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Abstract
We present TURNSTILE, a metalanguage for creating typed embed-
ded languages. To implement the type system, programmers write
type checking rules resembling traditional judgment syntax. To
implement the semantics, they incorporate elaborations into these
rules. TURNSTILE critically depends on the idea of linguistic reuse.
It exploits a macro system in a novel way to simultaneously type
check and rewrite a surface program into a target language. Reusing
a macro system also yields modular implementations whose rules
may be mixed and matched to create other languages. Combined
with typical compiler and runtime reuse, TURNSTILE produces per-
formant typed embedded languages with little effort.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Specialized application languages

Keywords macros, type systems, typed embedded DSLs

1. Typed Embedded Languages
As Paul Hudak asserted, “we really don’t want to build a pro-
gramming language from scratch ... better, let’s inherit the in-
frastructure of some other language” [23]. Unsurprisingly, many
modern languages support the creation of such embedded lan-
guages [3, 18, 20, 22, 24–26, 41, 43, 46].

Programmers who wish to create typed embedded languages,
however, have more limited options. Such languages typically reuse
their host’s type system but, as a prominent project [45] recently
remarked, this “confines them to 〈that〉 type system.” Also, reusing
a type system may not create proper abstractions, e.g., type errors
may be reported in host language terms. At the other extreme,
a programmer can implement a type system from scratch [42],
expending considerable effort and passing up many of the reuse
benefits that embedding a language promises in the first place.

We present an alternative approach to implementing typed em-
bedded languages. Rather than reuse a type system, we embed a
type system in a host’s macro system. In other words, type check-
ing is computed as part of macro expansion. Such an embedding fits
naturally since a typical type checking algorithm traverses a surface
program, synthesizes information from it, and then uses this infor-
mation to rewrite the program, if it satisfies certain conditions, into
a target language. This kind of algorithm exactly matches the ideal
use case for macros. From this perspective, a type checker resem-
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bles a special instance of a macro system and our approach exploits
synergies resulting from this insight.

With our macro-based approach, programmers may implement
a wide range of type rules, yet they need not create a type system
from scratch since they may reuse components of the macro sys-
tem itself for type checking. Indeed, programmers need only supply
their desired type rules in an intuitive mathematical form. Creating
type systems with macros also fosters robust linguistic abstractions,
e.g., they report type errors with surface language terms. Finally,
our approach produces naturally modular type systems that dually
serve as libraries of mixable and matchable type rules, enabling
further linguistic reuse [27]. When combined with the typical reuse
of the runtime that embedded languages enjoy, our approach inher-
its the performance of its host and thus produces practical typed
languages with significantly reduced effort.

We use Racket [12, 15], a production-quality Lisp and Scheme
descendant, as our host language since Lisps are already a popular
platform for creating embedded languages [17, 20]. Racket’s macro
system in particular continues to improve on its predecessors [14]
and has even influenced macro system design in modern non-Lisp
languages [6, 8, 10, 48]. Thus programmers have created Racket-
embedded languages for accomplishing a variety of tasks such as
book publishing [7], program synthesis [44], and writing secure
shell scripts [32].

The first part of the paper (§2-3) demonstrates a connection be-
tween type rules and macros by reusing Racket’s macro infrastruc-
ture for type checking in the creation of a typed embedded lan-
guage. The second part (§4) introduces TURNSTILE, a metalan-
guage that abstracts the insights and techniques from the first part
into convenient linguistic constructs. The third part (§5-7) shows
that our approach both accommodates a variety of type systems and
scales to realistic combinations of type system features. We demon-
strate the former by implementing fifteen core languages ranging
from simply-typed to Fω , and the latter with the creation of a full-
sized ML-like functional language that also supports basic Haskell-
style type classes.

2. Creating Embedded Languages in Racket
This section summarizes the creation of embedded languages with
Racket. Racket is not a single language but rather an ecosystem
with which to create languages [12]. Racket code is organized into
modules, e.g. LAM:1

#lang racket lam

(define-m (lm x e) (λ (x) e))

(provide lm)

1 Code note: For clarity and conciseness, this paper stylizes code and thus
its examples may not run exactly as presented. Full, runnable examples are
available at: www.ccs.neu.edu/home/stchang/popl2017/

www.ccs.neu.edu/home/stchang/popl2017/


A #lang racket declaration allows LAM to use forms and func-
tions from the main Racket language. LAM defines and exports one
macro,2 lm, denoting single-argument functions. A Racket macro
consumes and produces syntax object data structures. The lm macro
specifies its usage shape with input pattern (lm x e) (in yellow
to help readability), which binds pattern variables x and e to sub-
pieces of the input, the parameter and body, respectively. The out-
put syntax (λ (x) e) (gray denotes syntax object construction)
references these pattern variables (λ is Racket’s λ).

A module serves multiple roles in the Racket ecosystem. Run-
ning LAM as a program produces no result since it consists of only
a macro definition. But LAM is also a language:

#lang lam lam-prog

(lm x (lm y x)) ; => 〈function〉
((lm x x) (lm x x)) ; stx error! fn application undefined

A module declaring #lang lammay only write lm functions; using
any other form results in an error. Finally, a Racket module may be
used as a library, as in the following LC module:

#lang racket lc
(require lam)
(provide (rename-out [lm λ] [app #%app]))

(define-m (app efn earg) (#%app efn earg))

LC imports lm from LAM and also defines app, which corresponds
to single-argument function application. LC exports lm and app
with new names, λ and #%app, respectively. The #%app in the out-
put of app is core-Racket’s function application form, though pro-
grammers need not write it explicitly. Instead, macro expansion im-
plicitly inserts it before applied functions. This enables modifying
the behavior of function application, as we do here by exporting
app as #%app. Thus a program in the LC language looks like:

#lang lc lc-prog
((λ x (x x)) (λ x (x x))) ; => loop!

where λ corresponds to lm in LAM and applying a λ behaves
according to app in LC. Running LC-PROG loops forever.

Figure 1 depicts compilation of a Racket program, which in-
cludes macro expansion. The Racket compiler first “reads” a pro-
gram’s surface text into a syntax object, which is a tree of symbols
and literals along with context information, e.g., in-scope bindings
and source locations. The macro expander then expands macro in-
vocations in this syntax object according to macro definitions from
the program’s declared #lang. Macro expansion may reveal addi-
tional macro uses or even define new macros, so expansion repeats
until no macro uses remain. Compilation terminates with a syntax
error if expansion of any macro fails. The output of macro expan-

2 define-m abridges Racket’s define-syntax and syntax-parse[9].

Figure 1. The Racket compiler’s frontend

τ ::= τ→τ e ::= x | λx :τ . e | e e Γ ::= x :τ, . . . (types, terms)

x :τ ∈ Γ

Γ ` x : τ
(T-VAR)

Γ, x :τ1 ` e : τ2

Γ ` λx :τ1 . e : τ1→τ2
(T-ABS)

Γ ` e1 : τ1→τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2
(T-APP)

er(x) = x, er(λx :τ . e) = λx . er(e), er(e e′) = er(e) er(e′) (erase)

Implementation sketch:

#lang racket stlc

(define-m (checked-λ . . .) 〈when T-ABS〉 er( ))

(define-m (checked-app . . .) 〈when T-APP〉 er( ))

Figure 2. Simply-typed λ-calculus

(define-m (checked-app efn earg) ; v01

#:with (→ τin τout) (compute-τ efn )2

#:with τarg (compute-τ earg )3

#:when (τ= τarg τin )4

#:with efn (erase-τ efn )5

#:with earg (erase-τ earg )6

(add-τ (#%app efn earg) τout ))7

Figure 3. A type checking function application macro

sion contains only references to Racket’s core syntax. This paper
shows how to embed type checking within macro expansion.

3. A Typed λ-Calculus Embedded Language
LC from section 2 implements the untyped λ-calculus. This section
augments LC with types and type checking by transcribing formal
type rules directly into its macro definitions, producing the simply-
typed λ-calculus and demonstrating that Racket’s macro infrastruc-
ture can be reused for type checking. Figure 2 presents the standard
simply-typed λ-calculus rules, and a skeleton implementation. The
macros in this implementation also erase types in the surface lan-
guage to accommodate the untyped Racket host.

3.1 Typed Function Application
Figure 3 presents checked-app, a macro that elaborates typed
function application nodes into core Racket and also type checks
the syntax tree (“v0” marks this initial version). Additional #:with
and #:when conditions guard the macro’s expansion. A pattern and
expression follow a #:with and macro expansion continues only
if the result of evaluating the latter produces a syntax object that
matches the former. The first #:with uses a compute-τ function
to compute the type of function efn, which must match pattern
(→ τin τout) . The second #:with computes the type of argument
earg, binding it to pattern variable τarg. Unlike the first #:with, the
τarg pattern does not constrain the shape of earg’s type but the fol-
lowing #:when asserts that τarg and τin satisfy predicate τ=. The
types in efn and earg are then erased (lines 5-6) before they are
emitted in the macro’s output (overlines mark type-erased expres-
sions, and core Racket forms). Finally, add-τ (line 7) “adds” τout
to the macro’s syntax object output. In summary, checked-app
rewrites a typed function application to an equivalent untyped one,
along with its type.



(define (add-τ e τ ) (add-stx-prop e 'type τ ))1

(define (get-τ e ) (get-stx-prop e 'type))2

(define (compute-τ e ) (get-τ (local-expand e )))3

(define (erase-τ e ) (local-expand e ))4

(define (comp+erase-τ e ) ; get e’s type, erase types5

#:with e (local-expand e ) #:with τ (get-τ e )6

[e τ])7

(define (τ= τ1 τ2 ) (stx= τ1 τ2 ))8

Figure 4. Helper functions for type checking

(define-m (checked-app efn earg) ; v11

#:with [efn (→ τin τout)] (comp+erase-τ efn )2

#:with [earg τarg] (comp+erase-τ earg )3

#:when (τ= τarg τin )4

(add-τ (#%app efn earg) τout ))5

Figure 5. Revise fig 3 to compute and erase types together

3.2 Communicating Macros
The organization of checked-app in figure 3 resembles a com-
bination of its T-APP and erase specification in figure 2. Figure 4
completes checked-app by defining some helper functions, which
together establish a communication protocol between type rule
macros. These functions utilize syntax properties, which are arbi-
trary key-value pairs stored with a syntax object’s metadata. For
example, checked-app calls add-τ to attach type information to
its output, which in turn calls add-stx-prop (figure 4, line 1) to
associate a type τ with key 'type on expression e. If all type rule
macros follow this protocol, then to compute an arbitrary expres-
sion’s type, we simply invoke that expression’s macro and retrieve
the attached type from its output. In other words, expanding an ex-
pression also type checks it.

We can call Racket’s macro expander to invoke the desired
type checking macro but not in the standard manner. Macro ex-
pansion typically rewrites all macro invocations in a program at
once (figure 1) and repeats this process until there are no more
macro calls. Such breadth-first expansion is incompatible with
type checking, however, which proceeds in a depth-first manner—
a term is well-typed only if its subterms are well-typed—but the
local-expand [16] function controls expansion in the desired
way, expanding just one syntax object without considering other
parts of the program. Thus compute-τ expands its argument with
local-expand (figure 4, line 3) and then retrieves its type.

The checked-app macro uses erase-τ to produce syntax
without type annotations. If all type rule macros follow this pro-
tocol then expanding an expression also erases its types. Separate
calls to compute-τ and erase-τ, however, unnecessarily expands
syntax twice. The comp+erase-τ function (lines 5-7) eliminates
this redundancy and figure 5’s revised checked-app uses this func-
tion. In general, we carefully avoid extraneous expansions while
type checking so as not to change the algorithmic complexity of
macro expansion.

Finally, type checking requires a notion of type equality. We
cannot compute mere symbolic equality since types are renamable
linguistic constructs:

(require (rename [→ a])) (τ= (a s t) (→ s t)) ; => true

(define →intrnl (λ (ERR ‘‘no runtime types’’)))1

(define-m (→ τin τout) (→intrnl τin τout))2

3

(define-m (checked-λ [x : τin] e) ; v04

#:with [x e τout] (comp+erase-τ/ctx e [x τin])5

(add-τ (λ (x) e) (→ τin τout)))6

7

(define (comp+erase-τ/ctx e [x τ])8

#:with (λ (x) e)9

(local-expand ; y fresh10

(λ (y)11

(let-macro [x (add-τ y τ )] e)))12

#:with τout (get-τ e )13

[x e τout])14

Figure 6. Type checking λ and→ macros

If we represent types with syntax objects, however, type equality
is syntax equality and we can reuse Racket’s knowledge of the
program’s binding structure (stx= in figure 4 line 8) to compute
type equality in a straightforward manner.

3.3 Type Environments and Type Checking λ
Figure 6 implements the→ type (lines 1-2) as a macro that matches
on an input and output type and expands to an application of an
internal function that errors at runtime (there are no base types
for now, see §4.3). The checked-λ macro requires a type anno-
tation on its parameter (line 4), separated with :. This macro re-
sembles checked-app, except a new comp+erase-τ/ctx func-
tion replaces comp+erase-τ. Since the λ body may reference x,
comp+erase-τ/ctx computes the body’s type in a type context
containing x and its type, given as the second argument.

So far, checked-app and checked-λ correspond to T-APP
and T-ABS from figure 2, respectively. To implement T-VAR, i.e.,
type environments, comp+erase-τ/ctx defines a local macro with
let-macro3 (figure 6, line 12) and expands an expression e in
the scope of this new macro. The local macro is named x and
expands to a fresh y that has the desired type τ attached (observe
the nested gray highlights). As a result, while expanding e, a
reference to x (with no type information) becomes a reference
to y (with type information). To avoid unbound y errors during
expansion, a (Racket) λ wraps the let-macro before expansion.
Finally, comp+erase-τ/ctx returns a tuple of post-expansion y
(as x), the type-erased e, and its type τout. Effectively, defining
a local macro inserts a binding indirection level during macro
expansion, enabling the insertion of the desired type information
on variable references. Thus T-VAR is implemented, reusing the
compile-time macro environment as the type environment. This
completes our simply-typed language.

3.4 A Few Practical Matters
We have implemented a basic λ-calculus; however, we wish to im-
plement practical languages. This subsection shows how to extend
our language with features found in such languages.

Multiple arguments Figure 7 revises our simply-typed language
to support multiple arguments. An ellipsis pattern ( . . . ) matches
zero-or-more of the preceding element. If that preceding element

3 let-macro abbreviates Racket’s let-syntax and syntax-parse.



(define-m (→ τin . . . τout) (→intrnl τin . . . τout))1

2

(define-m (checked-app efn earg . . .) ; v23

#:with [efn (→ τin . . . τout)] (comp+erase-τ efn )4

#:with ([earg τarg] . . .) (
−−−−−−−−−−→
comp+erase-τ (earg . . .))5

#:fail-unless (−→τ = (τarg . . .) (τin . . .))6

(fmt ‘‘~a: expected ~a arguments, got: ~a’’7

(src this-stx) (τin. . .) (τarg. . .))8

(add-τ (#%app efn earg . . .) τout ))9

10

(define-m (checked-λ ([x : τin] . . .) e) ; v111

#:with [xs e τout]12

(comp+erase-τ/ctx e ([x τin] . . .))13

(add-τ (λ xs e) (→ τin . . . τout)))14

Figure 7. Multi-arity functions and error checking

binds pattern variables, ellipses must follow later references to
those variables, e.g., the revised → macro (line 1) matches zero-
or-more input arguments τin and ellipses follow τin in its output.
The other forms are extended similarly. The checked-λ macro
uses a slightly modified comp+erase-τ/ctx (line 13) that accepts
multi-element contexts. In checked-app (line 5), the “vector”

−→
f

notation denotes f mapped over its input list.

Error messages Figure 7 also reports more useful error messages.
The checked-app in figure 5 reports type errors as syntax errors
but a better message should indicate the error’s location and the
computed and expected types. The checked-app in figure 7 re-
ports such a message using a #:fail-unless condition (lines 6-8)
to produce a message from a printf-style format string (this-stx
is the current input syntax, analogous to the OO “this”). All our lan-
guages strive to report accurate messages in the manner of figure 7,
though the paper may not always show this code.

Type well-formedness Our language so far checks the types of
terms but does not check whether programmer-written types are
valid, e.g., (λ ([x : (→)]) x) or (λ ([x : Undef]) x) are
valid programs according to figure 7. Applying these functions re-
sult in type errors but the invalid types should be reported before
then. Many type checkers validate types via parsing. This is unde-
sirable for our purposes, however, since it prevents defining types
not expressible with a grammar. Instead, we use kinds.

To check kinds, we use the same type checking technique from
our term-checking macros. Figure 8 defines a single kind named
#%type and all types are tagged with this kind (e.g., line 8). Thus,
→ and λ may validate their input types with valid-τ? (lines 6-
7, 11-12). The use of the macro expander to validate types also
differentiates when a type is undefined, rather than malformed.
Ultimately, the previous examples now produce type errors:

(λ ([x : (→)]) x) ;TYERR:→ requires >= 1 args
(λ ([x : Undef]) x) ;TYERR: unbound id Undef

4. A Metalanguage for Typed Languages
4.1 Interleaved Type Checking and Rewriting
Section 3’s STLC implementation reveals a synergy between macro
expansion and type checking in that Racket’s macro infrastructure
can be reused to also check and erase types during its program
traversal. Figure 9 refines figure 1 to incorporate this reuse. This

(define-m #%type (#%typeintrnl))1

(define (valid-τ? τ ) (τ= (compute-τ τ ) #%type))2

3

(define-m (checked→ τ . . .)4

#:fail-if (nil? (τ . . .)) ‘‘→ requires >=1 args’’5

#:fail-unless (
−−−−−−→
valid-τ? (τ . . .))6

(fmt ‘‘invalid types: ~a’’ (τ . . .))7

(add-τ (→intrnl τ . . .) #%type))8

9

(define-m (checked-λ ([x : τin] . . .) e) ; v210

#:fail-unless (
−−−−−−→
valid-τ? (τin . . .))11

(fmt ‘‘invalid types: ~a’’ (τin . . .))12

#:with [xs e τout]13

(comp+erase-τ/ctx e ([x τin] . . .))14

(add-τ (λ xs e) (→ τin . . . τout)))15

Figure 8. Checking type well-formedness

Figure 9. Macro-based typed language implementations

organization further suggests a reformulation of figure 2’s rules
to combine typechecking and erasure, shown in figure 10. A new
Γ ` e � e : τ rule reads “in context Γ, e erases to e and has type
τ”, where contexts consist of variable “erasures”, e.g., TE-ABS
inserts a binding indirection level in the context in order to add type
information for variables and checks a λ body in this context. These
rules straightforwardly correspond to our macro-based type system
implementation in section 3, where Γ ` e � e : τ is implemented
as “in context Γ, e expands to e, with type τ attached”. Since this
paper focuses on implementation, we do not formally study these
new typing rules, though they do suggest how to further improve
our approach to implementing typed embedded languages.

4.2 The TURNSTILE Metalanguage
Section 3 demonstrates that a macro system’s infrastructure can be
reused to implement typechecking. Deploying such an approach,
however, requires writing macro-level code to embed type rules
into macro definitions despite the resemblance of this code to its
mathematical specification. This section introduces TURNSTILE,
a Racket DSL for creating practical embedded languages that ab-
stracts the macro-level ideas and insights from the previous section
into linguistic constructs at the level of types and type systems.



τ ::= .... e ::= .... e ::= x | λx . e | e e Γ ::= x� x :τ, . . .

x� x :τ ∈ Γ

Γ ` x� x : τ
(TE-VAR)

Γ, x� x :τ1 ` e� e : τ2 x /∈ e
Γ ` λx :τ1 . e� λx . e : τ1→τ2

(TE-ABS)

Γ ` e1 � e1 : τ1→τ2 Γ ` e2 � e2 : τ1

Γ ` e1 e2 � e1 e2 : τ2
(TE-APP)

Figure 10. Interleaved typechecking and erasure rules

#lang turnstile stlc1

(define-type-constructor → #:arity > 0)2

(define-typerule (#%app efn earg . . .) �3

[` efn � efn ⇒ (→ τin . . . τout)]4

[` earg � earg ⇐ τin ] . . .5

------------------------------------6

[` (#%app efn earg . . .) ⇒ τout ])7

(define-typerule (λ ([xid : τintype] . . .) e) �8

[[x � x : τin ] . . . ` e � e ⇒ τout ]9

------------------------------------10

[` (λ (x . . .) e) ⇒ (→ τin . . . τout)])11

Figure 11. The STLC implemented with TURNSTILE

Specifically, TURNSTILE enables writing rules using the syn-
tax from figure 10 but with bidirectional [39] “synthesize” (⇒)
and “check” (⇐) arrows replacing the colon, to further clarify in-
puts and outputs. Figure 11 reimplements STLC with TURNSTILE.
TURNSTILE repackages all the infrastructure from section 3 as con-
venient abstractions, e.g., define-type-constructor (d-t-c)
on line 2 and the subsequent define-typerules (d-t) that im-
plement #%app and λ.

TURNSTILE’s syntax further demonstrates the connection be-
tween specification and implementation enabled by our macro-
based approach. Though programmers may now write with a
declarative syntax, STLC’s implementation has not changed as
TURNSTILE’s abstractions are mere syntactic sugar for the macros
from section 3. For example, ⇒ abbreviates #:with used with
comp+erase-τ and thus figure 11, line 4 exactly corresponds
to figure 7, line 4. Similarly, ⇐ abbreviates #:fail-unless,
#:with, and τ= so figure 11, line 5 corresponds to figure 7, lines
5-8. Finally,⇒ below the conclusion line corresponds to add-τ as
in figure 7, line 9 (crossing the conclusion line inverts the yellow
and gray positions of⇒). The λ d-t’s premise computes e’s type
in a type context containing the variables to the left of ` (figure 11,
line 9). In addition, the λ input pattern (line 8) utilizes annotations
asserting that x is an identifier and τin is a valid type.

In general, a d-t resembles a figure 10 rule except the con-
clusion is split into its inputs and outputs—the (yellow) pattern(s)
(and�) that begin a definition, and the (gray) syntax following the
conclusion line, respectively—such that the definition (and vari-
able scoping) reads top-to-bottom. Figures 10 and 11 additionally
differ because d-ts do not explicitly thread through a “Γ”, a conse-
quence of reusing Racket’s scoping for the type environment. Thus
Turnstile programmers only write new type environment bindings
in d-ts, analogous to let; existing bindings are implicitly avail-
able according to standard lexical scope behavior.

#lang turnstile stlc+prim1

(extends stlc)2

3

(define-base-type Int)4

(define-primop + : (→ Int Int Int))5

6

(define-typerule (#%datum n) �7

#:fail-unless (int? n) ‘‘Unsupported datum’’8

------------------------------------9

[` (#%datum n) ⇒ Int])10

Figure 12. A language extending STLC with integers

Viewed as type rules, figure 11 appears to be missing the ⇐
rules. While a programmer may write explicit⇐ rules (see §6), in
their absence, TURNSTILE uses this default:

(define-typerule e ⇐ τ �
[` e � e ⇒ τe ]

[τe = τ ]
-------------------------
[` e ])

This implicit definition corresponds to figure 7, lines 5-8. The first
and last lines again comprise the input and output components of
the rule’s “conclusion”, respectively, with the “expected” type now
a part of the input pattern matching.

Though TURNSTILE programmers may implement type rules
in a declarative style, such a style may be insufficient for creating
practical languages, e.g., they do not allow specification of detailed
error messages. Therefore, all the macro features from section 3
are also available to a d-t definition, giving TURNSTILE type rules
access to the full power of Racket’s macro system. For example,
a programmer may add #:fail-unless error messages as in fig-
ure 7. Here is a refined #%app that further differentiates arity errors:

(define-typerule (#%app efn earg . . .) �
[` efn � efn ⇒ (→ τin . . . τout)]

#:fail-unless (len= (earg . . .) (τin . . .))

(fmt ‘‘~a: Fn has arity ~a, got ~a args’’
(src this-stx)

(len (τin. . .)) (len (earg. . .)))

[` earg � earg ⇐ τin ] . . .
------------------------------------

[` (#%app efn earg . . .) ⇒ τout ])

4.3 Reusing a Type System
TURNSTILE type rules from one language may be reused in the
implementation of another. Though the STLC language implements
function application and λ, it defines no base types and thus no
well-typed programs. We next add integers and addition but instead
of revising STLC, we reuse its rules in a new language, analogous
to section 2. Specifically, STLC+PRIM in figure 12 uses STLC as a
library, importing and re-exporting its type rules with extends. To
STLC’s definitions, STLC+PRIM adds an Int base type (line 4), a +
primop (line 5), and integer literals (lines 7-10). Just as the macro
expander inserts #%app before applied functions, it also wraps
literals with #%datum, whose behavior is overridden in figure 12
to add types to integers. With STLC+PRIM, we can now write well-
typed programs.



#lang turnstile (extends stlc+reco+var) exist1

(define-type-constructor ∃ #:bvs = 1)2

(def-typerule (pack [τhide
type e] as (∃ (X) τbody))�3

[` e � e ⇐ (subst τhide X τbody )]4

------------------------------------5

[` e ⇒ (∃ (X) τbody)])6

(def-typerule (open [xid epacked] with Xid in e) �7

[` epacked � epacked ⇒ (∃ (Y) τbod)]8

[(X)([x � x : (subst X Y τbod )]) ` e � e ⇒ τ ]9

------------------------------------10

[` (let ([x epacked]) e) ⇒ τ ])11

Figure 13. A language with existential types

5. A Series of Core Languages
To confirm that our approach to typed languages handles a variety
of type systems, we implemented a series of textbook core lan-
guages [38]. This section describes a few examples.

5.1 Types That Bind: Existential Types
Figure 13 depicts EXIST, a language with existential types; it reuses
records and variants from another language. The #:bvs option (line
2) specifies that an ∃ type binds one variable and thus has surface
syntax (∃ (X) τbody).

Figure 4 (line 8) introduced type equality as structural equal-
ity of syntax objects. Type equality of quantified types, however,
must additionally consider alpha equivalence. While other systems
commonly convert to alternate representations such as de Bruijn
indices [5] to implement this behavior, our use of syntax objects
for types remains sufficient since these objects already contain
knowledge of the program’s binding structure. Thus the τ= used
by TURNSTILE looks like:

(define [(τ= (C1 Xs τ3) (C2 Ys τ4))

(and (τ= C1 C2 ) (τ= (subst Ys Xs τ3 ) τ4 ))]

[else ]) ; structural traversal

This updated τ= function specifies multiple input patterns. The first
clause matches binding types where equality of such types with the
same constructor is equivalent to renaming parameter references
to the same name and recursively comparing the resulting body
for equality. Otherwise, types are structurally compared. A subst
function performs this renaming:

(define (subst v x e)

(if (and (id? e) (binds? x e)) v ; else traverse e))

Specifically, (subst v x e) replaces occurrences of x in e with
v, where binds? determines “occurrence” by examining lexical
information in the syntax objects. Thus substitution is a structural
traversal and no renaming is necessary.

The pack and open macros use τ= and subst: pack assigns
a term e an existential type (∃ (X) τbody), where e has concrete
type equal to replacing X in τbody with τhide; dually, open binds x
to an existentially-typed epacked’s value, type variable X to epacked’s
hidden type, and then checks an expression e in the context of X
and x. To the left of ` (figure 13, line 9) is two environments: a list
of type variables and the standard environment for term variables.
The (∃ (Y) τbod) type of epacked is “opened”, so x has type τbod
but with occurrences of the existentially-bound Y (not in scope in
e) replaced with its “opened” X name. Here is a typical counter
example (×, rcrd, and prj correspond to records):

#lang turnstile stlc+sub1

(extends stlc+prim #:except #%datum +)2

(define-base-types Top Num Nat)3

(define-typerule #%datum )4

(define-primop + : (→ Num Num Num))5

(define-primop add1 : (→ Int Int))6

(define (τ<: τ1 τ2 )7

(or (τ= τ1 τ2 )8

(syntax-parse (τ1 τ2)9

[(_ Top) true]10

[(_ Num) (τ<: τ1 Int)]11

[(_ Int) (τ<: τ1 Nat)]12

[((→ τi1 . . . τo1) (→ τi2 . . . τo2))13

(and (−→τ <: (τi2 . . .) (τi1 . . .)) (τ<: τo1 τo2 ))]14

[else false])))15

(set-
�� ��τv τ<:) ; no need to redefine #%app or other rules16

Figure 14. A simply-typed language with subtyping

#lang exist
(define COUNTER
(pack [Nat (rcrd [new = 1][inc = add1]

[get = (λ ([x : Nat]) x)])] as
(∃ C (× [new : C][inc :(→ C C)][get :(→ C Nat)]))))

(open [c COUNTER] with Count in
(+ ((prj c get) ((prj c inc) (prj c new))) ;=> 2

(add1 (prj c new))));TYERR: expected type Nat, got Count

5.2 Subtyping and Enhanced Modularity
Figure 14 presents STLC+SUB, a language with subtyping that
reuses parts of STLC+PRIM from figure 12 but adds new base types
and redefines #%datum and + with these types. One might not ex-
pect STLC+SUB to be able to reuse type rules that do not con-
sider subtyping. However, TURNSTILE exposes hooks for common
type operations and implements type checking in terms of these
hooks, enabling better reuse. For example, τ= in figure 5, line 4 is
actually an overridable “type check relation” (initially set to τ=).
These language-level hooks are implemented with Racket parame-
ters [19], which allow a controlled form of dynamic binding. Thus
STLC+SUB defines a new τ<: predicate and installs it as the

�� ��τv
type check relation (we oval-box parameter names), enabling reuse
of #%app and λ from STLC.

TURNSTILE pre-defines parameters like
�� ��τv and

�� ��τ eval ; the
latter is called before attaching types to syntax. Each language may
also define new parameters, e.g., STLC+SUB additionally defines�� ��join and uses it in conditionals.

5.3 Defining Types and Kinds
Our implementations macro-expand a term to type check and erase
its types. We can check kinds the same way: expanding a type kind
checks and erases kinds. The kind erasing may cause problems,
however, since a type judgement may use both types and kinds.
Nevertheless, TURNSTILE can define a kind system like in Fω . To
address the problem, figure 15 reformulates some Fω rules with
our� relation. Specifically, T-TABS and K-ALL erase a ∀’s kind
annotation, but “save” it with ?, now a kind constructor, in the same
manner that→ “saves” a λ’s type annotations. T-TAPP then checks
that its argument type has a kind matching the saved annotation.

Figure 16 implements FOMEGA utilizing figure 15’s insights:
it introduces a new “kind” category of syntax, defines ⇒ and ?



e ::= x | λx :τ . e | e e | ΛX ::κ . e | e τ (terms with types)

τ ::= X | τ→τ | ∀X ::κ.τ | λX ::κ . τ | τ τ (types with kinds)

e ::= x | λx . e | e e, κ ::= ? κ . . . | κ⇒ κ (typeless terms, kinds)

τ ::= X | τ→τ | ∀X.τ | λX . τ | τ τ (kindless types)

Γ ::= b, . . . b ::= X � X ::κ | x� x :τ ::κ (contexts)

Γ, X � X ::κ ` e� e : τ :: κ

Γ ` ΛX ::κ . e� e : ∀X.τ :: ?κ
(T-TABS) Typing

Γ ` e� e :∀X.τ2 ::? κ Γ ` τ � τ ::κ Γ ` τ2 ::κ2

Γ ` e τ � e : τ2[X ← τ ] :: κ2
(T-TAPP)

X � X ::κ ∈ Γ

Γ ` X � X :: κ
(K-VAR) Kinding

Γ, X � X ::κ ` τ � τ :: ? . . .

Γ ` ∀X ::κ.τ � ∀X.τ :: ? κ
(K-ALL)

Figure 15. Some Fω rules using figure 10’s� relation

#lang turnstile fomega1

(extends stlc+prim)2

(define-stx-category kind)3

(define-kind-constructor ⇒ #:arity >= 1)4

(define-kind-constructor ? #:arity >= 0)5

(define-type-constructor ∀ #:bvs = 1 #:arrow ?)6

; link types and kinds7

(set-
�� ��kind? (λ (k) (or (#%type? k) (kind? k))))8

(set-
�� ��type? (λ (t) (and (

�� ��kind? t) (not (⇒? t)))))9

; ...10

(define-typerule (Λ [Xid :: κkind] e) �11

[([X � X :: κ ]) () ` e � e ⇒ τe ]12

------------------------------------13

[` e ⇒ (∀ ([X : κ]) τe)])14

(define-typerule (inst e τ) �15

[` e � e ⇒ (∀ X τbody) (⇒ (? κ))]16

[` τ � τ ⇐ κ ]17

------------------------------------18

[` e ⇒ (subst τ X τbody )])19

Figure 16. A language with higher-order polymorphism

kinds, and directs the ∀ type to construct its kind with a ? “arrow”.
Lines 8-9 connect “kinds” and “types” where line 8 enables reuse
of previously-defined types, and line 9 redefines “well-formed”
types. Finally, the Λ rule type checks its body in its type variable’s
context, and the inst rule instantiates an expression e at type τ by
computing e’s ∀ type and that type’s kind (?κ), and checking that
τ has kind κ.

5.4 Reusing Languages
Table 1 summarizes extensions and reuse in fourteen core language
implementations. A row and color represents a language and fea-
tures are in columns. A diamond marks a feature’s first implemen-
tation and down-column appearances of the feature’s color indi-
cates reuse. Thus single-color columns and multi-color rows indi-
cate abundant reuse. For example, all languages share the same λ;
also, languages with basic types share a τ= while those with bind-
ing types use an extended version. A ⊕ marks feature extension

#lang turnstile effect1

(extends stlc+prim #:except #%app λ)2

(define-base-type Void)3

(define-type-constructor Ref #:arity = 1)4

(define-typerule (ref e) �5

[` e � e (⇒ : τ ) (⇒ :ν π )]6

------------------------------------7

[` (box e) (⇒ : (Ref τ))8

(⇒ :ν (∪ (src (ref e)) π ))])9

(define-typerule (deref e) �10

[` e � e (⇒ : (Ref τ)) (⇒ :ν π )]11

------------------------------------12

[` (unbox e) (⇒ : τ ) (⇒ :ν π )])13

(define-typerule (:= eref e) �14

[` eref � eref (⇒ : (Ref τref)) (⇒ :ν πref )]15

[` e � e (⇐ : τref ) (⇒ :ν π )]16

------------------------------------17

[` (set-box! eref e) (⇒ : Void)18

(⇒ :ν (∪ πref π ))])19

(define-typerule (#%app efn earg) �20

[` efn � efn (⇒ : (→ τin τout) (⇒ :ν πapp ))21

(⇒ :ν πfn )]22

[` earg � earg (⇐ : τarg ) (⇒ :ν πarg )]23

------------------------------------24

[` (#%app efn earg) (⇒ : τout )25

(⇒ :ν (∪ πfn πarg πapp ))])26

(define-typerule (λ [xid : τintype] e) �27

[[x � x : τin ] ` e � e (⇒ : τout ) (⇒ :ν π )]28

------------------------------------29

[` (λ (x) e) (⇒ : (→ τin τout) (⇒ :ν π ))])30

Figure 17. A basic side effect analysis.

(a dotted line connects non-adjacent-row extensions). For example,
“subtyping” extends #%datum from “stlc+prim”; also, F<: extends
and combines subtyping from one language and ∀ from system F
to implement bounded polymorphism.

Table 2 summarizes implementation sizes from table 1. Each
column represents a different implementation of the same lan-
guage: the first uses TURNSTILE; the second uses TURNSTILE
but does not import other implementations; and the third uses
plain Racket. Though the last two columns are estimates (2 signif-
icant figures)—we did not implement every permutation of every
language—they still indicate the degree of reuse. Roughly, the sec-
ond and first column difference represents the degree to which type
rules are reused across many languages, analogous to single-color
columns in table 1. Such reuse would be difficult to achieve with
conventional type checker implementations. The third and first col-
umn difference indicates the degree to which TURNSTILE captures
common patterns used to implement type checkers.

5.5 More Than Types: A Type-and-Effect System
Table 1’s languages mostly use a typical Γ ` e : τ relation though
TURNSTILE is not limited to this relation. Rather, programmers
may specify propagation of any number of arbitrary properties. For
example, figure 17 presents EFFECT, a language with a basic type
and effect system [33]. The language adds Void and Ref types,



λ app → τ= τeval Int + tup recrd variant List Ref join μ ∃ invoke kind

stlc ⟡ ⟡ ⟡ ⟡ ⟡

stlc + prim ⟡ ⟡

extended 

stlc ⟡

tuples ⟡ ⟡

records + 

variants ⨁ ⟡ ⟡

lists ⟡

reference 

cells ⟡

subtyping ⟡ ⟡

subtyping 

+ records ⟡

(iso) 

recursive ⨁ ⟡

existential ⟡

system F ⟡

F<: ⨁ ⟡ ⟡

F omega ⨁ ⟡ ⟡ ⟡

⟡ = implemented here ⨁ = extends the above

A unique color represents each language. The features in each language (row) are colored according to the language where they are defined.

⟡

⨁

⨁

⨁

feature / 

lang name

Top 

Nat 

Num

Λ

inst

Bool if  

letrec  

begin 

define 

aliasdatum τ<:

⟡

⨁

⨁

tup

type

tyapp 

tyλ

⟡

⨁

∀∀∀∀

Table 1. Implemented Languages



Language Name w/ TURNSTILE no reuse∗ w/ Racket∗

stlc 32 32
stlc+prim 23 55

extended stlc 143 200
tuples 32 230

records+variants 171 400
lists 73 470 1100

reference cells 29 500 to
subtyping 107 160 1300

sub+records 50 610 LoC
(iso) recursive 27 260

existential 69 470
system F 28 83
F<: 89 700
Fω 112 190

* = estimate

Table 2. Line count comparisons of table 1’s languages

and ref, deref, and := type rules for allocation of, dereference
of, and assignment to reference cells, respectively (box is Racket’s
ref cells). In addition to types, the language tracks source locations
(π) of ref allocations (line 9). The ref rule exhibits new syntax:
instead of a type to the right of⇒, a programmer may write mul-
tiple ⇒ arrows matching multiple properties. Thus ref specifies
that expansion of e (line 6) computes both a type (keyed on :) and
a set of locations π (keyed on :ν ). The key symbols match the user-
specified symbols below the conclusion line. The := rule uses both
⇐ (for the type) and⇒ (for the locations) simultaneously (line 16).

EFFECT contrasts with table 1’s languages in that it cannot reuse
#%app and λ due to its incompatible type relation. (It does reuse
some types and type operations.) The new #%app and λ rules show
that both terms and types carry the :ν property. Specifically, λ
propagates :ν to function types (line 30), expressed with a nested
⇒ (like the double-⇒ syntax for kinds from figure 16), because
evaluating a λ does not trigger allocations in its body. Applying a
function does evaluate the body, so #%app transfers locations from
the function type (line 21) to the application term (line 26).

6. A Full-Sized Language
To show that TURNSTILE scales to real-world type systems, we cre-
ated MLISH, an ML-like language with local type inference, recur-
sive user-defined algebraic data types, pattern matching, and basic
Haskell-style type classes [47], along with “batteries” such as effi-
cient data structures, mutable state, generic sequence comprehen-
sions, I/O, and concurrency primitives. MLISH also demonstrates
how TURNSTILE easily incorporates type-system-directed program
transformations. This section explains a few features.
Local type inference MLISH aims to follow Pierce and Turner’s
empirical inference guidelines [39]. Specifically, programmers
need not write most annotations and instantiations except top-level
function signatures, which are useful as documentation, and some
λ annotations, which are rare.

Figure 18 sketches basic type inference in λ and #%app. Multi-
ple clauses comprise λ, whose input patterns are checked in order.
The first clause matches unannotated λs whose context determines
its type, indicated with⇐ (line 4). The second matches annotated
λs with implicitly bound type variables, computes these variables,
and then recursively invokes the λ rule (indicated with �) with
explicit type variables. In this manner, a surface language with im-
plicit type variables rewrites to one with explicit binders, reusing
the macro system for the type-system-directed rewrite. Finally, the
third clause matches λs with explicit type variable binders; it re-
sembles λ from figure 11. An MLISH define for top-level func-
tions uses λ, splitting a definition into a runtime component and a
macro that adds type information:

#lang turnstile mlish1

(define-typerule λ2

; no annotations, use expected type3

[(λ (xid . . .) e) ⇐ (∀ (X . . .) (→ τin . . . τout)) �4

[(X . . .) ([x � x : τin ] . . .) ` e � e ⇐ τout ]5

------------------------------------6

[` (λ (x . . .) e)]]7

; variable annotations, with free tyvars8

[(λ ([xid : τin] . . .) e) �9

#:with (X ...) (free-tyvars (τin . . .))10

------------------------------------11

[� (λ {X . . .} ([x : τin] . . .) e)]]12

; variable annotations, explicit tyvar binders13

[(λ {X . . .} ([xid : τin] . . .) e) �14

[(X . . .) ([x � x : τin ] . . .) ` e � e ⇒ τout ]15

------------------------------------16

[` (λ (x . . .) e)17

⇒ (∀ (X . . .) (→ τin . . . τout))]])18

(define-typerule #%app19

; infer polymorphic instantiation, with expected type20

[(#%app efn earg . . .) �21

#:with τexpct (get-expected-τ this-stx)22

[` efn � efn ⇒ (∀ Xs (→ τX . . .))]23

[` earg � earg ⇒ τarg ] . . .24

#:with (τ . . .)25

(solve Xs (τarg . . . τexpct) (τX . . .))26

------------------------------------27

[� (#%app {τ . . .} efn earg . . .)]]28

; infer polymorphic instantiation, no expected type29

[(#%app efn earg . . .) �30

[` efn � efn ⇒ (∀ Xs (→ τinX . . . τoutX))]31

[` earg � earg ⇒ τarg ] . . .32

#:with (τ . . .) (solve Xs (τarg . . .) (τinX . . .)))33

------------------------------------34

[� (#%app {τ . . .} efn earg . . .)]]35

; explicit instantiation of polymorphic function36

[(#%app {τtype . . .} efn earg . . .) �37

[` efn � efn ⇒ (∀ Xs (→ τX . . .))]38

#:with (τin . . . τout) (
−−−→
subst (τ . . .) Xs (τX . . .))39

[` earg � earg ⇐ τin ] . . .40

------------------------------------41

[` (#%app efn earg . . .) ⇒ τout ]])42

Figure 18. Type inference in MLISH #%app and λ

(define-typerule (define (f [x : τ] . . . → τout) e) �
#:with Xs (free-tyvars (τ . . .))

[` (λ (x . . .) e) � eλ ⇐ (∀ Xs (→ τ . . . τout))]
------------------------------------

[� (define fintrnl eλ)

(define-m f (add-τ fintrnl τf))])



(define-m (define-type (Ty X . . .)1

(Constr [fld : τX] . . .) . . .)2

(define-type-constructor Ty3

#:arity = (len (X. . .))4

#:extra ((Constr [fld τX] . . .) . . .))5

(struct Constrintrnl (fld . . .)) . . .6

(define-typerule (Constr earg . . .) �7

#:with C (add-τ Constrintrnl8

(∀ (X . . .) (→ τX . . . (Ty X . . .))))9

------------------------------------10

[� (#%app C earg . . .)]) . . .11 )

(def-typerule (match em with [C x . . . -> e] . . .+)�12

[` em � em ⇒ τm ]13

#:with [(Cexpect [fld τfld]. . .) . . .] (get-extra τm )14

#:fail-unless (set= (C . . .) (Cexpect . . .))15

(fmt ‘‘missing ~a’’ (set-diff (C . . .) (Cexpect . . .)))16

[[x � x : τfld ] . . . ` e � e ⇒ τ ] . . .17

#:when (same-τ? (τ . . .))18

------------------------------------19

[` (let ([v e])20

(cond [(Cexpect? v)21

(let ([x (get-fld v)] . . .) e)] . . .))22

⇒ (first (τ . . .))])23

Figure 19. Defining types and pattern matching in MLISH

To implement a ⇐ type rule, e.g., figure 18 lines 4-7, MLISH
propagates “expected type” information from an expression’s con-
text by attaching a syntax property before expansion, making the
information available while type checking that expression. A ⇐
type rule’s input matches on this expected type (line 4), and also
implicitly attaches it to the output syntax (line 7). A non-⇐ type
rule may also inspect the expected type, as with #%app. Specif-
ically, the first #%app clause extracts the expected type (line 22)
and uses it to solve for the type variables (line 26). The clause then
recursively invokes #%app with explicit instantiation types. In this
manner, a surface language with inferred instantiation rewrites to
one with explicit instantiation. The second #%app clause resembles
the first except it does not use the expected type. The third instan-
tiates the polymorphic function type (line 39) and then checks the
function arguments as in figure 11.

Algebraic datatypes Figure 19’s define-type macro defines
sum-of-product datatypes in MLISH; it expands to a series of defini-
tions (gray box): a type constructor (lines 3-5), where the #:extra
argument communicates information about the type to other type
rules, e.g., to check match clause completeness; Racket structs
(line 6) implementing runtime constructors; and type rules (lines
7-11) that leverage #%app to instantiate polymorphic constructors.

Pattern matching In figure 19’s match, one of more clauses fol-
low em, matching its possible variants. The rule uses “extra” in-
formation from the type to check clause exhaustiveness (lines 14-
16). Otherwise match expands to a conditional that extracts com-
ponents of em with accessors (also from the “extra” information).
Here is an MLISH example:

(define-m (define-tc (Cls X . . .) opgeneric : τop)1

(define-m (Cls X . . .) [opgeneric : τop])2

(define-typerule (opgeneric e . . .) ⇐ τo �3

[` e � e ⇒ τ ] . . .4

#:with opconcrete (lookup opgeneric (→ τ. . . τo))5

------------------------------------6

[� (#%app opconcrete e . . .)])7 )

(define-m (define-instance (Cls τ. . .) opgen opc)8

#:with [op : τconcrete] (local-expand (Cls τ . . .))9

#:when (equal? opgen op)10

[` opc � opconcrete ⇐ τconcrete ]11

#:with opmang (mangle op τconcrete )12

------------------------------------13

[� (define-m opmang (add-τ opconcrete τconcrete))])14

(define-typerule #%app15

; ....16

[(#%app {τtype . . .} efn earg . . .) �17

[` efn � efn ⇒ (∀ Xs (=> TC (→ τX . . .)))]18

#:with (τin . . . τout) (
−−−→
subst (τ . . .) Xs (τX . . .))19

[` earg � earg ⇐ τin ] . . .20

#:with [opgeneric : τgeneric] TC21

#:with τconcrete (subst (τ . . .) Xs τgeneric )22

#:with opconcrete (lookup opgeneric τconcrete )23

------------------------------------24

[` (#%app efn opconcrete earg . . .) ⇒ τout ]])25

Figure 20. Type classes in MLISH

#lang mlish
(define-type (Tree X)

(leaf [val : X])
(node [l : (Tree X)] [r : (Tree X)]))

(define (sum-tr [t : (Tree Int)] → Int)
(match t with
[node l r -> (+ (sum-tr l) (sum-tr r))]))

;TYERR: match: not enough clauses, missing leaf

Type classes Figure 20 sketches an implementation of type
classes. The rules interleave typechecking and program rewriting,
demonstrating how TURNSTILE naturally accommodates such in-
terleaving. MLISH type classes only support basic features such
as subclassing (unsupported features include multi-parameter type
classes and overlapping instances). For simplicity, this paper shows
single-operation type classes, though MLISH supports the general
multi-operation version. The define-tc form shows that two def-
initions implement a type class: a macro for the type class itself
(line 2) that expands to its generic operation and type, and a type
rule for that operation (lines 3-7) that looks up a concrete operation
(line 5) based on the generic name and the concrete types of its
usage. MLISH type classes reuse the compile-time macro environ-
ment for lookups, where a concrete operation’s name, installed by
define-instance (lines 8-14), is a mangling of the generic name
and specific concrete types.

Consequently, functions utilizing generic operations (this λ im-
plementation is not shown) have a typeclass component in their
type (the => constructor on line 18) and these functions implicitly



test description core langs (§ 5) MLISH (§ 6)
coverage 4313 2467

RW OCaml [31] 610
Benchmarks Game [1] 852

Okasaki [34] 2014
Other examples (e.g., nqueens) 559

total (LoC, incl. comments) 4313 6502

Table 3. Testing TURNSTILE-created languages

have an extra concrete operation argument. The #%app rule implic-
itly inserts this argument by: extracting the generic operation of the
type class (line 21); looking up the concrete operation based on
instantiation types for the function (lines 22-23); and adding this
operation to the application (line 25).

7. Creating a Test Suite
Sections 5 and 6 show that our approach accommodates a variety
of typed languages. This section explains how we validate these
languages with a test suite of real-world programs [1, 31, 34]. Our
tests utilize TURNSTILE’s unit-testing framework, which accom-
modates testing of typechecking successes, failures, as well as error
messages. The testing framework also allows all tests to be written
with a language’s surface syntax, rather than an internal AST struc-
ture. The following example defines a function f, tests the type of
f, and both a successful and failing application of f:

#lang mlish (require typechecker-tester)
(define (f [x : Int] → Int) x)
(check-type f : (→ Int Int))
(check-type (f 1) : Int => 1)
(typecheck-fail (f 1 2) #:msg ‘‘Wrong number of args’’)

Table 3 summarizes our test suite, which includes both “coverage”
tests checking general functionality and corner cases, and real-
world examples. For the latter, Real World OCaml [31] supplied
functional tests while the Benchmarks Game [1] consisted of more
imperative tests. Okasaki’s data structures tested the limits of our
type system. For example, in discussing polymorphic recursion
(chapter 10), Okasaki writes:

“We will often present code as if SML supports [polymor. recur-
sion]. This code will not be executable but will be easier to read.”

We were able to add polymorphic recursion to MLISH, by lever-
aging recursive definition forms in the host, and implemented the
data structures in question, demonstrating both the ability to im-
plement tricky type system features with TURNSTILE, and the ease
with which one can do so.

8. Related Work
Many researchers have developed extensible type systems [2, 4,
11, 28, 30, 36, 37]. These frameworks typically augment a fixed
host type system, which imposes some limitations on what kinds
of extensions are allowed. For example, some do not allow defin-
ing new types, while others may only define new rules express-
ible with the host system. Though ease of extension is a feature of
TURNSTILE-created languages (any language in the Racket ecosys-
tem may serve as TURNSTILE’s host language, so TURNSTILE may
also be used to extend a typed language [21] like the other systems),
it is not the sole focus of our work. Instead, we wish to support the
creation of complete languages that may utilize arbitrary type rules.

Others have devised special-purpose macro systems for build-
ing type checkers [13, 35]. Whether these systems accommodate
embedded DSL creation, however, remains undetermined. Our
work takes the opposite approach. We start with a popular plat-

form for creating embedded languages and show that its general
macro system already accommodates type checking.

Typed Racket [42] pioneered the idea of creating a typed
language using syntax extensions. While languages created with
TURNSTILE share this high-level description, our approach dif-
fers in its goals and implementation details. Typed Racket aims
to type check Racket programs and thus first expands a program,
and then feeds this expanded program to a conventional mono-
lithic type checker that recognizes only core Racket forms (for
this reason Typed Racket is considered a “sister” language [43] to
Racket rather than an embedded language). In contrast, we wish
to support the creation of arbitrary typed surface languages, and
we do so via implementations that interleave macro expansion and
type checking. This requires programmers to implement type rules
for all surface constructs rather than just core forms, however, but
TURNSTILE helps this process by providing a concise declarative
syntax for writing these rules. Interleaving macro expansion and
type checking yields the additional benefit of using type informa-
tion during expansion, allowing types to direct a macro’s output.
Finally, since our language implementations are just a series of
macros, they are naturally modular and thus easily extended and
reused.

The TinkerType [29] system also separates type rules and op-
erations into reusable components. The framework combines raw
strings rather than linguistic components, however, and is designed
for modeling and typesetting calculi rather than creating practical
languages. Nonetheless, our approach may benefit from some of
TinkerType’s consistency checks when combining components.

9. Conclusions and Future Work
We present a novel use of macros to create practical typed embed-
ded languages. Our approach is not constrained to a particular type
system, yet programmers do not have to implement a system from
scratch because they can reuse the infrastructure of a macro system.
To this end we introduce TURNSTILE, a metalanguage for creating
typed languages using a declarative type-and-rewriting rule syntax.
We conjecture that language implementers will benefit from our ap-
proach, as non-experts may reduce the burden of language creation,
while researchers may rapidly iterate and experiment with new type
features and combinations of features.

We next plan to further validate our idea by implementing more
languages, and to extend our approach to more complex analy-
ses. In addition, we plan to explore whether our approach to im-
plementing typed embedded languages is compatible with other,
non-Lisp-style syntax extension systems. Finally, we plan to inves-
tigate whether the connections between type checking and macro
processing that we have described might inform the future design
of both kinds of systems. The fact that many type systems already
intertwine type checking and program rewrites [39, 40, 47] sug-
gests that perhaps languages should come equipped with a gen-
eral framework for defining macros and type rules, as well as some
combination of the two.

Acknowledgments
This paper is supported by NSF grant SHF 1518844. We thank
Asumu Takikawa, Matthias Felleisen, and our reviewers for feed-
back on drafts, Ryan Culpepper for technical discussions about
macros, and Alexis King for suggestions on language design.

References
[1] The computer language benchmarks game. URL http://

benchmarksgame.alioth.debian.org/.
[2] C. Andreae, J. Noble, S. Markstrum, and T. Millstein. A framework

for implementing pluggable type systems. In Proceedings of the 21st

http://benchmarksgame.alioth.debian.org/
http://benchmarksgame.alioth.debian.org/


Annual ACM SIGPLAN Conference on Object-oriented Programming
Systems, Languages, and Applications, pages 57–74, 2006.

[3] P. Bagwell. DSLs - A powerful Scala feature, 2009. URL http:
//www.scala-lang.org/old/node/1403.

[4] G. Bracha. Pluggable type systems. In OOPSLA Workshop on Revival
of Dynamic Languages, 2004.

[5] N. G. D. Bruijn. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the
Church-Rosser theorem. INDAG. MATH, 34:381–392, 1972.

[6] E. Burmako. Scala macros: Let our powers combine!: On how rich
syntax and static types work with metaprogramming. In Proceedings
of the 4th Workshop on Scala, 2013.

[7] M. Butterick. Pollen: the book is a program, 2013. URL https:
//github.com/mbutterick/pollen.

[8] N. Cameron. Sets of scopes macro hygiene in Rust,
2015. URL http://www.ncameron.org/blog/
sets-of-scopes-macro-hygiene/.

[9] R. Culpepper and M. Felleisen. Fortifying macros. In Proceeding
of the 15th ACM SIGPLAN International Conference on Functional
Programming, pages 235–246, 2010.

[10] T. Disney. Hygienic Macros for JavaScript. PhD thesis, University of
California Santa Cruz, 2015.
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