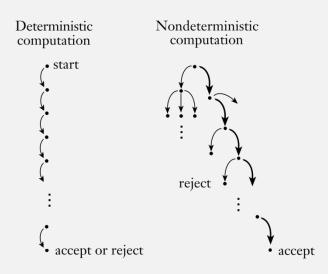
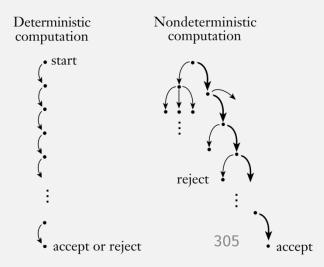
CS 622 Nondeterminism

Wednesday, February 16, 2024 UMass Boston Computer Science



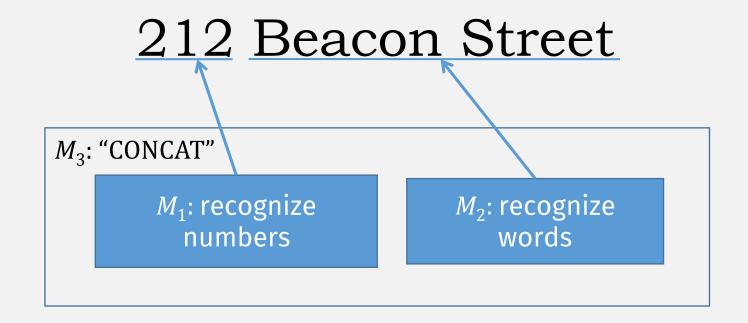
Announcements

- HW 2 out
 - Due Mon 2/19 12pm EST (noon)
 - Due Wed 2/21 12pm EST (noon)
- No class Mon (2/19)



Another operation: Concatenation

Example: Recognizing street addresses



Concatenation of Languages

```
Let the alphabet \Sigma be the standard 26 letters \{a,b,\ldots,z\}. If A=\{fort, south\} B=\{point, boston\} A\circ B=\{fortpoint, fortboston, southpoint, southboston\}
```

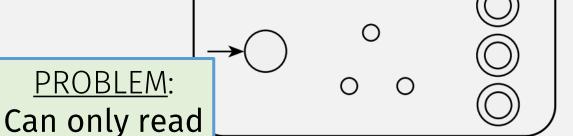
Is Concatenation Closed?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Construct: new machine M recognizing $A_1 \circ A_2$? (like union)
 - Using: **DFA** M_1 (which recognizes A_1),
 - and **DFA** M_2 (which recognizes A_2)



 M_1

input once!

(can't

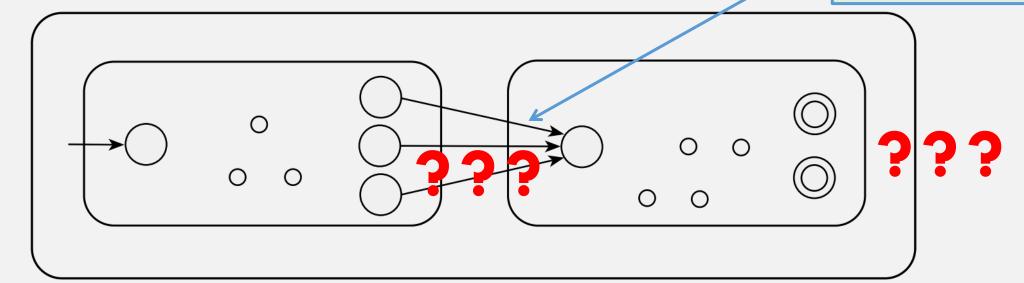
backtrack)

M

Let M_1 recognize A_1 , and M_2 recognize A_2 .

<u>Want</u>: Construction of *M* to recognize $A_1 \circ A_2$

Need to switch machines at some point, but when?



 M_2

Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ jen, jens \}$
- and M_2 recognize language $B = \{ smith \}$
- Want: Construct M to recognize $A \circ B = \{ jensmith, jenssmith \}$
- If *M* sees jen...
- *M* must decide to either:

Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ jen, jens \}$
- and M_2 recognize language $B = \{ smith \}$
- Want: Construct M to recognize $A \circ B = \{ jensmith, jenssmith \}$
- If *M* sees jen...
- *M* must decide to either:
 - stay in M_1 (correct, if full input is jenssmith)

Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ jen, jens \}$
- and M_2 recognize language $B = \{ smith \}$
- Want: Construct *M* to recognize $A \circ B = \{ jensmith, jenssmith \}$
- If *M* sees jen...
- *M* must decide to either:
 - stay in M_1 (correct, if full input is jenssmith)
 - or <u>switch</u> to M_2 (correct, if full input is **jensmith**)
- To recognize $A \circ B$, it needs to handle both cases!!
 - (Without backtracking)

A DFA can't (easily) do this!

Is Concatenation Closed?

FALSE?

THEOREM

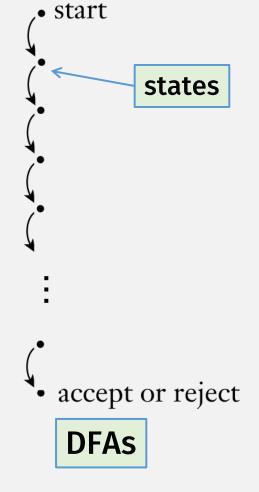
The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

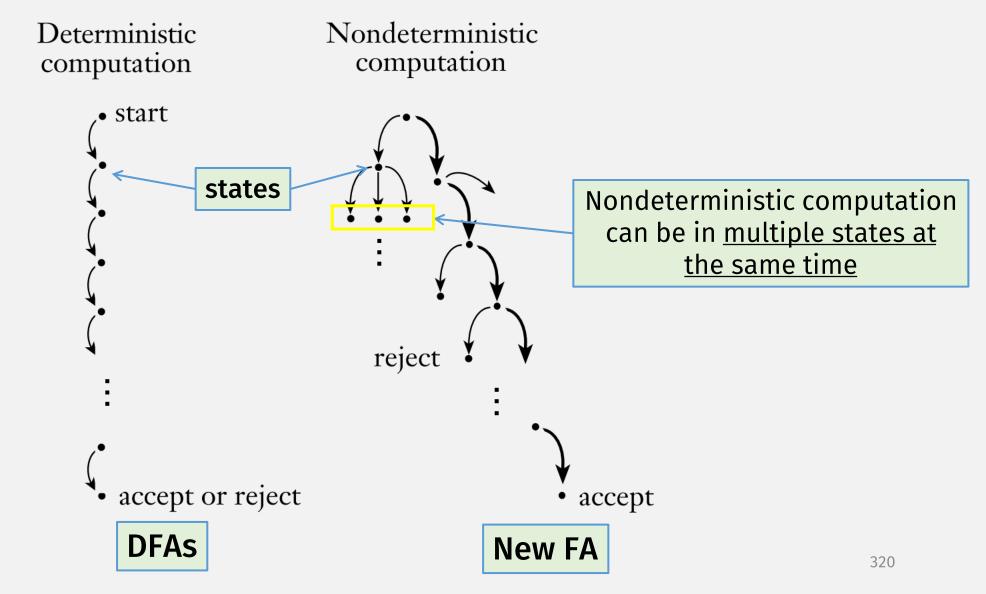
- Cannot combine A₁ and A₂'s machine because:
 - Need to switch from A_1 to A_2 at some point ...
 - ... but we don't know when! (we can only read input once)
- What if: we create a new kind of machine!
- But does this mean concatenation is not closed for regular langs?

Deterministic vs Nondeterministic

Deterministic computation



Deterministic vs Nondeterministic



DFAs: The Formal Definition

DEFINITION

deterministic

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

Deterministic Finite Automata (DFA)

Nondeterministic Finite Automata (NFA)

DEFINITION

Compare with DFA:

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- 2. Σ is a finite alphabet,

1. Q is a finite set called the *states*,

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **2.** Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,

Difference

- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

Power set, i.e. a transition results in <u>set</u> of states

Power Sets

• A **power set** is the <u>set of all subsets of a set</u>

• Example: $S = \{a, b, c\}$

- Power set of *S* =
 - { { }, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} }
 - Note: includes the empty set!

Nondeterministic Finite Automata (NFA)

DEFINITION

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- 2. Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and

Francisco de la contra accept states.

Transition label can be "empty", i.e., machine can transition without reading input

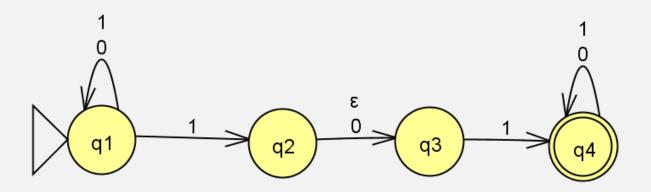
CAREFUL:

- ε symbol is reused here, as a transition label.
- It's not the empty string!
- And it's (still) not a character in the alphabet Σ !

$$\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$$

NFA Example

• Come up with a formal description of the following NFA:



DEFINITION

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- **3.** $\delta \colon Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where

 q_1

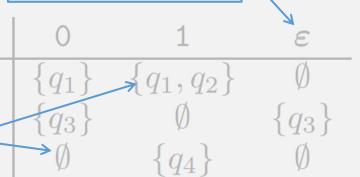
1.
$$Q = \{q_1, q_2, q_3, q_4\},\$$

- 2. $\Sigma = \{0,1\},\$
- 3. δ is given as

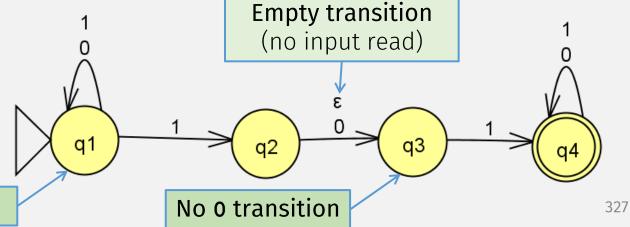
Result of transition is a set

Multiple 1 transitions

Empty transition (no input read)



- **4.** q_1 is the start state, and
- 5. $F = \{q_4\}.$



 $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$

In-class Exercise

Come up with a formal description for the following NFA

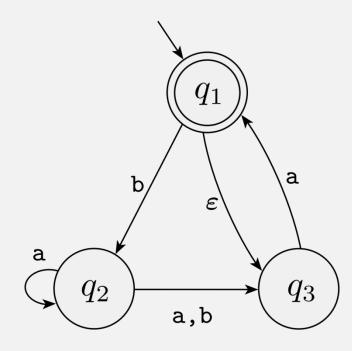
• $\Sigma = \{ a, b \}$

DEFINITION

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

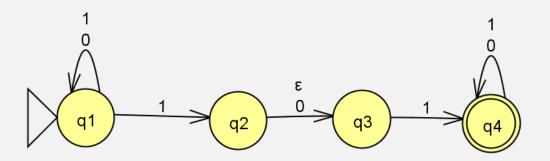
- 1. Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- **3.** $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.



In-class Exercise Solution

```
Let N = (Q, \Sigma, \delta, q_0, F)
                                         \delta(q_1, a) = \{\}
• Q = \{ q_1, q_2, q_3 \}
                                         \delta(q_1, b) = \{q_2\}
• \Sigma = \{ a, b \}
                                         \delta(q_1, \varepsilon) = \{q_3\}
                                         \delta(q_2, a) = \{q_2, q_3\}
                                     \rightarrow \delta(q_2, b) = \{q_3\}
• δ ... —
                                         \delta(q_2, \varepsilon) = \{\}
                                          \delta(q_3, a) = \{q_1\}
• q_0 = q_1
                                         \delta(q_3, b) = \{\}
• F = \{ q_1 \}
                                          \delta(q_3, \varepsilon) = \{\}
```

NFA Computation (JFLAP demo): 010110



NFA Computation Sequence

Symbol read Start q_3 NFA accepts input if: at least one path ends in accept state q_4

Each step can branch into multiple states at the same time!

So this is an accepting computation

Submit in-class work 2/16

On gradescope