UMB CS 420 Context-Free Languages (CFLs)

Thursday, October 13, 2022

Announcements

- HW 4
 - due Sun 10/16 11:59pm EST

Last Time:

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- **1.** for each $i \ge 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \le p$.

Let B be the language $\{0^n 1^n | n \ge 0\}$. We use the pumping lemma to prove that B is not regular. The proof is by contradiction.

- <u>Assume:</u> language *B* is regular
- So it <u>must follow the Pumping Lemma</u>:
 - All strings \geq length $p \dots$
 - ... can be split into some xyz ... where y is "pumpable"
- Find **counterexample** where Pumping Lemma does not hold: 0^p1^p
 - Must show string cannot be pumped no matter how it's split
 - Use pumping lemma condition #3 to help
- Therefore, B is not regular
 - (This is the contrapositive of the Pumping Lemma)
- This is a contradiction of the assumption!

Last Time:

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- 1. for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \le p$.

Let B be the language $\{0^n 1^n | n \ge 0\}$. We use the pumping lemma to prove that B is not regular. The proof is by contradiction.

If this language is not regular, then what is it???

Maybe? ... a context-free language (CFL)?

A Context-Free Grammar (CFG)

A Context-Free Grammar (CFG)

Definition:

A CFG describes a context-free language!

Substitution rules (a.k.a., **productions**)

terminals (analogous to a DFA's alphabet)

A context-free grammar is a 4-tuple (V, Σ, R, S) , where

- 1. V is a finite set called the variables,
- **2.** Σ is a finite set, disjoint from V, called the *terminals*,
- 3. R is a finite set of *rules*, with each rule being a variable and a string of variables and terminals, and
- **4.** $S \in V$ is the start variable.

$$V = \{A, B\},\$$

$$\Sigma = \{0, 1, \#\},$$

$$S = A$$

Analogies

Regular Language	Context-Free Language (CFL)
Regular Expression	Context-Free Grammar (CFG)
A Reg Expr <u>describes</u> a Regular lang	A CFG <u>describes</u> a CFL
	CFC Dractical Applications
	CFG <u>Practical Application</u> : Used to describe <u>programming</u>
	language syntax!

Java Syntax: Described with CFGs

Java SE > Java SE Specifications > Java Language Specification

Chapter 2. Grammars

<u>Prev</u>

Chapter 2. Grammars

This chapter describes the context-free grammars used in this specification to define the lexical and syntactic structure of a program

2.1. Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a nonterminal as its left hand side, and a sequence of one or more nonterminal and terminal symbols are drawn from a specified alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, called the *goal symbol*, a given context-free grammar specifies a language, namely, the set of possible sequences of terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-hand side of a production for which the nonterminal is the left-hand side.

2.2. The Lexical Grammar

A *lexical grammar* for the Java programming language is given in §3. This grammar has as its terminal symbols the characters of the Unicode character set. It defines a set of productions, starting from the goal symbol *Input* (§3.5), that describe how sequences of Unicode characters (§3.1) are translated into a sequence of input elements (§3.5).

(partially)

Python Syntax: Described with a CFG

10. Full Grammar specification

This is the full Python grammar, as it is read by the parser generator and used to parse Python source files:

```
# Grammar for Python
                                                                   (indentation checking
# NOTE WELL: You should also follow all the steps listed at
                                                                         probably not
# https://devguide.python.org/grammar/
                                                                  describable with a CFG)
# Start symbols for the grammar:
       single input is a single interactive statement;
       file_input is a module or sequence of commands read from an input file;
       eval input is the input for the eval() functions.
       func type input is a PEP 484 Python 2 function type comment
# NB: compound stmt in single input is followed by extra NEWLINE!
# NB: due to the way TYPE COMMENT is tokenized it will always be followed by a NEWLINE
single input: NEWLINE | simple stmt | compound stmt NEWLINE
file input: (NEWLINE | stmt)* ENDMARKER
eval input: testlist NEWLINE* ENDMARKER
```

Many Other Language (partially) Python Syntax: Described with a CFG

10. Full Grammar specification

This is the full Python grammar, as it is read by the parser generator and used to parse Python source files:

```
# Grammar for Python

# NOTE WELL: You should also follow all the steps listed at
# https://devguide.python.org/grammar/

# Start symbols for the grammar:
# single_input is a single interactive statement;
# file_input is a module or sequence of commands read from an input file;
# eval_input is the input for the eval() functions.
# func_type_input is a PEP 484 Python 2 function type comment
# NB: compound_stmt in single_input is followed by extra NEWLINE!
# NB: due to the way TYPE_COMMENT is tokenized it will always be followed by a NEWLINE
single_input: NEWLINE | simple_stmt | compound_stmt NEWLINE
file_input: (NEWLINE | stmt)* ENDMARKER
eval_input: testlist NEWLINE* ENDMARKER
```

Generating Strings with a CFG

 $G_1 = \\ \text{1st rule} \qquad A \rightarrow 0A1 \\ A \rightarrow B \\ B \rightarrow \text{\#}$

"Applying a rule" = replace LHS variable with RHS

At each step, can choose any variable to replace, and any rule to apply

Definition:

A CFG describes a context-free language!

Strings in CFG's language = all possible generated strings

$$L(G_1)$$
 is $\{0^n \# 1^n | n \ge 0\}$

Stop when string is all terminals

A CFG generates a string, by repeatedly applying substitution rules:

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000#111$$

Start variable

After applying 1st rule

1st rule again

1st rule again

Use 2nd rule

Use last rule

Derivations: Formally

A *context-free grammar* is a 4-tuple (V, Σ, R, S) , where

- 1. V is a finite set called the variables,
- **2.** Σ is a finite set, disjoint from V, called the *terminals*,
- **3.** *R* is a finite set of *rules*, with each rule being a variable and a string of variables and terminals, and
- **4.** $S \in V$ is the start variable.

Let $G = (V, \Sigma, R, S)$ Single-step

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$

Where:

$$\alpha,\beta\in (V\cup\Sigma)^*\text{--Strings of terminals}$$
 and variables
$$A\in V\text{--Variable}$$

$$A\to\gamma\in R\text{--Rule}$$

Extended Derivation

Base case: $\alpha \stackrel{*}{\Rightarrow} \alpha$ (0 steps)

Recursive case: (multistep)

• If $\alpha \underset{G}{\Rightarrow} \beta$ and $\beta \underset{G}{\overset{*}{\Rightarrow}} \gamma$ Single step

Recursive call

• Then: $\alpha \stackrel{*}{\underset{G}{\Rightarrow}} \gamma$

Formal Definition of a CFL

A *context-free grammar* is a 4-tuple (V, Σ, R, S) , where

- 1. V is a finite set called the *variables*,
- **2.** Σ is a finite set, disjoint from V, called the *terminals*,
- **3.** *R* is a finite set of *rules*, with each rule being a variable and a string of variables and terminals, and
- **4.** $S \in V$ is the start variable.

$$G = (V, \Sigma, R, S)$$

$$L(G) = \left\{ w \in \Sigma^* \mid S \underset{G}{\overset{*}{\Rightarrow}} w \right\}$$

Any language that can be generated by some context-free grammar is called a *context-free language*

Flashback:
$$\{0^n1^n | n \geq 0\}$$

- Pumping Lemma says it's not a regular language
- It's a context-free language!
 - Proof?
 - Come up with CFG describing it ...
 - Hint: It's similar to:

$$A o 0A$$
1
$$A o B \qquad L(G_1) \text{ is } \{0^n \sharp 1^n | n \ge 0\}$$

$$B o \sharp \ \mathcal{E}$$

A String Can Have Multiple Derivations

```
\langle \text{EXPR} \rangle \rightarrow \langle \text{EXPR} \rangle + \langle \text{TERM} \rangle \mid \langle \text{TERM} \rangle
\langle \text{TERM} \rangle \rightarrow \langle \text{TERM} \rangle \times \langle \text{FACTOR} \rangle \mid \langle \text{FACTOR} \rangle
\langle \text{FACTOR} \rangle \rightarrow (\langle \text{EXPR} \rangle) \mid \text{a}
```

Want to generate this string: a + a × a

- EXPR \Rightarrow
- EXPR + $\underline{\text{TERM}} \Rightarrow$
- EXPR + TERM \times <u>FACTOR</u> \Rightarrow
- EXPR + TERM \times a \Rightarrow

• • •

- $EXPR \Rightarrow$
- EXPR + TERM \Rightarrow
- $\underline{\text{TERM}}$ + $\underline{\text{TERM}}$ \Rightarrow
- FACTOR + TERM \Rightarrow
- **a** + TERM

•••

LEFTMOST DERIVATION

Derivations and Parse Trees

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000#111$$

A derivation may also be represented as a parse tree

Multiple Derivations, Single Parse Tree

Leftmost deriviation

- <u>EXPR</u> =>
- EXPR + TERM =>
- $\underline{\text{TERM}} + \text{TERM} =>$
- FACTOR + TERM =>
- a + TERM

• • •

Since the "meaning" (i.e., parse tree) is same, by convention we just use **leftmost** derivation

Same parse tree

Rightmost deriviation

• <u>EXPR</u> =>

- EXPR + $\underline{\text{TERM}} = >$
- EXPR + TERM x <u>FACTOR</u> =>
- EXPR + TERM x a = >

A Parse Tree gives "meaning" to a string

Ambiguity grammar G_5 :

$$\langle \text{EXPR} \rangle \rightarrow \langle \text{EXPR} \rangle + \langle \text{EXPR} \rangle \mid \langle \text{EXPR} \rangle \times \langle \text{EXPR} \rangle \mid (\langle \text{EXPR} \rangle) \mid a$$

Same **string**, different **derivation**, and different **parse tree!**

Ambiguity

A string w is derived *ambiguously* in context-free grammar G if it has two or more different leftmost derivations. Grammar G is *ambiguous* if it generates some string ambiguously.

An ambiguous grammar can give a string multiple meanings! (why is this bad?)

Real-life Ambiguity ("Dangling" else)

What is the result of this C program?

```
if (1) if (0) printf("a"); else printf("2");

if (1)
   if (0)
    printf("a");
   else
       printf("a");
   else
       printf("2");

       printf("2");
```

This string has <u>2</u> parsings, and thus <u>2 meanings!</u>

Ambiguous grammars are confusing. In a (programming) language, a string (program) should have only one meaning (result).

Problem is, there's no guaranteed way to create an unambiguous grammar (it's up to language designers to "be careful")

Designing Grammars: Basics

- 1. Think about what you want to "link" together
- E.g., $0^n 1^n$
 - $A \rightarrow 0A1$
 - # 0s and # 1s are "linked"
- E.g., **XML**
 - ELEMENT \rightarrow <TAG>CONTENT</TAG>
 - Start and end tags are "linked"
- 2. Start with small grammars and then combine (just like FSMs)

Designing Grammars: Building Up

- Start with small grammars and then combine (just like FSMs)
 - To create a grammar for the language $\{0^n1^n | n \ge 0\} \cup \{1^n0^n | n \ge 0\}$
 - First create grammar for lang $\{0^n 1^n | n \geq 0\}$: $S_1 o 0 S_1 1 | arepsilon$
 - Then create grammar for lang $\{1^n0^n|\ n\geq 0\}$:

$$S_2 \rightarrow 1S_2 0 \mid \varepsilon$$

• Then combine: $S o S_1 \mid S_2$ \subset $S_1 o 0S_1 1 \mid arepsilon$ $S_2 o 1S_2 0 \mid arepsilon$

New start variable and rule combines two smaller grammars

"|" = "or" = union (combines 2 rules with same left side)

Closed Operations on CFLs

• Start with small grammars and then combine (just like FSMs)

• "Or":
$$S \rightarrow S_1 \mid S_2$$

- "Concatenate": $S oup S_1 S_2$
- "Repetition": $S' o S'S_1 \mid arepsilon$

<u>In-class Example</u>: Designing grammars

```
alphabet \Sigma is \{0,1\}
```

 $\{w | w \text{ starts and ends with the same symbol}\}$

•
$$S \to 0C'0 | 1C'1 | \epsilon$$

"string starts/ends with same symbol, middle can be anything"

•
$$C' \rightarrow C'C \mid \epsilon$$

"middle: all possible terminals, repeated (ie, all possible strings)"

• *C* → 0 | 1

"all possible terminals"

Next Time:

Regular Languages	Context-Free Languages (CFLs)
Regular Expression	Context-Free Grammar (CFG)
A Reg Expr <u>describes</u> a Regular Lang	A CFG <u>describes</u> a CFL
Finite Automaton (FSM)	???
An FSM <u>recognizes</u> a Regular Lang	A ??? <u>recognizes</u> a CFL

Next Time:

Regular Languages	Context-Free Languages (CFLs)
Regular Expression	Context-Free Grammar (CFG)
A Reg Expr <u>describes</u> a Regular Lang	A CFG <u>describes</u> a CFL
Finite Automaton (FSM)	Push-down Automaton (PDA)
An FSM <u>recognizes</u> a Regular Lang	A PDA <u>recognizes</u> a CFL

Next Time:

Regular Languages	Context-Free Languages (CFLs)
Regular Expression	Context-Free Grammar (CFG)
A Reg Expr <u>describes</u> a Regular Lang	A CFG <u>describes</u> a CFL
Finite Automaton (FSM)	Push-down Automaton (PDA)
An FSM <u>recognizes</u> a Regular Lang	A PDA <u>recognizes</u> a CFL
<u>DIFFERENCE</u> :	<u>DIFFERENCE</u> :
A Regular Lang is <u>defined</u> with a FSM	A CFL is <u>defined</u> with a CFG
Proved: Reg Expr ⇔ Reg Lang	Must prove: PDA ⇔ CFL

Check-in Quiz 10/13

On gradescope