UMB CS 420

Non-Regular Languages
Tuesday, October 11, 2022

Turing-recognizable

decidable

context-free

.’ o
regular @ ® ®



%/{/{0«/{0@#(@/{13’

« HW 3 in
+ PDye-Sun-1649-11:59pmEST

* HW 4 out
« Due Sun 10/16 11:59pm EST

« Submitted hw must correctly assign pages to each problem
* Incorrectly assigned problems are marked zero
« We will re-grade one time, if re-grade request is submitted



A language is a set of strings.

$ fa: Regular or Not?

« Many ways to prove a language is regular:
« Construct a DFA recognizing it
« Construct an NFA recognizing it
 Create a regular expression describing the language

M recognizes language A
if A= {w| M accepts w}

« Regular Expression <> NFA < DFA < Regular Language

« But not all languages are regular!
« Most programming language syntaxes are not regular
« e.g, language of all python programs, or all HTML/XML pages, are not regular
« That means:

« There’s no DFA or NFA recognizing those languages

 And they can't be described with a regular expression
(a common mistake)!




HTML is a language of sufficient complexity that it cannot be parsed by regular
° expressions. Even Jon Skeet cannot parse HTML using regular expressions. Every
S O m e O n e \/\/ h O D I d N Ot Ttime you attempt to parse HTML with regular expressions, the unholy child weeps
the blood of virgins, and Russian hackers pwn your webapp. Parsing HTML with
regex summons tainted souls into the realm of the living. HTML and regex go
| Reg EX matCh Open tagj except XH TM L Self'contogether like love, marriage, and ritual infanticide. The <center> cannot hold it is too
late. The force of regex and HTML together in the same conceptual space will
destroy your mind like so much watery putty. If you parse HTML with regex you are
giving in to Them and their blasphemous ways which doom us all to inhuman toil for
| need to match all of these opening tags: the One whose Name cannot be expressed in the Basic Multilingual Plane, he
o . omes. HTML-plus-regexp will liquify the nerves of the sentient whilst you observe,
Trying to use regular expressions to

our psyche withering in the onslaught of horror. Regex based HTML parsers are

describe the non-regular HTML language ne cancer that is killing annot be saved

the trangession of a child

Asked 10 years, 10 months ago Active 1 month ag Viewed 2.9m times

1553

<a href="foo"

But not these: survive this scourge using regex to parse HTML y to an eternity
6572 of dread torture and security holes using regex as e
establishes a breach between this world and the dread realm of corrupt entities (like

S - : SGML entities, but more corrupt) a mere glimpse of the world of regex parsers for
| You can't parse [X]HTML with regex. Because HTML can't be parse - Pl gmp : 01 regex p
HTML will instantly transport a programmer’'s consciousness into a world of

Regex is not a tool that can be used to correctly parse HTML. As | h ceaseless screaming, he comes—the-pestilentslithy regex-infection will devour your
44 1 4 HTML-and- -regex questlons here so many times before, the use of re HTML parser, application and existence for all time like Visual Basic only worse he

comes he comes do not fight h , his unholy radiancé destroying all
allow you to consume HTML. Regular expressions are a tool that is “°" ght e comgs, Tis UNiowy ¥ing
enlightenment, HTML tags leakijng feom Jyour eyes/’hke liquid pain, the song of

sophlstlcated to understand the constructs emplDYEd by HTML. HThreguIar expres&en—pamng—wnl extinguish the voices of mortal man from the sphere
I regular language and hence cannot be parsed by regular expressior/ cap see it can you see it n‘ it is beautiful the f inal snuf fing of the lies of Man ALL IS

queries are not equipped to break down HTML into its meaningful ps LOSTALL IS LOST the"pony he comes he comes-he-comes thgjichor,permeaes

all IE*‘IY FACE MY FACE oh god—r{p WOMOOO NO stop the an-_g!‘ S ir‘e not real
times but it is not getting to me. Even enhanced irregular regular eXI 2ALG0 14 ISTOJ\I-y THE < 8%

PONY, Hg oM MES
used by Perl are not up to the task of parsing HTML. You will never 1

IHave you tried using an XML parser instead? I




thstback: DesigNIing DFAS or NFAS oy

* Each state “stores” some information @-.

* E.8, Qo= S€en even # of 15", q.44 = “seen odd # of 1s”.
e Finite states = finite amount of info (must decide in advance)

« SO DFAs can't keep track of an arbitrary count!
« would require infinite states



A Non-Regular Language

An arbitrary count

L={0"1"|1n>0)}

A DFA recognizing L would require infinite states! (impossible)
 States representing zero 0s, one 0, two 0s, ...

* This language represents the essence of many PLs, e.g., HTML!
« To better see this replace:
° HO" Wlth “<tag>“ Or ll(“
* “1"with “</tag>" or )" Still, how do we

: : prove non-regularness?
* The problem Is tracking the nestedness

« Regular languages cannot count arbitrary nesting depths
-« Eg,if { if { if { . } } }
« So most programming language syntax is not regular!




Prove: Ghosts Do Not Exist

It's hard to prove that
something is not true!

In some cases, it's possible,
but typically requires
complicated proof techniques!

So: proving a language is not regular ...
is harder than proving a language is regular




A Lemma About Regular Languages

Pumping lemma If A is a regular language, then ithere is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

1. for each i > 0, xy'z € A,

2. |y| > 0, and Specifically, all regular languages
3. |zy| < p. satisfy these 3 conditions! | -
_ . - Hint: This 1s an
This lemma describes a property “If X then V"
that all regular languages have. e
Note: this lemma only applies to known regular languages! (but maybe it can be
- : used to prove that a
Can we use this to prove that language Is regular? language is not regular!)

NO (but we already know how to do that anyways)




Equivalence of Conditional Statements

* Yes or No? “If Xthen Y” Is equivalent to:

« “If Ythen X" (converse)
e NO!

 “If not X then not Y” (inverse)
* NO!

* “If not Y then not X" (contrapositive)
e Yes!



f-then statement ... then the language is not regular

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

1. for each i > 0, zy'z € A,

2. |y| > 0, and Equivalent (contrapositive):
3. |lzy| < p. If any of these are not true ...

Contrapositive:
“If X then Y” is equivalent to “If not Y then not X"




Logical Inference Rules

Modus Ponens
Premises (known facts)

* [f Pthen Q

* Pis true
Conclusion (new fact)
* QIS true

Modus Tollens (contrapositive)
Premises (known facts)

 [f Pthen Q
* QIS not true
Conclusion (new fact)

e Pis not true



Lemma About Regular Languages: Detalls

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = xyz, satistying the tollowing conditions:

1. for each i > 0, xy'z € A,

2. |y| > 0, and All regular languages satisfy
3. |zy| < p. these three conditions!

Specifically, these conditions apply to
strings in the language of length > p

NOTE:

- Lemma doesn’t give an exact p!

- Just that there i1s some string length p ...

- ... those strings must obey the 3 conditions




Conclusion: pumping
lemma is only interesting
for infinite langs!

The Pumping Lemma: Finite Lan{ (comaining strings witr

repeatable parts)

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

Possible p for finite langs?

1. for each 7 > 0, xyiz € A, Lemma doesn’t say what p is!

Just that thereisap .
2. |y| > 0, and How about: |
p = LENGTH(longest string) + 1
3. |lzyl <p - _ . —
So finite langs (specifically, all strings # strings In the language
in the language “of length at least p”) with length = p? None!

m isfy th onditions - i
ust satisfy these c Therefore, all strings with

o length > p satisfy the pumping
Example: a finite language {“ab”, “cd”} lemma conditions! ©

« All finite langs are regular
e (can easily construct DFA/NFA recognizing them)



The Pumping Lemma, a Closer Look

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be

divided into three pieces, s = zyz, satistying the following conditions:

4 I
1. for each i > 0, 2y’ &€ A;| “pumped” string still in language L .
2. |ly| > 0, and : ‘Ifj‘"-v
(“long enough”) strings of length = p T |
3. |zy| < p. have a repeatable (“pumpable”) part ) l AN

. N
Strings that have a repeatable part can be split into:

e x = part before any repeating This makes sense because DFAs have finite states,
1 n f “ h" .. . h = i
. y = repeated (or oumpable ) part so for “long enough” (i.e., length > p) inputs,

; : some state must repeat
 z = part arter any repeatin
P yrep g e.g, “long enough length” = p = # states +1

(The Pigeonhole Principle)




The Pigeonhole Principle

If # birds > # holes,
then there must be > 1
bird in some hole




The Pumping Lemma, a Closer Look

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

1. foreachi > 0, 2y s-€ A,

4 N
i' y' > 0, and So a substring that can repeat once, i {‘_H‘
. |y < p. can also be repeated any number of times ,
_ Also, this is the only way T N
In essence, the pumping for regular languages to
lemma is a theorem about the repeat (Kleene star) " Y,
structure of repeatable
patterns in regular languages “long enough length” = p = # states +1
(some state must repeat)




The Pumping Lemma: Infinite Languages

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

1. for each i > 0, xy'z € A,

2. |ly| > 0, and “oumpable” part of string £.g, "010" € 4, so pumping

lemma says splittable

3. |$y\ < p. Note: “pumpable” part cannot be empty into three parts xyz
- x=0,y=1,z=0

Example: infinite language A = {“00”,“010”,“0110”,“01110”" ...}

e |t's regular bc it has regular expression 01*0

..and "pumping” (repeating) middle y part
creates a string that is still in the language
- repeatonce (i=1): “010%

- repeat twice (i =2): “0110”,

- repeat three times (i = 3): “01110”




Summary: The Pumping Lemma ...

. ... states properties that are true for all regular languages
. ... specifically, properties about repetition in_regular languages

IMPORTANT:
« The Pumping Lemma cannot prove that a language is regular!

« But ... we can use it to prove that a language is not regular



f-then statement ... then the language is not regular

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

1. for each i > 0, zy'z € A,

2. |y| > 0, and Equivalent (contrapositive):
3. |lzy| < p. If any of these are not true ...

Contrapositive:
“If X then Y” is equivalent to “If not Y then not X"




Kinds of Mathematical Proof

« Deductive Proof
 Logically infer conclusion from known definitions and assumptions

 Proof by induction
« Use to prove properties of recursive definitions or functions

* Proof by contradiction (===

* Proving the contrapositive

356



How To Do Proof By Contradiction

3 easy steps:
1. Assume the opposite of the statement to prove

2. Show that the assumption leads to a contradiction

3. Conclude that the original statement must be true




Pumping Lemma: Non-Regularity Example

Let B be the language {0"1"|n > 0}. We use the pumping lemma to prove that
B 1s not regular. The proof is by contradiction.



Pumping lemma - If A is a regular language, then there is a number p (the

Wa nt tO D rove: On 111 iS I'IOt d regu la r l.a ngU age pumping length) where if s is any string in A of length at least p, then s may be

divided into three pieces, s = zyz, satisfying the following conditions:

1. for each i > 0, zy'z € A,
2. |y| >0, and
3. |zy| <p.

Reminder: Pumping lemma says:

1t . . _— all strings 071" > length p are
Proof (by contradiction): | Nowwe must find a contradiction ... splittable into xyz where y is pumpable

° Assume: Onln is ad regu lar language So find string > length p that is not

- G s satisfy the pumping lemma splittable into xyz where y is pumpable
 |.e, all strings > length p are pumpable

« Counterexample = 0717




... then not true Pumping lemma - If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = xyz, satisfying the following conditions:

1. for each i > 0, zy'z € A,
Contrapositive: If not true ..

2. |y| >0, and
3. |zy| <p.

Reminder: Pumping lemma says:
all strings 071" > length p are

splittable into xyz where y is pumpable

Possible Split: y = all 0s
So find string > length p that is not
splittable into xyz where y is pumpable
BUT ... pumping

Want to prove: 0"1” is not a regular language

p 1s

lemma requires
only one pumpable
splitting

Proof (by contradiction):

e Assume: 071" is a regular language

So It must satisfy the pumping lemma

l.e., all strings > length p are pumpable p 0s
\ l _

So the proof is not

§/ + Counterexample = 0P1P
* Choose xyz split so y contains:
« all 0s |
done!
X Yy Z
Is there another way
« Pumping y: produces a string with more 0s than 1s to split into xyz ?

e ... not in the language 071"

 So 0r17Pis not pumpable (according to pumping lemma)
So 0m1" is a not regular language (contrapositive)

 This is a contradiction of the assumption!




Want to prove: 071" is not a regular language

Possible Split: y = all 1s

Proof (by contradiction):
 Assume: 071" is a regular language

« So It must satisfy the pumping lemma
* |.e, all strings > length p are pumpable p 0s p 1s

« Counterexample = 0717
00..011..1

« Choose xyz split so y contains:
e all 1s |
X y Z
. . Is there another way
* |s this string pumpable? to split into xyz ?
* No!

« By the same reasoning as in the previous slide




Want to prove: 071" is not a regular language

Possible Split: y= 0s and 1s

Proof (by contradiction):
 Assume: 071" is a regular language

« So It must satisfy the pumping lemma
* |.e, all strings > length p are pumpable p 0s p 1s

« Counterexample = 0,17
) . O O O 1 1 1 Did we examine
» Choose xyz split so y contains: e [ every possible

* both Os and 1s | splitting?

X Y Z Yes! QED

e |s this string pumpable?
* No!
* Pumped string will have equal 0s and 1s

But maybe we
did’t have to ...

« But they will be in the wrong order: so there is still a contradiction!




The Pumping Lemma: Condition 3

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistfying the following conditions:

1. for each i > 0, xy'z € A,

2. |y| > 0, and

3. lzy| < p. p0s

The repeating party ... \OO (),11 1

must be in the first p characters! Y

y must be in here!




The Pumping Lemma: Pumping Down

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistfying the following conditions:

1. for each i > 0, 2y'z € A,

2. |y| > 0, and

3. |zy| < p.

Repeating part y must be non-empty ...
but can be repeated zero times!

Example: L = {01 |i>]}




Want to prove: L = {01/ | i >} is not a regular language
Pumping Down

Proof (by contradiction):
 Assume: L is a regular language
* S0 It must satisfy the pumping lemma
l.e., all strings > length p are pumpable p+1 0s p 1s

e Counterexample = 0P*11°
00..011...1

\_Y_l

C .

« Choose xyz split so y contains:
e all 0s
« (Only possibility, by condition 3)
X Yy

Z
 Repeat y zero times (pump down): produces string with # 0s < # 1s

« ... not in the language {0’V | i >}
« S0 {0V | i>j}does not satisfy the pumping lemma

e So Itis a not regular language
« This is a contradiction of the assumption!




Newt 7ine /a/(c/ rest af the Semester /

« If a language is not regular, then what is it?

* There are many more classes of languages!

Turing-recognizable

decidable

context-free



Check-in Quiz 10/11

On gradescope



