UMB (CS622
Log Space (L and NL)
Wednesday, December 1, 2021

WHY DO 4%% OF MATH TEACHERS DO THIS 2

ADDITION IS PUTTING THINGS TOGETHER,
SUBTRACTION IS REMOVING THINGS,
MULTIPLICATION 1S REPEATED ADDITION,
DIVISION 1S DETERMINING HOW MUCH OF
ONE NUMEBER 1S CONTAINED IN ANOTHER,
EXPONENTIATION |15 REPEATED MULTIPLICATION
AND LOGARITHMS ONDO EXPONENTIATION
BY UNFATHOMABLE DARK SORCERY.

%/{/{0«/{0@#{@/{&?

~ HW-9-in
+ Due Fues+H30-11:59pmEST

« HW 10 out
* Due Tues 12/7 11:59pm EST

« HW 11 will be the last assignment
« Due Tues 12/14 11:59pm EST

20(n"k)

last Tine: PSPACE-COmpleteness

DEFINITION

A language B i1s PSPACE-complete it it satisties two conditions:

1. B isin PSPACE, and
2. every A in PSPACE is polynomial time reducible to B.

If B merely satisfies condition 2, we say that it is PSPACE-hard.

The first PSPACE-complete problem:

| second configuration

¢ THEOREM reeemmeaimnmnnsanien
Cstart s Caccept 5 24/ (")

S A TQBF is PSPACE-complete.

PSPACE and Board Games

GO is Polynominal-Space Hard

DAVID LICHTENSTEIN AND MICHAEL SIPSER

Unversity of Califorma, Berkeley, Califorma

ABSTRACT.

It 1s shown that, given an arbitrary GO position on an n X n board, the problem of determining the
winner 18 Pspace hard New techniques are exploited to overcome the difficulties anising from the planar nature
of board games In particular, it ; proved that GO 1s Pspace hard by reducing a Pspace-complete set, TQBF, 0
a game called generalized geography, then to a planar version of that game, and finally to GO.

The Complexity of Checkers on an N x N Board - Preliminary Re

A. S. Fraenkel,! M. R. Garey,? D. S. Johnson,?

T. Schaefer,’?

Abstract

We consider the game of Checkers generalized to an NxN
board. Although certain properties of positions are efficiently com-
putable (e.g., can Black jump all of White's pieces in a single
move?), the general question, given a position, of whether a
specified plaver can force a win against best play by his opponent, is
shown to be PSPACE-hard. Under certain reasonable assumptions
about the ‘‘drawing rule’’ in force, the problem is itself in PSPACE
and hence is PSPACE-complete.

and Y. Yesha'

nonconstructive and no polynon
strategy is known. It might well |
initial position like that pictured in

For this reason, we shall
regarded as ‘‘end-game’’ problems
given position whether or not a p
A position is specified by giving
squares on the N xN checkerboa
(i.e., Black piece, Black king, Wh

and (M) tha aamas (Rlanl Ae Whita'

Note: These are for “generalized”

games, e.¢., n X n boards

size n is “solvable”

NIST Recommended Key Sizes

Any problem for fixed

Date Minimum Symmetric RSA key size
security level algorithm (in bits)
(in bits)
2010 (Legacy) 80 3DES with 2 keys 1,024
2011-2030 112 3DES with 3 keys 2,048
>2030 128 AES-128 3,072
>>2030 192 AES-192 7,680
>>> 2030 256 AES-256 15,360

security level of 128 bits.

Source: http://www.keylength.com/en/4/

On the Complexity of Chess

JAMEs A. STORER¥*

Bell Laboratories, Murray Hill, New Jersey 07974

Received June 29, 1979; revised December 12, 1980

The date is a projection of how far into the future the security level will be adequate.
For example, to encrypt data now that should still be secret in 2031, use at least a

It is shown that for any reasonable generalization of chess to an NxN board, deciding for a
given position which player has a winning strategy it is PSPACE-complete.

1. INTRODUCTION

Most past work analyzing games from the point of view of computational
complexity has dealt with combinatorial games on graphs (e.g., Even and Tarjan [3],
Schaefer [10], Chandra and Stockmeyer [2]). However, recently Fraenkel et al. |5},
and Lichtenstein and Sipser [8] have considered the game of checkers and GO,
respectively. These anthors chow that for generalizations of checkers and GO to an
NxN board, it is PSPACE-hard’ to determine if a specified player has a winning
strategy. This paper shows that for a wide class of generalizations of chess to an NxN
board, it is PSPACE-complete to determine if a specified player has a winning

5
&

What About Sublinear Algos?

%
i

.-.I

TIME:
* Need at least n steps to read input of length n
« We won't look at this for CS622

THEOREM NN EE R RN EERE R IR ERERER S ERERREEEREEE EEmEEEREEREEEERRRREERREEE

Savitch’s theorem For any function f: N— R, where f(n) > n,

SPACE: NSPACE(f(n)) C SPACE(f2(n)).

* Need at least n tape cells to store input of length n

« To model sublinear space algorithms (e.g., log space):
« Modify TM to only count extra non-input space usage

104

A Read-only Input, 2-Tape TM

2 tapes
« Tape 1: Read-only input tape
 Tape 2: Read/write work tape

Space complexity: only counts the work tape

We use this TM to model sublinear space algorithms

L. and NL

DEFINITION

L is the class of languages that are decidable in logarithmic space
on a deterministic Turing machine. In other words,
In this lecture:

= the ciass-of languages that are decidable ir logarithmic space
Read-only Input, 2-Tape TM |ondeterministic Turing machine. In other words,

NL = NSPACE(logn).

Flashback: A = {0F 1|k > 0}

M, = “On input string w:
1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeatif both 0s and 1s remain on the tape:
3. Scan across the tape, crossing off a single 0 and a single 1.
4. If Os still remain after all the 1s have been crossed off, or if 1s
still remain after all the Os have been crossed off, reject. Other-
wise, if neither Os nor 1s remain on the tape, accept.”

« “Crossing off” uses 0(n) space ...
* ... because the input is modified,
* ... SO It must first get copied to “work tape”

Any algorithm that modifies input is O(n) space at minimum

107

A = {0F1*| k > 0} is a member of L

* Instead of crossing off input directly, keep two counters
« Counter for 0s
« Counter for 1s

« Each counter requires ...
* ... log space!

In general, the space required for
storing a number x = log(x)
(i.e., its binary representation)

Flashback: Theorem: PATH € P

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and ¢:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

« Modifying input requires moving it onto work tape
* S0, again, this also uses 0O(n) space ¢

T h e O re m : PATH IS ln NL (It's not known whether PATH is in L)

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

* Don't directly modify input R
e Instead, just remember “current” node ff\'\!/\ b'\'r;?]"ghaggﬁg’;t';%t
 Don't need to remember all nodes ... fr) branches cannot
* ...S0 long as we start at s, and each step is a valid edge ,fv)_ communicate
On input <G, s, t>: S 5\'
« Starting at “current” node =s: 3
« nondeterministically follow edges —
o(1) space |.=_Each branch remembers:
* Current node -
0(log m) space » #f of steps

« Accept if: any “current” node is t
« Reject if: # of steps = m (# nodes)

Fhshback: FACts About Time vs Space

TIME — SPACE
* If a decider runs in time t(n)l then its maximum space usage is ...

* ...|lt(n)

* ... because it can add at most 1 tape cell per step

SPACE — TIME Note: This assumes f(n) = 0(n)

« If a decider runs in spacef(n)‘, then its maximum time usage Is ...
* ... (IT] + |Q[Ytm) =[24m)

» ... because that's the number of possible configurations
- (and a decider cannot repeat a configuration)

thstback: TM Config = State + Head + Tape

q7
101151111uuu3...
10119701111
Textual
representation 1st char after state is

of “configuration” current head position

Read-only Input 2-Tape TM Configurations

 State
* Let g = # states

* 2 head positions
« Let n=input length
 Let f{n) = work tape length

 Work tape contents only (not input tape)
* Let g = # tape alphabet chars
« Maximum number of different work tape contents = g/t

Maximum configurations = q-n-f{n)-g/t”
=0(n) (if fin) = 0(1))
= 0(n?) (if in) = 0(log n))
= 2000)) (if f{n) = O(n))

thshiack: Deterministic vs Non-Det. Space

TH EOR EM --
Savitch’s theorem Forany function f: N—R™, where f(n) >, |logn

NSPACE(f(n)) € SPACE(f*(n)).

* If a non-deterministic TM runs in: f(n) space

« Then an equivalent deterministic TM runs in: f?(n) space
« Expoenentially Only Quadratically slower!

Flashiack: Deterministic = Non-deterministic?

« P=NP?” Unknown?

* PSPACE = NPSPACE? Yes!

TH EOREM --
Savitch’s theorem Forany function f: N— R™, where f(n) > n,

NSPACE(f(n)) € SPACE(f*(n)).

« L=NL? Unknown?

NL-Completeness

DEFINITION
A language B is NL-complete if

1. B € NL, and
2. every A in NL is log space reducible to B.

Because poly time is too much!

(We'll show that every NL problem
is solvable in poly time!)

thstback: Mapping Reducibility

Language A is mapping reducible to language B, written A <, B,
if there is a computable function f: ¥* — ¥* where for every w,

we A<= f(w) € B.

The function f is called the reduction from A to B.

thstback COMputable Functions

« A TM that, instead of accept/reject, “outputs” final tape contents

A function f: ¥X*—3* is a computable function it some Turing
machine M, on every input w, halts with just f(w) on its tape.

Log Space Computable Functions

Needs 3 tapes

1. Read-only input tape
2. Write-only output tape
3. Read/write work tape

Space complexity: only counts the work tape

DEFINITION

A log space transducer is a 'Turing machine with a read-only input
tape, a write-only output tape, and a read/write work tape. The
head on the output tape cannot move leftward. so it cannot read
what it has written. 'The work tape may contain O(logn) symbols.
A log space transducer M computes a function f: ¥*— ¥*, where
f(w) is the string remaining on the output tape after M halts when
it is started with w on its input tape. We call f a log space com-
putable function.

Log Space Reducibility

DEFINITION

Language A is log space reducible to language B,
written A <p, B, if A is mapping reducible to B by means of a log
space computable function f.

Log space reducibility

mapping reducibility with a log space computable function

NL-Completeness and L=NL?

DEFINITION
A language B is NL-complete if

1. B € NL, and
2. every A in NL is log space reducible to B.

THEOREM --------------------------------

If A<; Band B €L, then A € L.

COROLLARY ..

If any NL-complete language is in L, then L = NL.

unknown known

Flashback, If A<p Band B € P, then A € P.

PROOF Yet M be the polynomial time algorithm deciding B and f be the
polynomjdl time reduction from A to B. We describe a polynomial time algo-

rithm N deciding A as follows. This won't work for the log version because f{w)
N = “On input w: may produce an output (which is now part of N's
work tape) that uses more than log(n) space!

1. Compute f(w).
2. Run M on input f(w) and output whatever M outputs.”

THEOREM

If A<; Band B € L, then A € L.

log space
PROOF Let M be the polynemiat-time algorithm deciding B and f be the

log's pace—’pe-l—yaaem-i—a-l—t—u@ﬁe- reduction from A to B. We describe a-pelynemial-time algo-

rithm N deciding A as follows. log space

N = “On input w:
1. —Compurefer

2. Run M on input f(w) and output whatever M outputs.”

T

Instead, N computes fiw) output chars as
needed by M, discarding everything else

(this may require recomputing flw) every time M needs part of it)

124

NL-Completeness

DEFINITION
A language B is NL-complete if

1. B € NL, and
2. every A in NL is log space reducible to B.

The first NL-complete problem?

Theorem: PATH is NL-complete

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

DEFINITION
A language B is NL-complete if

M 1. B € NL, and
mmm) 2, every A in NL is log space reducible to B.

Theorem: PATH is NL-complete

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

We know:
Some TM M decides
A in O(log(n)) space

A graph where a path from s to t encodes
accepting config sequence of M on w

. PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}
Some NL lang A = {w | wis 777}

N f G Edges = valid transitions
— T
[]) /
l

start config S<\/\/ .
Can we compute this graph in log space? ¥/ .
< accept config

- Nodes: M runs in O(log(n)) space, so each config/node takes ...
... O(log(n)) space to compute

- Edges: check every pair of configs for valid transitions ...
... O(log(n)) space Key: Nodes/configs can be output independently

nodes = configs of M

Corolla y: NL C P [(veryNL problem is solvable in poly time!)

« Every language in NL is reducible in log space to PATH
e Justification?
* A log space reduction takes poly time
e Justification?
A language that is poly time reducible toa langinPisinP
e Justification?
* PATHIS In P
* Justification?
« Every language InNL is in P
e Justification? Future HW question?

NL-Completeness

DEFINITION
A language B is NL-complete if

1. B € NL, and Poly time is too much!
2. every A in NL is log space reducible to B.

Every NL problem is solvable in
poly time ...
so it’s pointless to poly time
reduce it to another problem!

thstback: CO-TUrING-Recognizability

* A language is co-Turing-recognizable if ...
e ... It Is the complement of a Turing-recognizable language.

thstback:DeCidable & Recognizable & co-Recognizable

133

cONP

coNP has languages whose complement is in NP
t's believed that NP # coNP (but not known) Factoring?

1

|
I 1
NP-hard / .

Example:

* SAT € NP
« Verifiable in poly time
 Certificate = a satisfying assignment

SAT = {(¢)| @ is a satisfiable Boolean formula} NE-

complete/ 4

e SAT € coNP but & NP

« Not verifiable in poly time
 There's no certificate (must always check all possible assignments)

NL = coNL

Proof:
* PATH is In NL and is NL-complete

« PATH I1s in coNL and is coNL-complete

* |f we can show PATH is in NL, then NL = coNL

PATH (“No Path”) is in NL

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}
Naive idea (doesn’t work):
xNondeterministically check every path

« Similar to PATH Is In NL proof
« Reject if any go fromsto ¢t

« But when to accept?

Nondeterministic
computation

 We need to know if all branches failed v/{\l\?
 But branches can’t communicate E M
« Remember, NTMs accept if any branch accepts e 0

« Each branch must independently determine accept/reject

B

* accept

PATH (“NO Path") |S Iﬂ NL Let m = # nodes of G

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}
Better idea # 1 (still doesn’t quite work):

% Count nodes reachable from s (at most m)

« Non-deterministically explore all paths from s to some node u
 In any branch that reaches u, increment a counter

« Then nondeterministically (with increased counter) check
reachability of the “next” node

But each branch does not know what the “next” node is?

PATH (“NO Path") |S Iﬂ NL Let m = # nodes of G

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}
Better idea # 2 (still doesn’t quite work):

“*Nondeterministically guess subset of reachable nodes

* In each branch:
« Verify that each guessed reachable subset matches the count
« And reject the bad guesses

But we didn’t compute the count yet?

PATH (“NO Path") |S Iﬂ NL Let m = # nodes of G

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}
Best idea (works) Part 1:

v'Compute reachability count and nodes incrementally
 for path lengths 0, 1, 2, ...

* If ¢;= # nodes reachable from s in i steps,
* we know ¢, =1

« Nondeterministically guess nodes reachable from s in i steps:
* In each branch, verify that ¢, nodes are reachable
« Reject bad branches

* In correctly guessed branch:
« compute c,,, by checking edges from those nodes

PATH (“NO Path") |S Iﬂ NL Let m = # nodes of G

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}
Best idea (works) Part 2:

v'Once we have computed ¢, (# nodes reachable from s):

- nondeterministically guess (and re-count) reachable nodes
* this time excluding ¢

 Accept in any branch where the re-count=c,_,
 (because this means t was not reachable)

PROOF Here is an algorithm for PATH. Let m be the number of nodes of G. I

PATH iS i n M = “On input (G, s, t):

NL, Formally

Need space for Guess reachable

these variables; nodes in c;
none larger than m :

= log(m) space Verify and count

reachable nodes

Compute c;,, from c;

I

Guess reachable nodes

(without t) and re-count
I

Accept if re-count
matches c,,

1.

ToE s e

Letlco = 1. Start with [Ao = {s} has 1 node]
For i =0tom — 1: [compute c; 41 from ¢; |
Let|c;11|= 1. [ci+1 counts nodes in A; 11]
For each node v # s in G: [checkifv e Aiiq]
Let d = 0. [d re-counts A; |

For each node v in G: [checkifu € A;]

Nondeterministically either perform or skip these steps:

Nondeterministically follow a path of length at most i
from s and reject if it doesn’t end at w.

Increment d. [verified that u € A;]

If (u,v) is an edge of G, increment ¢;+; and go to

stage 5 with the next v. [verified thatv € A;41]

If d # ¢;, then reject. [check whether found all A; |
Letd = 0. [¢ now known; d re-counts A, |
For each node u in G- [checkifu € A]

Nondeterministically either perform or skip these steps:

Nondeterministically follow a path of length at most m
from s and reject if it doesn’t end at w.

It u = t, then reject. [found path from s to ¢]
Increment d. [verified thatu € A,,]
It d # ¢, then reject. [check whether found all of A,, |

Otherwise, accept.”

c; = # nodes
reachable
fromsini

steps

NL = coNL

Proof:
* PATH is In NL and is NL-complete

« PATH I1s in coNL and is coNL-complete

* |f we can show PATH is in NL, then NL = coNL -

Space vs Time: Conjecture

EXPTIME

PSPACE

We think: P c NP c PSPACE = NPSPACE c EXPTIME
We know: P € NP € PSPACE = NPSPACE € EXPTIME

Space vs Time: Conjecture

EXPTIME

PSPACE

we think: |, C NL = cONL € P € NP c PSPACE = NPSPACE c EXPTIME
we know: |, € NL = cONL € P € NP € PSPACE = NPSPACE € EXPTIME

Check-in Quiz 12/1

On gradescope

