UMB CS 420

Pushdown Automata (PDAs)

Tuesday, October 18, 2022

?I 10™ ANNUA EF
aEIpOSIUM ON

. (e

")
: ,th.qr

GRAMMAR!

%)g

%/{/{0«/{0@#{@/{&?

 HW 4 In
+ Pye-Sur-16416-11:59pmEST

* HW 5 out
* Due Sun 10/23 11:59pm EST

« Reminder: Sean’s Office Hours Monday in-person
e McCormack 3" floor 0139

HW2 Review

Q=0

q,start = qstart

F=F

6'(q,a)={06(q, a)}
*Vge(aeX

6'(q,€) =1}

*Vqged(Q

3. Come up with a procedure DFA—NFA that converts DFAs to equivalent NFAs.

This means that given some DFA M = (Q, 3,0, Qstart s F) that satisfies the formal
definition of DFAs from class, DFA—NFA(M) should produce some equivalent NFA
N =(Q', 2,8, g, F') that satisfies the formal definition of NFAs.

A finite automaton is a 5-tuple (Q, X, 4, qo, F'), where

1. Q) is a finite set called the szates,

2. ¥ is a finite set called the alphabet,

3. §: Q x ¥—(Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

¥

A nondeterministic finite automaton
is a S-tuple (Q, %, 4, qo, F), where

1. @ is a finite set of states,

2. ¥ is a finite alphabet,

3. 0: @ x X.—P(Q) is the transition function,
4. gy € @ is the start state, and

5. F C Q is the set of accept states.

HW2 Review

Proof:

Statement
1. Assume B and C are reg langs

2. DFA M recognizes OP(B, ()

3. OP(B,(C)is aregular language

4. |OPIs closed for reg languages:

3 Proving a Closed Operation For Regular Languages

Define the following operation, called OP, on languages:
OP(B,C)={z |z ¢ Borz & C}

Prove that OP is closed for regular languages.

Make sure your answer is in the form of a "Statements and Justifications" table, as
explained in lecture (and also Hopcroft Chapter 1).

Justification
1. Given, from def of closed operation

2. See M construction
3. (2) and Def of regular language

4. From (1) and (3)

(saying “modus ponens” is not a valid justification)

HW2 Review

Proof:

Statement

1.

Assume B and C are reg langs
a) Let M, =B lang DFA
b) Let M, recognize {x|x¢ B}

c) Repeatfor M.=Clang DFA

DFA M recognizes OP(B, C)

3 Proving a Closed Operation For Regular Languages

Define the following operation, called OP, on languages:
OP(B,C)={z |z ¢ Borz & C}

Prove that OP is closed for regular languages.

Make sure your answer is in the form of a "Statements and Justifications" table, as
explained in lecture (and also Hopcroft Chapter 1).

Justification

1. Given, from def of closed operation
a) Defofreglang

b) construct My :
flip accept/non-accept states in M,

2. See M construction

51

last Tire: GENeErating Strings with a CFG

A CFG represents a
context free language!
Gl —_

Strings in CFG’s language
A — 041 = all possible generated strings
A— B
B — #

L(Gy) 1s {0"#1"|n > 0}

Stop when string is all terminals

A CFG generates a string, by repeatedly applying substitution rules:
A= 0A1 = 00A11 = 000A111 = 0008111 = 000#111

Start variable

Last [ine.
Regular Languages Context-Free Languages (CFLs)

Regular Expression Context-Free Grammar (CFG)
A Reg Expr describes a Regular lang A CFG describes a CFL

56

aday:

Regular Languages Context-Free Languages (CFLs)

Regular Expression Context-Free Grammar (CFG)
A Reg Expr describes a Regular lang A CFG describes a CFL
TODAY:
Finite Automaton (FSM) Push-down automaton (PDA)

An FSM recognizes a Regular lang A PDA recognizes a CFL

57

aday:

Regular Languages Context-Free Languages (CFLs)

Regular Expression Context-Free Grammar (CFG)

A Reg Expr describes a Regular lang A CFG describes a CFL
TODAY:

Finite Automaton (FSM) Push-down automaton (PDA)

An FSM recognizes a Regular lang A PDA recognizes a CFL
KEY DIFFERENCE:
A Regular lang is defined with a FSM A CFL is defined with a CFG

Must prove: Reg Expr < Reg lang Must prove: PDA < CFL

58

Pushdown Automata (PDA)

PDA = NFA + a stack

NFA-like
states

J

stack

%N%ﬂ«—'
W
pJ

Input

What I1s a Stack?

» A restricted kind of (infinite) memory
* Access to top element only
» 2 Operations only: push, pop

o \ Last In - First Out /

Push / Pop

Data Element

Data Element

Data Element

Stack Stack

Pushdown Automata (PDA)

* PDA = NFA + a stack
e Infinite memory

NFA-like
states

J

 Can only read/write top location
 Push/pop

stack

%N%N‘—I
(v
[V

input

An Example PDA | insicangens

No

Read| no
: Push | | Read
input Pop

{0™1"| n > 0}

mbol,
ty stack

No
0 || Pop | | Push 0

0,€—0 (and repeat)

,E —

Read 1 1,0

Pop 0
— & No Push

1,0— &/ (and repeat)
-l:
€,$—¢€

Can only pop this (and accept)
when stack is empty,
l.e.,, when # 0s matches # 1s

Formal Definition of PDA

A pushdown automaton is a 6-tuple (Q, 3,1, 9, qo, I'), where Q, %,
I, and F are all finite sets, and

1. @ is the set of states,
2. ¥ is the input alphabet,
3. T iS the StﬂCk alphabet, Stack alphabet can have special stack symbols, e.g, $

4. 6: Q x Y. x I.—P(Q x I.) 1s the transition function,

5. qdo € (| Input N(Pop A1t state, al‘ld Push
6. F' C (is the set of accept states.

Non-deterministic: produces a set
of (STATE, STACK CHAR) pairs

Q = {a1, 92,43, 94},
PDA Formgl fefinition Example

F = {QI7 qfl}a

Input | Pop | Push
0,€—0 A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,

€,€ 239 >((2 ', and F are all finite sets, and

1. @ is the set of states,

1,03€ Input z Y. is the input alphabet, Pop —_—

I is the stack alphabet,
1,0—¢€ 4. 5: Q X X x T P(Q x T¢) is the transition function,
e $¢c q3 Z qo € Q is the start state, and

. F' C Q is the set of accept states.

Q ={q1,92,93,9},
% ={0,1},
['={0,$},

F = {q1, 4}, and

§ 1s given by the following table, wherein blank entries signify (0.

Input: 0 1 € i Input
Stack: [0 | $ € 0 $(e|0 $ € I Pop
q1 {(q23 $)} Push
g2 {(q2,0)} {(gs3,€)}
Input | Pop | Push g3 {(Q?n 8)} {(q4a E)}
44

A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
', and F are all finite sets, and

@k
" e, 5—c

1. Q is the set of states,
Input | 2+ X _15 the input alphabet, Pop bush
3. T is the stack alphabet,
4. 0: Q X X x T=P(Q x I.) is the transition function,
5. qo € @ is the start state, and
6

. F' C Q is the set of accept states.

Q ={q1,92,93,9},
% ={0,1},
['={0,$},

F = {q1, 4}, and

§ 1s given by the following table, wherein blank entries signify (0.

Input: 0 1 € i Input
Stack: [0 | $ € 0 $(e|0 $ € I Pop
qd1 {(q23 $)} Push
g2 {(q2,0)} {(gs3,€)}
Input | Pop | Push g3 {(Q?n 8)} {(q4a E)}
44

A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
', and F are all finite sets, and

€,6—%
‘ £,$—¢€

1. Q is the set of states,
Input | 2+ X _15 the input alphabet, Pop bush
3. T is the stack alphabet,
4. 0: Q X X x T=P(Q x I.) is the transition function,
5. qo € @ is the start state, and
6

. F' C Q is the set of accept states.

Q={q1,92,93,q},

2 = {0,1},
I = {0, $},

F = {Ql QL}J and

§ 1s given by the following table, wherein blank entries signify (0.

Input | Pop | Push

€, e—>$

Input: 0 1 € | Input
Stack: g 0 $(e|0 $ € I Pop
di1 {(q23 $)} Push
G2 {(q2,0)} {(gs3,€)}
q3 {(Q3=€)} {(q4a€)}
da

,E—0

@

1,05€

1,0—¢€

"\

€,$—€

A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
', and F are all finite sets, and

1. Q is the set of states,
Input | 2+ X _15 the input alphabet, Pop bush
3. T is the stack alphabet,
4. 0: Q X X x T=P(Q x I.) is the transition function,
5. qo € @ is the start state, and
6

. F' C Q is the set of accept states.

Q ={q1,92,93,9},
% ={0,1},
['={0,$},

F = {q1, 4}, and

§ 1s given by the following table, wherein blank entries signify (0.

Input: 0 1 € i Input
Stack: [0 | $ € 0 $(e|0 $ € I Pop
di1 {(q23 $)} Push
G2 {(a2,0)} {(gs,€)}
Input | Pop | Push q3 {(Q?n 8)} {(q4a E)}
44

A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
', and F are all finite sets, and

€,6—%
‘ £,$—¢€

1. Q is the set of states,
Input | 2+ X _15 the input alphabet, Pop bush
3. T is the stack alphabet,
4. 0: Q X X x T=P(Q x I.) is the transition function,
5. qo € @ is the start state, and
6

. F' C Q is the set of accept states.

Q ={q1,92,93,9},
Y ={0,1},
['={0,$},

F = {q1.qa}, and

§ 1s given by the following table, wherein blank entries signify (0.

Input: 0 1 € i Input
Stack: [0 | $ € 0 $(e|0 $ € I Pop
qd1 {(q23 $)} Push
g2 {(q2,0)} {(gs3,€)}
Input | Pop | Push g3 {(Q?n 8)} {(q4a E)}
44

0,e—0 A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
€,€ 239 > ', and F are all finite sets, and

1. Q is the set of states,
;
E,$—¢€

1,03€ Input z Y. is the input alphabet, Pop —_—

I is the stack alphabet,
1,0—¢€ 4. §: Q X X x T=P(Q x I.) is the transition function,
5. qo € @ is the start state, and
6

. F' C Q is the set of accept states.

In-class exercise:
Fillin the blanks @ *=

§ 1s given by the following table, wherein blank entries signify (0.

Input: 0 1 € | Input
Stack: | 0 | $ € 0 $[(e]|0 $ = I Pop
| State/
PDA M5 recognizing the language {ww”™ |w € {0,1}*} Push
Input | Pop | Push
A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
—»@ E,E—$ (o (1):2:;(13 ', and F are all finite sets, and
1. @ is the set of states,
E , €_> 8 |nput 2. Z iS the lnput alphabet, POp PUSh
3. I is the stack alphabet,

. 0:Q X Y. x T P(Q x I.) is the transition function,

0,0—¢€ 4 .
RN q3 1.1€ 5. qo € Q is the start state, and
’ 6

. F' C Q is the set of accept states.

In-class exercise; | @ = 6 0h

Fill in the blanks = *=10:1},
I ={0,1,$},

F={q}

§ 1s given by the following table, wherein blank entries signify (0.

Input: 0 1 € i Input
Stack: | 0 [$ 3 0 | 1 [$]e]O 3 g <} pop
. / {(Q2’ $)} State/
92 {(Q%O)} {(g2,1)} {(g3,€)} | Push
Input | Pop | Push q3 {(gs,€)} {(933 6)} {(94, 5)}
da

_}@ €,€8%

PDA M3 recognizing the language {ww™|w € {0,1}*}

/3

thstback: DFA Computation Model

Informally Formally (i.e, mathematically)
- “Program” = a finite automata - M = (Q,>%,0,q0, F)
* Input = string of chars, eg “1101” « W = WiW3 *** Wy

To run a “program’:

A sequence of states represents a DFA computation

PDA Configurations (IDs)

e A configuration (or ID) is a “snapshot” of a PDA’s computation

3 components (g, w,Y) :
g = the current state
w = the remaining input string
y = the stack contents

. A sequence of configurations represents a PDA computation

d: Q X ¥—Q is the transition function

Flaskback A DFA Extended Transition Fn

Define extended transition function: 5 Qx> Q

 Domain:
+ Beginning state ¢ €) (not necessarily the start state)
* Inputstring w = wiws - -+ Wy where w; € X

* Range:

- Ending state (not necessarily an accept state)| 1his specifies the sequence of states
representing a DFA computation

(Defined recursively)
Empty string

 Base case: §

- (Q7 g) — U nonEmpty string || First char Aemallle ears

(“smaller argument”)

e Recursive case: 5((]7?1)) — 5(5((]7’1111)7’11)2 e wn)

Recursive call Single transition step

PDA Computation, Formally

P = (Qazaraéac_ZUaF)

Single-step Extended
Before | After configurations Base Case
*
(q1,aw, XB) F (g2, w, af) I+ I for any ID [
Read Input | | Pop Push

e Recursive Case

if 0(q1, a, X) contains (qo,) _ _
' ’ I If J if there exists some ID K
qi1,q2 € Q)

teY we such that I F K and K F J
Xel pBael”

A configuration (g, w, y) has three components
q = the current state
w = the remaining input string
y = the stack contents

PDA Running Input String Example

State || Remaining Input || Stack

(ql, 0011, 5)

Input Read | Pop | Push

PDA Running Input String Example

Input Read | Pop | Push

0,€—0
€,€_>$ /\\.-—-_.’

1,0-€&

@)= (o

1,0—¢€

State || Remaining Input || Stack

(q1,0011,¢) F (g2,0011, $)
- (g2,011,09)

Read 0, push 0

PDA Running Input String Example

Input Read | Pop | Push

0,€—0
€,€_>$ /\\.-—-_.’

1,0-€&

@)= (o

1,0—¢€

(ql, 0011, 5)

State || Remaining Input || Stack

- (gq2,0011, %)
— (g2,011, 09)

= (g2, 11, 00%)

Read 0, push 0

PDA Running Input String Example

State || Remaining Input || Stack

(q1,0011,¢) F (go,0011, $)
- (2,011, 0%)
— (g2,11,009)
Input Read | Pop | Push . L ((]37 1, O$) Read 1, pop 0
_) €,€8% 0 ’
Loose

1,0¢€
" e 5oe \ B

PDA Running Input String Example

State || Remaining Input || Stack

(q1,0011,¢) F (g2,0011, $)
— (g2,011,0%)

- (g2, 11,009%)
Input Read | Pop | Push . N (q?” 1, O$)
_, €.€729% (g a (QB757$) Read 1, pop 0
1,0>€

1,0—¢€

PDA Running Input String Example

State || Remaining Input || Stack

(q1,0011,¢) I (g2,0011, $)
- (g2,011, 03)
- (g2, 11, 00%)

Input Read | Pop | Push (C]?n 1 O$)
) - (

- (

_) €,€28% qs,)

4, €, 8) pop empty
* e, 5—e

stack symbol

thshback: COMputation and Languages

« The language of a machine is the set of all strings that it accepts
» E.g, An FSM M accepts w if 6(qp, w) € F

* Language of M= L(M)={w | M accepts w}

Language of a PDA

P (Q?Z?F?(S?qojp)

Stack Computation ends
Start in initially Whe[‘ mllJut lsd
start state empty completely rea

~
L(P) = {w | (qo. w.€) F* (¢,€,)} where g € F

AN
71v

Machine accepts if final
state is accept state

A configuration (g, w, y) has three components
q = the current state
w = the remaining input string

87
y = the stack contents

Pushdown Automata (PDA)
PDA = NFA + a stack —» oA q2

* Infinite memory
« Can only read/write top location: Push/pop 1,056

Want to prove: PDAS represent CFLS! 4 Py q3

We know: a CFL, by definition, is a language that is generated by a CFG

0,€—0

1,0—¢€

Need to show: PDA < CFG

Then, to prove that a language is a CFL, we can either:
* Create a CFG, or
* Create a PDA

A lang Is a CFL iff some PDA recognizes it

= If a language Is a CFL, then a PDA recognizes it
- (Easier)
« We know: A CFL has a CFG describing it (definition of CFL)
e Must show: the CFG has an equivalent PDA

&< |If a PDA recognizes a language, then it's a CFL

Shorthand: Multi-Symbol Stack Pushes

@ o a,s—=z Push 1
Read input a,8s —>ITYz i E,E—Y Push 1
Pop | Push 3 @
o €,E— I < Push 1

Note the reverse order of pushes

CFG>PDA (sketch)

» Construct a PDA from CFG such that:
« PDA accepts input string only if the CFG can generate that string

* Intuitively, PDA will nondeterministically try all rules

e, A—-w forrule A—w

a,a—e for terminal a

CFG>PDA (sketch)

» Construct a PDA from CFG such that:
« PDA accepts input string only if the CFG can generate that string

* Intuitively, PDA will nondeterministically try all rules

push start variable onto stack

if stack top is a variable 4, pop it and
(nondeterministically) push rule’s right-sides

e, A—-w forrule A—w

a,a—e for terminal a

If stack top is a terminal a, pop it
and read matching input

Example CFG>PDA

S —alb|b
T — Tale

e,5—b)O€,€—>T)O gy |
g, [—a ’O g,e—T l

If stack top is variable S, pop S
E’JtS*f"b and push rule right-sides (in rev order)
g, l—e
a,a—e

Fxample CFG>PDA

S — alb|b
T — Tale

e,S5—b)O€,€—>T)O £,€—a
g, [—a)O 2 e l

e, l—e
a,a—e€

o

Example CFG>PDA

S — alb|b
T — Tale

e,5—b)Os,e—ﬂ")o g,e—a
g, [—a ’O e, e—1T l

g,S5—b
e, T—e
a,a—e€

b,b—e
if stack top is a terminal, pop and

read matching input

Example Derivation using CFG:

Exam ple CFG%PDA S=aTb (using rule S— aTb)

= aTab (using rule T - Ta)
= aab, (usingrule T- ¢)

S — alb|b
T — Tale

‘L Qstart

1o00p
1o00p
£, S—b Q100p
e, T—e Qioop
a,a—&€ 1o00p

qloop

QIoop

qaccept

aab

aab

aab
ab
ab
ab

PDA Example

5$

aTb$ S-aTb
Tb$

Tab$ T- Ta
ab$ To¢
b$

$

Example CFG>PDA

Example Derivation using CFG:

S=aTb (usingrule S— aTb)
= aTab (using rule T— Ta)

= aab (usingrule T- ¢)

S — alb|b
T — Tale

If stack top is variable S, pop S

and push rule right-sides (in rev order)

e,5—b)O€,€—>T)O g,e—a _|

g, [—a e, e—1T
O l

e,S5—b
e, T—e
a,a—€
b,b—e

Astart
qloop
QIoop
CIloop
QIoop
qloop
qloop
CIloop

qaccept

aab
aab
aab
ab
ab
ab
b

PDA Example

5$

aTb$ S-aTb
Tb$

Tab$ T- Ta
ab$ To¢
b$

$

Example CFG>PDA

S — alb|b
T — Tale

Example Derivation using CFG:

S=aTb (using rule S— aTb)
= aTab (using rule T - Ta)
= aab (usingrule T- ¢)

e,5—b)O€,€—>T)O g,e—a |

e, [—a ’O g,e—1
l Qstart

1o00p

1o00p
e,S5—b T1o0p
e, T—e Qioop
a,a—¢€ Q100p
b,b—¢ 1o00p
if stack top is a terminal, pop and Qi00p

read matching input

qaccept

aab
aab
aab
ab
ab
ab
b

PDA Example

5$

aTb$ S-aTb
Tb$

Tab$ T- Ta
ab$ To¢
b$

$

Example CFG>PDA

S — alb|b

T — Ta €

Example Derivation using CFG:

S=aTb (using rule S— aTb)
= aTab (using rule T - Ta)
= aab (usingrule T- ¢)

e, [—a ,~ €,e—T

o/ _l Qotart

1o00p

1o00p

£, S—b Q100p
e, T—e Qioop
a,a—&€ 1o00p
b s b—¢ 1o00p
100p

qaccept

e,5—b)O€,€—>T)O g,e—a |

aab
aab
aab
ab
ab
ab
b

PDA Example

5$

aTb$ S-aTb
Tb$

Tab$ T- Ta
ab$ To¢
b$

$

A lang Is a CFL iff some PDA recognizes it

= |f a language is a CFL, then a PDA recognizes it
* Convert CFG>PDA

& |f a PDA recognizes a language, then it's a CFL
e (Harder)
« Must Show: PDA has an equivalent CFG

PDA->CFG: Prelims

Before converting PDA to CFG, modify it so:

1. It has a single accept state, gaccept-
2. It empties its stack before accepting.

3. Each transition either pushes a symbol onto the stack (a push move) or pops
one off the stack (a pop move), but it does not do both at the same time.

Important:
This doesn’t change the language recognized by the PDA

PDA P -> CFG G : Variables
P =(Q,%,T,8,q0, {quccep:}) Variablesof G are {Ay| p,q € Q}

- Want: if P goes from state p to q reading input x, then some 4, generates x

%

o: For every pair of states p, g in P, add variable 4, to G

« Then: connect the variables together by,

* Add rules: A,, > A,,A,, for each state r
* These rules allow grammar to simulate every possible transition
 (We haven't added input read/generated terminals yet)

« To add terminals: pair up stack pushes and pops (essence of a CFL)

PDA P -> CFG G : Generating Strings

P=(Q,%,T,6,q0,{Gccepr}) Vvariablesof G are {A,;| p,q € Q}

e The key: pair up stack pushes and pops (essence of a CFL)

if 6(pSa,€) contains (r,u) and (s, b, u) contains (g, €),

put the rule A,, =" aA,sbin G

PDA P -> CFG G : Generating Strings

P=(Q,%,T,6,q0,{Gccepr}) Vvariablesof G are {A,y| p,q € Q}

e The key: pair up stack pushes and pops (essence of a CFL)

if 6(p, a,€) contains (r,u) and §(s, b, u) contains (q, €),

put the rule A4,,«=aA,sbin G

PDA P -> CFG G : Generating Strings

P=(Q,%,T,6,q0,{Gccepr}) Vvariablesof G are {A,y| p,q € Q}

e The key: pair up stack pushes and pops (essence of a CFL)

if 6(p, a, €) contains (r, v) and §(s, b, u) contains (g, €),

put the rule A,, — aA,4xbin G

A language I1s a CFL <> A PDA recognizes it

= If a language Is a CFL, then a PDA recognizes it
* Convert CFG>PDA

< |If a PDA recognizes a language, then it's a CFL
* Convert PDA>CFG

Check-in Quiz 10/18

On Gradescope

