UMB CS 420 Pushdown Automata (PDAs)

Tuesday, October 18, 2022

Announcements

- HW 4 in
 - Due Sun 10/16 11:59pm EST
- HW 5 out
 - Due Sun 10/23 11:59pm EST

- Reminder: Sean's Office Hours Monday in-person
 - McCormack 3rd floor 0139

HW2 Review

- Q' = Q
- $q'_{start} = q_{start}$
- F' = F
- $\delta'(q, a) = \{ \delta(q, a) \}$ • $\forall q \in Q, a \in \Sigma$
- $\delta'(q, \varepsilon) = \{ \}$ • $\forall q \in Q$

3. Come up with a procedure **DFA**→**NFA** that converts DFAs to equivalent NFAs.

This means that given some DFA $M=(Q,\Sigma,\delta,q_{start},F)$ that satisfies the formal definition of DFAs from class, $\mathbf{DFA} \rightarrow \mathbf{NFA}(M)$ should produce some equivalent NFA $N=(Q',\Sigma,\delta',q'_{start},F')$ that satisfies the formal definition of NFAs.

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set called the *states*,
- **2.** Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- 2. Σ is a finite alphabet,
- **3.** $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

HW2 Review

Proof:

Statement

- 1. Assume *B* and *C* are reg langs
- 2. DFA *M* recognizes *OP*(*B*, *C*)
- 3. OP(B, C) is a regular language
- 4. OP is closed for reg languages: i.e., if some B, C are reg langs, then OP(B, C) is a reg lang

3 Proving a Closed Operation For Regular Languages

Define the following operation, called OP, on languages:

$$OP(B,C) = \{x \mid x \notin B \text{ or } x \notin C\}$$

Prove that OP is closed for regular languages.

Make sure your answer is in the form of a "Statements and Justifications" table, as explained in lecture (and also Hopcroft Chapter 1).

Justification

- 1. Given, from def of closed operation
- 2. See *M* construction
- 3. (2) and Def of regular language
- 4. From (1) and (3)

(saying "modus ponens" is not a valid justification)

HW2 Review

Proof:

Statement

- 1. Assume *B* and *C* are reg langs
 - a) Let $M_B = B$ lang DFA
 - b) Let M_B ' recognize $\{x \mid x \notin B\}$
 - c) Repeat for $M_C = C$ lang DFA

2. DFA *M* recognizes *OP*(*B*, *C*)

3 Proving a Closed Operation For Regular Languages

Define the following operation, called OP, on languages:

$$OP(B,C) = \{x \mid x \notin B \text{ or } x \notin C\}$$

Prove that OP is closed for regular languages.

Make sure your answer is in the form of a "Statements and Justifications" table, as explained in lecture (and also Hopcroft Chapter 1).

Justification

- 1. Given, from def of closed operation
 - a) Def of reg lang
 - b) construct M_B :
 flip accept/non-accept states in M_B

2. See *M* construction

Last Time: Generating Strings with a CFG

$$G_1 = \\ A \rightarrow 0A\mathbf{1} \\ A \rightarrow B \\ B \rightarrow \mathbf{\#}$$

A CFG represents a context free language!

Strings in CFG's language = all possible generated strings

$$L(G_1)$$
 is $\{0^n \# 1^n | n \ge 0\}$

Stop when string is all terminals

A CFG generates a string, by repeatedly applying substitution rules:

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000#111$$

Start variable

Last Time:

Regular Languages	Context-Free Languages (CFLs)
Regular Expression	Context-Free Grammar (CFG)
A Reg Expr <u>describes</u> a Regular lang	A CFG <u>describes</u> a CFL

Today:

Regular Languages	Context-Free Languages (CFLs)	
Regular Expression	Context-Free Grammar (CFG)	
A Reg Expr <u>describes</u> a Regular lang	A CFG <u>describes</u> a CFL	
TODAY:		
Finite Automaton (FSM)	Push-down automaton (PDA)	
An FSM <u>recognizes</u> a Regular lang	A PDA <u>recognizes</u> a CFL	

Today:

Regular Languages	Context-Free Languages (CFLs)	
Regular Expression	Context-Free Grammar (CFG)	
A Reg Expr <u>describes</u> a Regular lang	A CFG <u>describes</u> a CFL	
<u>TODAY:</u>		
Finite Automaton (FSM)	Push-down automaton (PDA)	
An FSM <u>recognizes</u> a Regular lang	A PDA <u>recognizes</u> a CFL	
KEY <u>DIFFERENCE</u> :		
A Regular lang is <u>defined</u> with a FSM	A CFL is <u>defined</u> with a CFG	
Must prove: Reg Expr ⇔ Reg lang	<i>Must prove</i> : PDA ⇔ CFL	

Pushdown Automata (PDA)

PDA = NFA + a <u>stack</u>

What is a Stack?

- A <u>restricted</u> kind of (infinite) memory
- Access to top element only
- 2 Operations only: push, pop

Pushdown Automata (PDA)

- PDA = NFA + a stack
 - Infinite memory
 - Can only read/write top location
 - Push/pop

 $\{0^n \mathbf{1}^n | n \ge 0\}$

An Example PDA

\$ = special symbol, indicating empty stack

Can only pop this (and accept)
when stack is empty,
i.e., when # 0s matches # 1s

Formal Definition of PDA

A **pushdown automaton** is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ , Γ , and F are all finite sets, and

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet,
- 3. Γ is the stack alphabet,

Stack alphabet can have special stack symbols, e.g., \$

- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,
- 5. $q_0 \in (Input \ Pop art state, and Push$
- **6.** $F \subseteq Q$ is the set of accept states.

Non-deterministic: produces a **set** of (STATE, STACK CHAR) pairs

$$Q = \{q_1, q_2, q_3, q_4\},\$$

PDA Formal (b) efinition Example

$$F = \{q_1, q_4\},\$$

A **pushdown automaton** is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ , Γ , and F are all finite sets, and

1. Q is the set of states,

Input

- 2. Σ is the input alphabet, Pop Push
- 3. Γ is the stack alphabet,
- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,
- **5.** $q_0 \in Q$ is the start state, and
- **6.** $F \subseteq Q$ is the set of accept states.

$$Q = \{q_1, q_2, q_3, q_4\},$$

 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\},$ and

$$Q = \{q_1, q_2, q_3, q_4\},$$
 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\},$ and

$$Q = \{q_1, q_2, q_3, q_4\},$$

 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\},$ and

$$Q = \{q_1, q_2, q_3, q_4\},$$

 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\},$ and

$$Q = \{q_1, q_2, q_3, q_4\},$$

 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\},$ and

<u>In-class exercise</u>:

Fill in the blanks

$$Q =$$

$$\Sigma =$$

$$\Gamma =$$

$$F =$$

In-class exercise:

Fill in the blanks

arepsilon,\$ightarrow arepsilon

$$Q = \{q_1, q_2, q_3, q_4\},\$$

$$\Sigma = \{0,1\},$$

$$\Gamma = \{0,1,\$\},$$

$$F = \{q_4\}$$

 δ is given by the following table, wherein blank entries signify \emptyset .

Input

Pop

State/

Push

 ε

Flashback: DFA Computation Model

Informally

- "Program" = a finite automata
- Input = string of chars, e.g. "1101"

To run a "program":

- Start in "start state"
- Repeat:
 - Read 1 char;
 - <u>Change</u> state according to the <u>transition</u> table
- Result =
 - "Accept" if last state is "Accept" state
 - "Reject" otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

- $r_0 = q_0$
- $r_i = \delta(r_{i-1}, w_i)$, for i = 1, ..., n

• M accepts w if

sequence of states r_0, r_1, \ldots, r_n in Q exists \ldots

A sequence of states represents a DFA computation

PDA Configurations (IDs)

• A configuration (or ID) is a "snapshot" of a PDA's computation

3 components (q, w, γ):
 q = the current state
 w = the remaining input string
 γ = the stack contents

• A sequence of configurations represents a PDA computation

Flashback: A DFA Extended Transition Fn

Define **extended transition function**:

 $\hat{\delta}: Q \times \Sigma^* \to Q$

- Domain:
 - Beginning state $q \in Q$ (not necessarily the start state)
 - Input string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range:
 - Ending state (not necessarily an accept state)

This specifies the **sequence of states** representing a DFA computation

(Defined recursively)

Empty string

• Base case: $\hat{\delta}(q,\varepsilon)=q$ nonEmpty string First char

Remaining chars ("smaller argument")

• Recursive case: $\hat{\delta}(q,w) = \hat{\delta}(\delta(q,w_1),w_2\cdots w_n)$

Recursive ca

Single transition step

PDA Computation, Formally

$$P = (Q, \Sigma, \Gamma, \delta, q_0, F)$$

Single-step

Extended

Base Case

$$I \stackrel{*}{\vdash} I$$
 for any ID I

Recursive Case

$$I \stackrel{*}{\vdash} J$$
 if there exists some ID K such that $I \vdash K$ and $K \stackrel{*}{\vdash} J$

A **configuration** (q, w, γ) has three components

q = the current state

w = the remaining input string

γ = the stack contents

Flashback: Computation and Languages

The language of a machine is the set of all strings that it accepts

• E.g., An **FSM** \emph{M} accepts \emph{w} if $\hat{\delta}(q_0, w) \in F$

• Language of $M = L(M) = \{ w \mid M \text{ accepts } w \}$

Language of a PDA

$$P = (Q, \Sigma, \Gamma, \delta, q_0, F)$$

A **configuration** (q, w, γ) has three components

q =the current state

w = the remaining input string

 γ = the stack contents

Pushdown Automata (PDA)

- PDA = NFA + a stack
 - Infinite memory
 - Can only read/write top location: Push/pop
- Want to prove: PDAs represent CFLs!

- We know: a CFL, by definition, is a language that is generated by a CFG
- Need to show: PDA ⇔ CFG
- Then, to prove that a language is a CFL, we can either:
 - Create a CFG, or
 - Create a PDA

A lang is a CFL iff some PDA recognizes it

- ⇒ If a language is a CFL, then a PDA recognizes it
 - (Easier)
 - We know: A CFL has a CFG describing it (definition of CFL)
 - Must show: the CFG has an equivalent PDA
- ← If a PDA recognizes a language, then it's a CFL

Shorthand: Multi-Symbol Stack Pushes

Note the <u>reverse</u> order of pushes

CFG→PDA (sketch)

- Construct a PDA from CFG such that:
 - PDA accepts input string only if the CFG can generate that string
- Intuitively, PDA will <u>nondeterministically</u> try all rules

CFG→PDA (sketch)

- Construct a PDA from CFG such that:
 - PDA accepts input string only if the CFG can generate that string

• Intuitively, PDA will <u>nondeterministically</u> try all rules

Example Derivation using CFG:

 $S \Rightarrow \mathbf{a} T \mathbf{b}$ (using rule $S \rightarrow \mathbf{a} T \mathbf{b}$)

 $S \Rightarrow \mathbf{a}T\mathbf{b}$ (using rule $S \to \mathbf{a}T\mathbf{b}$)

 \Rightarrow **a**T**ab** (using rule $T \rightarrow T$ **a**)

 \Rightarrow **aab** (using rule $T \rightarrow \varepsilon$)

 $q_{\rm accept}$

 \Rightarrow **a** Tab (using rule $T \rightarrow Ta$)

A lang is a CFL iff some PDA recognizes it

- $| \checkmark | \Rightarrow | \text{If a language is a CFL, then a PDA recognizes it} |$
 - Convert CFG→PDA

- ← If a PDA recognizes a language, then it's a CFL
 - (Harder)
 - Must Show: PDA has an equivalent CFG

PDA→CFG: Prelims

Before converting PDA to CFG, modify it so:

- 1. It has a single accept state, q_{accept} .
- 2. It empties its stack before accepting.
- **3.** Each transition either pushes a symbol onto the stack (a *push* move) or pops one off the stack (a *pop* move), but it does not do both at the same time.

Important:

This doesn't change the language recognized by the PDA

$PDA P \rightarrow CFG G$: Variables

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

- Want: if P goes from state p to q reading input x, then some A_{pq} generates x
- So: For every pair of states p, q in P, add variable A_{pq} to G
- Then: connect the variables together by,
 - Add rules: $A_{pq} \rightarrow A_{pr}A_{rq}$, for each state r
 - These rules allow grammar to simulate every possible transition
 - (We haven't added input read/generated terminals yet)
- To add terminals: pair up stack pushes and pops (essence of a CFL)05

PDA P -> CFG G: Generating Strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of a CFL)

```
if \delta(p, a, \varepsilon) contains (r, u) and \delta(s, b, u) contains (q, \varepsilon),
```

put the rule $A_{pq} \rightarrow aA_{rs}b$ in G

PDA P -> CFG G: Generating Strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of a CFL)

if $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

put the rule $A_{pq} \rightarrow aA_{rs}b$ in G

PDA P -> CFG G: Generating Strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of a CFL)

if $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

put the rule $A_{pq} \rightarrow a A_{rs} b$ in G

A language is a CFL \Leftrightarrow A PDA recognizes it

- $| \longrightarrow |$ If a language is a CFL, then a PDA recognizes it
 - Convert CFG→PDA

- ✓ ← If a PDA recognizes a language, then it's a CFL
 - Convert PDA→CFG

Check-in Quiz 10/18

On Gradescope