Exponentially slower

What about space?

TM Variations and Space

THEOREM --
Savitch’s theorem Forany function f: N— R™, where f(n) > n,

NSPACE(f(n)) € SPACE(f*(n)).

* If a non-deterministic TM runs in: f(n) space

« Then an equivalent deterministic TM runs in: f?(n) space
« Expoenentially Only Quadratically slower!

Flasttack NOndet. TM = Deterministic TM

t(n) time 20(t(n))[time Nondeterministic
* Simulate NTM with Det. TM: ST bl
 Number the nodes at each step 1
« Deterministically check every tree path, f \
In breadth-first order v/*\v \
: 1 1 1,23 <lMax hfightth)
S (l ongest pa

e 1-1-1 t(n)
reject o \'

Max # of paths
b = branching per level

pt(n) —|20(t(n))

*|accept

Flastback NTM = Deterministic

Always has input, 3 tapes
never changes:

. O(n) space

0|/0[1]|0|u| ... Inputtape
Used to run each path (re-copy input
D ¥ here for each path): O(n¥) space
x |x|#|0|1|x|u]| ... simulation tape
Y
1(213(3[2(3|1|2|1|1]|3|u|... addresstape

Tracks which node we are on,
e.g, 1-1-2, etc: 29 space??

NTM—-Deterministic TM: Space Version

AN
Let N be an NTM deciding language A in space f(n) ‘@' 4}1
* This means a single path could use f{n) space e X))
» That path could take 20017 steps \N

* Accept

» (That's the possible ways to fill the space)
 Where each step could be a branch

« So nalvely tracking these branches requires 20017) space!

R
0|0|1|0|u|... inputtape
D — Tracks which
X
Ly
1

X |#|0|1|x|u|... simulaton tape node we are on,
e.g., 1-1-2, etc.

213323121 |1]|3]|u]|... addresstape

* Instead, let's “divide and conquer” to save space!

“Divide and Conquer” TM Config Sequences

This requires:

« Want to check whether: log(2001) = O(f(n)) splits
2001 (possibly branching) steps
™ COl"IﬁgS Cstart g Caccept
Remembering the branch at every Each split must
step costs exponential space remember 1 configuration

* Instead, we check whether; |30 'ongas we save the “c,,”= O(f(n)) space
! o

intermediate config

Total:
O(f(m) O(f(n) e
: 2 /2 steps | 2 /2 steps o ¢ O(f(n)) * O(f(n))
start m accept | | = 0(f2(n)) space
Remembering these steps ... and we can reuse that space
costs half the space ... to check the second half
* Keep S — > —s

dividing ..\

Formally: A “Yielding” Algorithm

Start config | End config | # steps
Z

CANYIELD = “On inputcy, 2, and t:

1. Ift =1, then test directly whether ¢; = ¢z or whether ¢, yields| \what's the middle
co in one step according to the rules of N. Accept if either test config? Try them all

succeeds; reject if both fail. / (it doesn't use any

Ift > 1, then for each configuration ¢, of N using space f(n): | more space, per loop)

Run CANYIELD (1, ¢, 5).

Run CANYIELD (¢, €2, %).

If steps 3 and 4 both accept, then accept.
If haven’t yet accepted, reject.”

< “divide and conquer”

R

36

Savitch’'s Theorem: Proof

« Let N be an NTM deciding language A in space f(n)

 Construct equivalent deterministic TM M using O(f*(n)) space:

M = “On input w:
1. Output the result of CANYIELD (Cstare, Caceepts 2% ™).

°C
°C

= start configuration of N

start

accept

Extra d constant
depends on size
of tape alphabet

= new accepting config where all N's accepting configs go

PSPACE

DEFINITION

PSPACE is the class of languages that are decidable in polynomial
space on a deterministic Turing machine. In other words,

PSPACE = | | SPACE(n").
k

NPSPACE

DEFINITION

NPSPACE i is the class of languages that are decidable in polynomial
space on R Ueterministic ‘Turing machine. In other words,

NPSPACE = | N[SPACE(n").

Analogous to P and NP for time complexity

PSPACE vs NPSPACE

« PSPACE: langs decidable in poly space on deterministic TM

« NPSPACE: langs decidable in poly space on nondeterministic TM

Flaskback: DOES P = NP?

Proving P # NP is hard because how do you prove an
algorithm doesn’t have a poly time algorithm?
(in general it's hard to prove that something doesn't exist)

41

PSPACE vs NPSPACE

« PSPACE: langs decidable in poly space on deterministic TM

« NPSPACE: langs decidable in poly space on nondeterministic TM

Theorem: PSPACE = NPSPACE

Proof: By Savitch’s Theorem!

THEOREM --

Savitch’s theorem Forany function f: N— R™, where f(n) > n,

NSPACE(f(n)) € SPACE(f?(n)).

Space vs Time

« P € PSPACE and NP € NPSPACE

« Because each step can use at most one extra tape cell
* And space can be re-used

* PSPACE € EXPTIME
« Because an f{n) space TM has 2001 possible configurations
« And a halting TM cannot repeat a configuration

* We already know P € NP and PSPACE = NPSPACE ... so:
P € NP € PSPACE = NPSPACE € EXPTIME

Space vs Time: Conjecture

Researchers believe
these are all
completely contained
within each other

EXPTIME

PSPACE But this is an

open conjecture!

The only progress so far is:
P c EXPTIME
(we will prove next week)

P c NP c PSPACE = NPSPACE c EXPTIME

No quiz 11/24!

