UMB CS 622

Proving Languages Non-Regular

Announcements

- HW 4 out
 - Due Mon 3/18 12pm EST (noon)
 - (After spring break)
- Problem 4, Part 2c Update:
 - Prove the statement for
 - 1 base case
 - 1 recursive case
- No class next week! (Spring Break)

Prove: Spider-Man does not exist

Proving something <u>not</u> **true** is **different** (and usually harder) than proving it true

It's sometimes possible, but often needs new proof techniques!

We know how to: prove a language is regular Can we: prove a language is not regular?

Quantified Logical Statements

- "Exists" (Existential)
 - "Easier" to prove TRUE
 - Just need one example!

 $\exists x P(x)$ is true when P(x) is true for at least one value of x.

"There exists a natural number n such that, $n \cdot n = 25$ "

• "For all" (Universal)

- $\forall x P(x)$ is true when P(x) is true for all values of x.
- "Harder" to prove TRUE
 - Need to prove true for <u>all examples</u>

"For all natural numbers n, $2 \cdot n = n + n$ "

Quantified Logical Statements in CS 622

Language *L* is regular Language *L* is not regular? • "Exists" (Existential) There exists one DFA • "Easier" to prove TRUE that recognizes L • Just need one example! • "Harder" to prove FALSE There are no possible **DFAs** that recognizes L Need to prove false for <u>all examples</u> For all regular • "For all" (Universal) languages L, For all ... "Harder" to prove TRUE L* is a regular language • Need to prove true for all examples • "Easier" to prove FALSE For all strings in a regular • Just need one (counter)example! language ...

Key is finding such a statement about regular languages!

True for all regular languages!

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

language ...!

For all (long enough) strings in the

- **1.** for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \le p$ they have this repeatable structure (Kleene star)

Why is this true?

Because if you give DFA an input > # states, then some state repeats!

i.e., "long enough strings" start to show repeating pattern!

Equivalence of Conditional Statements

- Yes or No? "If X then Y" is equivalent to:
 - "If Y then X" (converse) Seen Previously
 - No!
 - "If not *X* then not *Y*" (**inverse**)
 - No!
 - "If not *Y* then not *X*" (**contrapositive**)
 - Yes!

If-then statement

... then the language is <u>not</u> regular

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- **1.** for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \leq p$.

Equivalent (contrapositive):

If the "for all" is not true ...

Ie if just one counterexample string doesn't have the repeatable structure ...

Contrapositive:

"If X then Y" is equivalent to "If **not** Y then **not** X"

Kinds of Mathematical Proof

- Deductive Proof
 - Logically infer conclusion from known definitions and assumptions
- Proof by induction
 - Use to prove properties of recursive definitions or functions
- Proof by contradiction

Proving the contrapositive

How To Do Proof By Contradiction

3 easy steps:

- 1. Assume: the opposite of the statement to prove
- 2. Show: the assumption leads to a contradiction
- 3. Conclude: the original statement must be true

Pumping Lemma: Non-Regularity Example

This repetition pattern cannot be expressed with a star regular expression?

Let B be the language $\{0^{\tilde{n}}1^{\tilde{n}}|n\geq 0\}$. We use the pumping lemma to prove that B is not regular. The proof is by contradiction.

Want to prove: 0^n1^n is not a regular language

Proof (by contradiction):

Now we must find a contradiction ...

- Assume: $0^n 1^n$ is a regular language
 - So it must satisfy the pumping lemma
 - I.e., all strings \geq length p are pumpable
- Counterexample = $0^p 1^p$
 - ☑ In the language
 - \square Greater than length p

??? Should be able to split into
xyz where y is pumpable

We must show that there is <u>no</u>
<u>possible way to split</u> this
string to satisfy the conditions
of the pumping lemma!

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- **1.** for each $i \geq 0$, $xy^i z \in A$,
- 2. |y| > 0, and 1
- **3.** $|xy| \le p$.

Reminder: Pumping lemma says: all strings $0^n1^n \ge \text{length } p$ are splittable into xyz where y is pumpable

So find counterexample string \geq length p that is **not_splittable** into xyz where y is pumpable

Want to prove: 0^n1^n is not a regular language

... then **not** true

rumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- 1. for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- **3.** $|xy| \le p$.

Contrapositive: If not true ...

Possible Split: y = all 0s

Proof (by contradiction):

Contradiction?

Assume: $0^n 1^n$ is a regular language

- So it must satisfy the pumping lemma
- I.e., all strings \geq length p are pumpable
- Counterexample = $0^p 1^p$

• Choose xyz split so y contains:

all 0s

So find counterexample string \geq length p that is **not_splittable** into xyz where y is pumpable

p 1s

p 0s

BUT ... pumping lemma requires only one pumpable splitting

This one didn't work, but proof is not done!

Is there <u>another</u> way to split into *xyz*?

- Pumping y: produces a string with more 0s than 1s
 - ... which is <u>not</u> in the language 0^n1^n !
 - If $0^p 1^p$ is not pumpable? (according to pumping lemma)
 - Then $0^n 1^n$ is a <u>not</u> regular language? (contrapositive)
 - This is a contradiction of the assumption?

Possible Split: y = all 1s

Proof (by contradiction):

- Assume: $0^n 1^n$ is a regular language
 - So it must satisfy the pumping lemma
 - I.e., all strings \geq length p are pumpable
- Counterexample = $0^p 1^p$
- Choose xyz split so y contains:
 - all 1s

Is there another way to split into xyz?

- Is this string pumpable (repeating y produces string still in 0^n1^n)?
 - No!
 - By the same reasoning as in the previous slide

Possible Split: y = 0s and 1s

Proof (by contradiction):

- Assume: $0^n 1^n$ is a regular language
 - So it must satisfy the pumping lemma
 - I.e., all strings \geq length p are pumpable
- Counterexample = $0^p 1^p$
- Choose xyz split so y contains:
 - both 0s and 1s

Did we examine every possible splitting?

Yes! QED

- Is this string pumpable (repeating y produces string still in 0ⁿ1ⁿ)?
 - No!
 - Pumped string will have equal 0s and 1s ...
 - But they will be in the wrong order: so there is still a contradiction!

But maybe we did't have to ...

The Pumping Lemma: Condition 3

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- **1.** for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \le p$.

The repeating part y ... must be in the first p characters!

p 0s (didn't have to look at other possible splittings)

00 ... 011 ... 1

y must be in here!

i.e., "long enough strings" start to show repeating pattern!

The Pumping Lemma: Pumping Down

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- 1. for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \le p$.

Repeating part y must be non-empty ... but can be repeated zero times!

Example: $L = \{0^i 1^j | i > j\}$

Pumping Down

Proof (by contradiction):

contradiction

- <u> Assume: L</u> **is** a regular language
 - So it must satisfy the pumping lemma
 - I.e., all strings \geq length p are pumpable
- Counterexample = $0^{p+1}1^p$
- Choose xyz split so y contains:
 - all 0s
 - (Only possibility, by condition 3)

- Repeat y zero times (pump down): produces string with # $0s \le # 1s$
 - ... not in the language $\{0^i 1^j \mid i > j\}$
 - So $\{0^i1^j \mid i>j\}$ does <u>not</u> satisfy the pumping lemma
 - So it is a not regular language
 - This is a contradiction of the assumption!

Next Time (and rest of the Semester)

• If a language is not regular, then what is it?

There are many more classes of languages!

