CS420

(Deterministic) Finite Automata

Thursday, September 8, 2022
UMass Boston Computer Science




%/{/{M/me/ﬂe/{f@

* Quizzes * Lectures
* Quiz 1 returned * Not recorded but closely follow
» Use gradescope issue ticket for the listed textbook chapters

questions / complaints

« HW | - « Office Hours
« Weekly; in/out Sunday midnight e Thurs 12:30-2pm (in person)
« HW 0 due Sunday 9/11 11:59pm EST * Fri 4-5:30pm (zoom, access link
 ~4-5 questions, Paper-and-pencil from blackboard) |

proofs (no programming)

» Discussing with classmates ok;
Final answers written up /
submitted individually

« Let me know If advance if
possible, but drop-ins also fine



last Tiee: The Theory of Computation ...

Formally defines mathematical models of computation -l

In order to:

1. Make predictions (about computer programs)

e |f possib[e function( x, y, z, n) {
if n > 2 & XAn + yAn == zAn_{

AT e eI Fermat’s Last Theorem
} (unknown for ~350 years,
solved in 1990s)

¥
2. Compare the models to each other

« Java vs Python? The same?

3. Explore the limits of computation
« What programs cannot be written?




last Tire: COMputation = Programs!

import RP1.GPIO as GPIO

import time

import numpy as np
{ import cv2

import os
. . isport satplib
Turing Machines o e e o
from email . MINEText import MIMEText
from email import [n‘(oders

grail_user

grail_pwd
i to 1

sensor .

GPI0. setmode (GP10.BCH)

Linear bounded Automata 610 e, 1., ..o

More powerful
More complex
case Cut:rcntStau: is LeSS restricted
Push-down Automata s o
INFA machine containes 11 total states NextState <= “"L‘tili StariCnt <= 13 | | e =
else Nex(State « idle; _—
Lesson 3 - Runtime Parser :"d if’;‘l L;:::(":lq
when wail = *

W
if (cnt = n) then

Reading expression "3+5*7"

Nf:nTerm):_nal E = LJ:. s B C:f:l 1 Finite State ;:; ihrl:e.\lh‘tule < wait; l:::ﬂ
- . Automata e
Intuition for this course: i * I

NextState <= ready; end <= 1; waip ) LR
A ! end=0

- A model of computation defines a class of machines (each box)
- Think of: a class of machines = a “Programming Language”!
- Think of: a single machine instance = a “Program”!



Last Tie: COMputation = Programs!

Very important Note: | use this “programs” and
“programming language” analogy to help you
understand CS420 topics, by comparing them to
Ideas you've seen before

= | TITTear DOUNAEd AUTomara [ oo o conoom

llllllll

But don't get confused: “programs” and | o poweriu

More complex

“programming languages” are not formal | e esticie
terms defined in this course.

LT P e Finite State | e
ntuition for this course: | In fact, the term language will formally
- A model of compt mean something else (later)

- Think of: a class of machines = a “Programming Language”!

"l

- Think of: a single machine instance = a “Program”!

wait




last Tire: MOdels of Computation Hierarchy

Turing Machines

Linear bounded Automata

Push-down Automata

We’'ll start here ...

More powerful
More complex
Less restricted



Finite Automata: “Simple” Computation / “Programs”

B2 HHREE
Us'BAEAA




Finite Automata

« A finite automata or finite state machine (FSM) ...

e .. computes with a finite number of states



A Microwave Finite Automata

Inputs change states
(possibly)

press stop press start

é press start é
press stop

States



Finite Automata: Not Just for Microwaves

State pattern

From Wikipedia, the free encyclopedia

The state pattern is a behavioral software design pattern that allows an object to alter its behavior when its internal
state changes. This pattern is close to the concept of finite-state machines. The state pattern can be interpreted as a
strategy pattern, which is able to switch a strategy through invocations of methods defined in the pattern's interface.

Finite Automata: |
acommon——

programming pattern

Computation Simulating Other Computation
(a common theme this semester)

1



Video Games Love Finite Automata

@ Unity Documentation

State Machine Basics

The basic idea is that a character is engaged in some particular kind of action at any given time. The actions available will depend
on the type of gameplay but typical actions include things like idling, walking, running, jumping, etc. These actions are referred to as
states, in the sense that the character is in a “state” where it is walking, idling or whatever. In general, the character will have
restrictions on the next state it can go to rather than being able to switch immediately from any state to any other. For example, a
running jump can only be taken when the character is already running and not when it is at a standstill, so it should never switch
straight from the idle state to the running jump state. The options for the next state that a character can enter from its current state
are referred to as state transitions. Taken together, the set of states, the set of transitions and the variable to remember the current
state form a state machine.

The states and transitions of a state machine can be represented using a graph diagram, where the nodes represent the states and
the arcs (arrows between nodes) represent the transitions. You can think of the current state as being a marker or highlight that is
placed on one of the nodes and can then only jump to another node along one of the arrows.

/ Running Jump
Fall \

Idle X Run

\ Walk /

Standing Jump

14



Finite Automata 1n Video Games

H ValveSoftware / halflife G

<> Code (D) Issues 1.6k {1 Pull requests 23 () Actions [ Projects [ wiki C

# 5d761709a3 ~ halflife / game_shared / bot / simple_state_machine.h

Alfred Reynolds initial seed of Half-Life 1 SDK

A2 0 contributors

85 lines (67 sloc) 2.15 KB

// simple state machine.h
// Simple finite state machine el capsulation
// Author: Michael S. Booth (mike@turtlerockstudios.com), November 2003

#ifndef SIMPLE_STATE MACHINE H_
#define STMPLE_STATE_MACHINE H_

JE*
* Encapsulation of a finite-state-machine state
*/

template < typename T >

class SimpleState

r

15



Model-view-controller (MVC) is an FSM

( MODEL \
States
UPDATES MANIPULATES Inputs Change StateS
VIEW CONTROLLER
: N5 /!
The View draws states R &
N\ /



A Finite Automata = a “Program”

« A very limited “program” that uses finite memory
 Actually, only 1 “cell” of memory!
« States = the possible things that can be written to memory

* Finite Automata has different representations:

« Code (wont use in this class)
»>State diagrams



Finite Automata state diagram

Accept State
1
1 0
O 0=
Start State " " Inputs cause state transitions

States



A Finite Automata = a “Program”

« Avery limited program with finite memory
 Actually, only 1 “cell” of memory!
 States = the possible things that can be written to memory

 Finite Automata has different representations:
« Code
 State diagrams
»Formal mathematical description

19



Finite Automata: The Formal Definition

2 5 components

DEFINITION
A finite automaton is a 5-tuple (Q, X, 0, qo, F'), where

1. () is a finite set called the states,

2. 3 1s a finite set called the alphabet,

3. 0: Q X X—(Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.



Sets and Sequences

= Both are: mathematical objects that group other objects
= Members of the group are called elements

= Can be: empty, finite, or infinite

= Can contain: other sets or sequences

Sets Sequences

* Unordered e Ordered

« Duplicates not allowed « Duplicates ok

« Common notation: { } « Common notation: (), or just commas
« “Empty set” denoted: @ or { } « “Empty sequence”: ()

- A language is a (possibly infinite) A tuple is a finite sequence

set of strings » A string is a finite sequence of characters



Setor|Sequence|?
..can write it in many

A function is ... .. a set of pairs ways: as a mapping, a

(15t of each pair from domain, 2" from range) table ...

DEFINITION

nite automaton is a 5-tuple (Q, X, 9, qo, F),m

sequence

set () is a finite set called the states,

Set of pairs | 2- % 1s a finite set called the alphabet,<— set

1 % o . _ o .
(domain) 3.0: Q xX—Q g‘fw‘izfmj’:unctum,
Don't know! }y qo € Q is the start state, and Set (range)
know! _

(states can be 3+ F' C Q is the set of accept states.

anything) '\
set

A pair is ... H a sequence of 2 elements




Finite Automata: The Formal Definition

2 5 components

DEFINITION
A finite automaton is a 5-tuple (Q, X, 9, qo, F'), where

1. () is a finite set called the states,

2. 3 1s a finite set called the alphabet,

3. 0: Q X X—(Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.



DEFINITION
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where

1. Q is a finite set called the states,

2. 3 is a finite set called the alphabet,

3. 0: Q x X—Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

Example: as state diagram




Example: as formal description

DEFINITION
A finite automaton is a S-tuple (Q, 3, 6, qo, F'), where My = (Q, 2, (53 g1, F), where

1. @ is a finite set called the states, 1 -
Note: . i
2. Y 1s a finite set called the alpbabet, | Notthe same @ Q {(h 425 43 }’

3. 0: Q x X—Q is the transition function, 2.2 = {031}7 braces -
4. qo € Q is the start state, and 2 B dlemeehed e (Setdnof’atlon)
5. F C Q is the set of accept states. no duplicates
0 1
0 1 q1 [ 91 42
‘ g2 | 93 g2
1 43 | 42 g2,
q1 , -- ‘
@ 1 4. ¢ 1s the start state, and

0 5. F = {g).

Example: as state diagram

26



Example: as formal description

DEFINITION
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (53 g1, F), where
1. @) is a finite set called the states, 1 _
2. 3 is a finite set called the alphabet, ) Q {Ql 92, 43 }’ . .
3. 0: Q x X—Q is the transition function, 2. Y = {O,]—}, Possible inputs
4. qo € Q is the start state, and 3. §is described as
5. F C Q is the set of accept states.
0 1
Ill 1 d1 | 91 q2
‘ 42 | 43 Q2
1 43 | 42 42,
. 4. ¢, 1s the start state, and

1
0 5. F = {gs).

Example: as state diagram

27



Example: as formal description

DEFINITION
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (53 g1, F), where
1. Q is a finite set called the states, 1 _
2. Y is a finite set called the alphabet, | Q {Ql » 42, 43 }’
3. 0: Q x X—Q is the transition function, 2. X = {O,]—},
4. qo € Q is the start state, and : g —
0 €& 3. disdescribed as [y Gthicis next
5. F C Q is the set of accept states. : ”
0 1 Input symbol
0 - q1 [ 91 42 :
“If in this “Then go to
state” Q2 | 43 92 this state”
43 | 92 42,
q1 .
4. ¢, 1s the start state, and
5. F = {g}.

Example: as state diagram




Example: as form ription
DEFINITION ample: as formal descrip

A finite automaton is a S-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (53 g1, F), where

1. Q is a finite set called the states, 1 _
2. 3 is a finite set called the alphabet, ) Q {Ql 42, 43 }’
3. 0: Q x X—Q is the transition function, 2. X = {071},
4. qo € Q is the start state, and 3. § is described as
5. F C Q is the set of accept states.
o) 1
0 1 q1 [ 91 42
‘ g2 | 43 G2
1 43 | 42 42,
. 4. ¢, 1s the start state, and

1
0 5. F = {go).

Example: as state diagram




Example: as form ription
DEFINITION ample: as formal descrip

A finite automaton is a S-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (53 g1, F), where

1. Q is a finite set called the states, 1 _
2. 3 is a finite set called the alphabet, ) Q {Ql 42, 43 }’
3. 0: Q x X—Q is the transition function, 2. Y = {071},
4. qo € Q is the start state, and 3. § is described as
5. F C Q is the set of accept states.
O 1
0 q1 | 91 g2
q2 | 43 Q2
1 43 | 92 42,
q1 :
4. ¢ 1s the start state, and

5. F = {QQ}.

Example: as state diagram




Example: as formal description

DEFINITION
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (53 g1, F), where
1. Q is a finite set called the states, 1 _
2. 3 is a finite set called the alphabet, ) Q {Ql 42, 43 }’
3. 0: Q x X—Q is the transition function, 2. Y = {0,1},
4. qo € Q is the start state, and 3. §is described as
5. F C Q is the set of accept states.
0 1
A “Program” — a |l g ¢
A “Programming Language” g2 | g3 g2

43 | 42 42,
4. ¢ 1s the start state, and

Remember: this is just way to help your intuition

But these are not formal terms.
Don't get confused 5. F = {QQ}.

Programming Analogy



In-class Exercise

Come up with a formal description of the following machine:

DEFINITION
A finite automaton is a S-tuple (Q, X, 0, qo, F'), where

1. Q is a finite set called the states,

2. Y is a finite set called the alphabet,

3. 0: Q X X—Q is the transition function,
4. qo € Q) is the start state, and

5. F C Q is the set of accept states.




In-class Exercise: solution

° Q={CI1, g2, CI3} M = (QZ(S Q[}FF)

X={a,b}

o)
+ 5(q1,a) =q2
* 5(q1,b)=q1
* 0(g2,a)=q3
* 6(92,b)=q3
* 0(93,a)=0q2
* 5(g3,b)=q1

* qo=q

* F={q2}




A Computation Model Is ... (from lecture 1)

« Some base definitions and axioms ...

DEFINITION

A finite automaton is a 5-tuple (Q, 2, 6, qo, I'), where

1. Q is a finite set called the states,

2. 3 is a finite set called the alphabet,

3. 0: Q x X—Q is the transition function,
4. qo € Q is the start state, and

5. F' C Q is the set of accept states.

« And rules that use the definitions ...



Computation with FSMSs (JFLAP demo)

|
 FSM: >° 1 e

 Input: “1101”



FSM Computation Model

Informally

« Program = a finite automata
 Input = string of chars, eg “1101”

To run a program:
e Start in “start state”

* Repeat:

 Read 1 char;
« Change state according to the transition table

e Result =
« “Accept” if last state is “Accept” state
« “Reject” otherwise

Formally (i.e., mathematically)

- M = (Q72757QO7F)

e W — W1W2 * - Wn

* 5(7’7;,101'_{_1) = Ti+1, for ¢ = O,...,’n,— 1

Let's come up with nicer notation to represent this part

* M accepts w if

sequence of states 1o, 71, .., 7, In\Q) exists . ..

Still a little verbose with r, € F



Check-in Quiz 9/8

On gradescope



