CS622
Reducibility by
“Modifying the TM”

Friday, April 26, 2024

THE HALTING PROBLEM 1S EASY TO SOLVE.
IF THE PROGRAM RUNS TOO LONG, T TAKE

THIS STICK AND BEAT THE COMPUTER
UNTIL IT STOPS. /

What if Alan Turing had been an engineer?

%/{/{0&/{0@%@/{5&’

« HW 10 out
« Due Wed 5/112pm noon

* 5/1: HW 11 out

*5/8: HW 11 in, HW 12 out
 5/8: last lecture

* 5/15: HW 12 in (no exceptions)

THE HALTING PROBLEM |5 EASY TO SOLVE.
IF THE PROGRAM RUNS TOO LONG, T TAKE

THIS STICK AND BEAT THE COMPUTER
UNTIL IT STOPS. /

What if Alan Turing had been an engineer?

Sumary: The Limits of Algorithms

* Apra = {(B,w)| B is a DFA that accepts input string w } Decidable
« Acre = {(G,w)| G is a CFG that generates string w } Decidable
e Atm = {(M,w)| M isa TM and M accepts w} lasnigj;z;s Undecidable
o HALTT\v = {(M,w)| M isa TM and M halts on input w} Undecidable

It's straightforward to use
hypothetical HALT;, decider to
create Ay decider

next

Sumary: The Limits of Algorithms

* Apra = {(B,w)| B is a DFA that accepts input string w }
« Acre = {(G,w)| G is a CFG that generates string w }
e Atm = {(M,w)| M isa TM and M accepts w}

o« HALTtMm = {(M,w)| M is a TM and M halts on input w}

Epra = {(A)| Aisa DFA and L(A) = 0}

Not as
similar

Ecrg = {{(G)| Gisa CFG and L(G) = 0} languages

o Frm = {(M) MisaTMand L(M) = ()}

How can we use a
hypothetical E; decider to
create Ay or HALT;,, decider?

Decidable
Decidable
Undecidable
Undecidable
Decidable
Decidable
Undecidable

Examples Table(s) are critical here!

Undecidability Proof Technique #2

Reducibility: Moditying the TM

Thm: E;y, 1s undecidable
Proof, by contradiction:

Erm = {(M)| M isaTM and L(M) = 0}

» Assume E7y has decider R; use 1t to create decider for Ay
S = “On input (M, w), an encoding of a TM M and a string w:

. Run R on input (M)

“expected” result

R doesn't help all cases

. If R accepts, reject (because itlmeans\(M) doesn’tlaccept anything)
- if R rejects, then 222 ((M) aqcepts something, but|is it w???)

where:
- Missome TM and
- wis some string

“Problem” case,
use R to help

no w

Undecidability Proof Technique #2

Reducibility: Moditying the TM

Erm = {(M)| M isaTM and L(M) = 0}

Thm: E;y, 1s undecidable
Proof, by contradiction:
» Assume E;, has decider R; use It to create decider for Ay
S = “On input (M, w), an encoding of a TM M and a string w:
. Run R on input (M)

. It R accepts, reject (because it means (M) doesn’t accept anvthing)

+ if R rejects, then 222 ((M) accepts something, but is it w??7 L0y depends

on M and w!
. If M accepts w,
e I[dea: Wrap (M) in a new TM that can only (maybe) accept w. Lim,) = {w}
M; = “On input x: else L) =

1. Ifx # w, reject. Input not w, always reject
Input is w, maybe accept 2. If 2z = w, run M on input w and accept if M does.”| M; accepts w if M does

Undecidability Proof Technique #2

Reducibility: Moditying the TM

Erm = {(M)

Thm: E;y, IS undecidable
Proof, by contradiction:

MisaTMand L(M) = (0}

« Assume Eqy, has decider R; use it to create decider for Ay

S = “On input (M, w), an encoding ot a TM M and a string

String x Monw M, on x In lang {w} N L(M) ?

e [dea: Wrap (M) in a new TM that can only (maybe) accept w.

w:.

Example
Table for M,

M; = “On input x:

L(M,) depends
on M and w!

If M accepts w,
L(M,) = {w}
else L(M) ={}

1. Ifz # w, reject.
2. If z = w, run M on input w and accept if M does.”

Undecidability Proof Technique #2

Reducibility: Modifying the TM

Frv = {{(M)| MisaTM and L(M) = 0}

Thm: E;, I1s undecidable
Proof, by contradiction:

« Assume Eqy, has decider R; use it to create decider for Ay
S = “On input (M, w), an encoding of a TM M and a string w:

String x Monw M, on x In lang {w} N L(M) ? Example
w Accept Accept Yes (lang = {w}) Table for M,
w Reject Reject No (lang = {}) L(M,) depends
not w Reject No (lang = {} or {w}) on M and w!
_____ o
L(M,) = {w}
(M, w) Accept Reject, L(m)=7? else L(M) ={}

- (M, w) Reject Accept, L(M)={} Reject No
(M, w) Loop '

Accept, L(M)={} Reject No

Undecidability Proof Technique #2

Reducibility: Modifying the TM

Frv = {{(M)| MisaTM and L(M) = 0}

Thm: E;, I1s undecidable
Proof, by contradiction:

« Assume Eqy, has decider R; use it to create decider for Ay
S = “On input (M, w), an encoding of a TM M and a string w:

String x Monw M, on x In lang {w} N L(M) ? Example
w Accept Accept Yes (lang = {w}) Table for M,
w Reject Reject No (lang = {}) L(M,) depends
not w Reject No (lang = {} or {w}) on M and w!
_____ A
L(M;) = {w}
(M, w) Accept Reject, L(M,)={w} Accept else L(M) ={}

- (M, w) Reject Accept, L(M)=0 Reject No
(M, w) Loop '

Accept, L(M)=0 Reject No

Undecidability Proof Technique #2

Reducibility: Moditying the TM

Erm = {(M)| M isaTM and L(M) = 0}

Thm: E7) Is undecidable
Proof, by contradiction:

» Assume E;, has decider R; use It to create decider for Ay

First, construct M,

S =“On inoyt (M, w), an encoding of a TM M and a string w:

. Run v on mnput <‘Z'M\‘1 Note: M, is only used as arg to R; it's never run (avoiding loop)!

. If R accepts, reject (because it means (M) doesn't accept

w)

- if R rejects, thenlaccept] ((M) accepts

w

A

 Idea: Wrap (M) in a new TM that can only (maybe) accept w.

M; = “On input x:
1. Ifz # w, reject.
2. Ifx = w, run M on input w and accept if M does.”

L(M,) depends
on M andw!

If M accepts w,
L(M,) = {w}
else L(M) ={}

Reducibility: Moditying the TM

Erv={ (M) MisaTMand L(M) =
Thm: E;y, is undecidable ™ = (M) MisaTMand L(M) = 0}

Proof, by co ntradiction: This decider for Ay, cannot exist!
« Assume E;y has decider R; use 1t to create decider for Ay

S =*“Oainnut (M, w), an encoding of a TM M and a string w:

First, construct M,
. Run i on input (M7
. If R accepts, reject (because it means 'taccept [w___

- if R rejects, thenlaccept ((M) accepts w —

A

e Idea: Wrap (M) in a new TM that can only (maybe) accept w:

M; = “On input z:
1. If x # w, reject.

2. Ifz = w, run M on input w and accept if M does.”

next

Sumary: The LImits of Algorithms

Apra = {(B,w)| B is a DFA that accepts input string w }
Acre = {(G,w)| G is a CFG that generates string w}
Atm = {(M,w)| M is a TM and M accepts w}

Epra = {(A)| Aisa DFA and L(A) = 0}

Ecrc = {(G)| Gis aCFG and L(G) = 0}

needs

Erm = {(M)| MisaTMand L(M) = 0} ¢

EQpea = {(A, B)| Aand B are DFAsand L(A) = L(B)}

EQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)}

EQ+y = {(My, My)| My and My are TMs and L(M;) = L(M>,)}

Decidable
Decidable
Undecidable
Decidable
Decidable
Undecidable
Decidable
Undecidable
Undecidable

Undecidability Proof Technique #3

Reduce to something else: EQ+y is undecidable

EQ+y = {(My, My)| My and M, are TMs and L(M;) = L(M>)}

Proof, by contradiction:
Erwm

« Assume: EQ;) has decider R; use It to create decider foNL,;M:
Erp = {1) MisaTMand L(M) = 0}

S = “On input (M), where M is a TM:
1. Run R'on input (M, M;), where M; is a TM that rejects all
inputs.
2. If R accepts, accept; it R rejects, reject.”

Reduce to something else: EQy is undecidable
EQ+v = {(My, M3)| My and M are TMs and L(M;) = L(Ms)}
Proof, by contradiction:

« Assume: EQ;y has decider R; use it to create decider for Ey:
={(M)| MisaTMand L(M) = (0}

ut (M), where M is a TM:
1. Run Roni M), where M; is a TM that rejects all

inputs.
2. If R accepts, accept; it R rejects, reject.”

 But E7 IS undecidable!

Sumary: Undecidability Proof Techniques

e Proof Technique #1: Atvm = {{(M,w)| M isa TM and M accepts w }
« Use hypothetical decider to implement impossible A4, deciderﬁ Reduce

« Example Proof: HALTtw = {(M,w)| M is a TM and M halts on input w}

* Proof Technique #2:

2= Use hypothetical decider to implement impossible A, decider
Can also . . . ™
« But first modify the input M

combine
these Reduce

techniques | « Example Proof: FEry = {(M)| M isa TM and L(M) = 0}

\

* Proof Technique #3:
* Use hypothetical decider to implement non-4,, impossible decider

« Example Proof: EQ y = {(M;, M>)| M, and M, are TMs and L(M,) = L(M>)}

Sumary: DecCidability and Undecidability

Apra = {(B,w)| B is a DFA that accepts input string w }
Acec = {(G,w)| G is a CFG that generates string w}
Atm = {(M,w)| M is a TM and M accepts w}

Epra = {(A)| Aisa DFA and L(A) = 0}

Ecrc = {(G)| Gis aCFG and L(G) = 0}

Erv = {(M)| MisaTM and L(M) = ()}
EQpea = {(A, B)| Aand B are DFAsand L(A) = L(B)}
EQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)}

EQ+y = {(My, My)| My and My are TMs and L(M;) = L(M>,)}

Decidable
Decidable
Undecidable
Decidable
Decidable
Undecidable
Decidable
Undecidable
Undecidable

Also Undecidable ...

next | * REGULAR;y = {<M>| M isaTM and L(M) is a regular language}

Undecidability Proof Technique #2:

Thm:REGULAR~, is undecidable Modify Input TM M

REGULARtm = {(M)| M isaTM and L(M) is a regular language}

Proof, by contradiction:
« Assume: REGULAR-, has decider R; use it to create decider for A

S = “On input (M, w), an encoding of a TM M and a string w:
o| First, construct M, (??)

e Run R on mput (M

2

o If R accepts, accept; if R rejects, reject
\ A\

Want: L(M,) =
« regular, If M accepts w
« nonregular, if M does not accept w

Thm:REGULARTy\ is undecidable (continued)

REGULARtm = {(M)| M isaTM and L(M) is a regular language}

M3 = “On input z:
1. If x has the form 01", accept.
2. If x does not have this form, run M on input wjand

Always accept strings 071"
L(M,) = nonregular, so far

accept 1t M accepts w.” If M accepts w,

accept everything else,

if M does not accept w, M, accepts all strings (regular lang) || so L(M,) = 2* = regular

All strings

Qnin

/

Want: L(M,) =

* nonregu

 regular, If M accepts WE/

ar, if M does not accept w

if M accepts w, M, accepts this nonregular lang

Seems like no algorithm can compute

- anything about
AI.SO U N d eCl d d b le the language of a Turing Machine,
l.e., about the runtime behavior of programs ...
* REGULAR, = {<M>| MisaTM and L(M) is a regular language}
 CONTEXTFREE), = {<M>|MisaTMand L(M) is a CFL}

* DECIDABLE, = {<M> | M is a TM and L(M) is a decidable language}

* FINITE;,, = {<M>| MisaTM and L(M) is a finite language}

An Algorithm About Program Behavior?

main()

{
printf ("hello, world\n");
+

Write a program that,
given another program as its argument,
returns TRUE if that argument prints
“Hello, World!”

4

TRUE

Fermat’s Last Theorem
(unknown for ~350 years,
solved in 19905s)

in()
Taln /

If ™ +y" = 2", for any integer n > 2

printf("hello, world\n");

Write a program that,

ther program as its argument,
RUE if that argument prints
‘Hello, World!”

4

Y& X ds

Seems like no algorithm can compute

- anything about
AI.SO U N d eCl d d b le the language of a Turing Machine,
l.e., about the runtime behavior of programs ...
* REGULAR, = {<M>| MisaTM and L(M) is a regular language}
 CONTEXTFREE), = {<M>|MisaTMand L(M) is a CFL}
* DECIDABLE, = {<M> | M is a TM and L(M) is a decidable language}
* FINITE;,, = {<M>| MisaTM and L(M) is a finite language}

Rice's Theorem
*|ANYTHING-, = {<M>| MisaTM and “... anything ...” about L(M)}

Rice’s Theorem: ANYTHING,, 1S Undecidable

ANYTHINGy, = {<M>| MisaTM and ... anything ... about L(M)}

« “... Anything ...”, more precisely:
For any M,, M,,
* It L(M;) = L(M,)
» then M, € ANYTHING,,, © M, € ANYTHING;,

* Also, “... Anything ..."must be “non-trivial”:
« ANYTHING), '={}
« ANYTHING), '=set of all TMs

Rice’s Theorem: ANYTHING,, 1S Undecidable

ANYTHINGy, = {<M>| MisaTM and ... anything ... about L(M)}

Proof by contradiction

« Assume some language satisfying ANYTHING-,, has a decider R.
 Since ANYTHING-, is non-trivial, then there exists M,,, € ANYTHING,,
« Where R accepts M,

 Use R to create decider for Ay
On input <M, w>:

These two cases

= i . must be different,
* Create M]_ng{v OI\I:I Tfergic e If M accepts w: M,, = Myyy | (so R can distinguish
S At () 1 , If M doesn’t accept w: M,, accepts nothing || when M accepts w)
- If M rejects w: reject x -
- If M accepts w: Wait! What if the TM that accepts

Run M,,,on x and accept if it accepts, else reject nothing is in ANYTHING;,,!

* RunRon M,

« If it accepts, then M, = M,,,, SO M accepts w, so accept Proof still works! Just use the

e Else reject complement of ANYTHING;,, instead!
|

Rice’'s Theorem Implication

{<M> | Mis a TM that installs malware} Undecidable!
by Rice’'s Theorem

(n)
1f the number n 1s a prime
var factor; // if

RANSOMWAREATTACK /\

YOUR FILES HAVE BEEN ENCRYPTED

