UMB CS 420

Non-CFLs

Tuesday, October 25, 2022

(PN UNMATCHED LEFT PARENTHES(S

(REATES AN UNRESOLVED TENSION
THAT WILL STRY WITH You ALL DAY.

%/{/{0«/{0@#{@/{&?

« HW 5 in
+Bue10/23-11:59pmEST

« HW 6 out
* Due 10/30 11:59pm EST

last Tine: GENErAting vs Parsing

e In practice, parsing a string more important than generating one

- E.g, a compiler (first step) parses source code into a parse tree
e (Actually, any program with string inputs must first parse it)

But:
 PDAs are non-deterministic (like NFAs)
« Compiler’s parsing algorithm must be deterministic

» So: to model parsers, we need a Deterministic PDA (DPDA)

last Tie: DPDA: Formal Definition

The language of a DPDA is called a deterministic context-free language.

A deterministic pushdown automaton is a 6-tuple (Q, >, 1", 9, qo, F),

where @, ¥, I, and F are all finite sets, and A pushdown automaton is a 6-tuple

1. Q is the set of states, 1. @ is the set of states,
2. Y is the input alphabet,
3. I' is the stack alphabet,
4.0: Q x X xT.— (Q x I.) U {0} is the transition function
5. qo € @ is the start state, and 6
6. F' C @ is the set of accept states.

2. ¥ is the input alphabet,

3. T is the stack alphabet,

4. 5: Q x 3. xI.—P(Q x T,)
5. qo € Q is the start state, and

. F' C @Q is the set of accept states.
Difference: DPDA has only one possible action,

for any given state, input, and stack op
(similar to DFA vs NFA)

This must take into account € reads or stack ops!
E.g., if 8(q, a, X) is valid, then §(q, £, X) must not be

DPDAs are Not Equivalent to PDAS!

R —

S — aSb | ab

T —

S|T

albb

Parsing = generating reversed:
- start with string
- end with parse tree

- PDA: can non-deterministically “try all rules”
(abandoning failed attempts);

| abb | - DPDA: must choose one rule at each step!

Should use S rule

aaabbb — aaSbb
ab aoD

aaa

When parsing reaches

Should use T rule

| | v
this input position, aaabbbbbb — aaTbbbb

which rule to use, S or T?

To choose “correct” rule,
need to “look ahead” at
rest of the input!

PDAs recognize CFLs, but DPDAs only recognize DCFLs! (a subset of CFLs)

Subclasses of CFLs

DCFLs

f!:ambiguous Grammars
5 LR\ LRK)

Programming
language parsers
[compilers are
ideally in here

{ —>

LALR(1)

SLR

LR(0)

Ambiguous
Grammars

%

2) choose “look ahead” amount

2 parser design decisions:

1) Parse from left, or from right

All CFLS

136

LL parsing

Game: “You're the Parser”:

e | = [eft_to_right Guess which rule applies?
* L = leftmost derivation

S — if E then S else S E%enSdL
s -
S—‘/- beglnSL |
S int £
— prin F — num = num

1f 2 = 3 begin print 1; print 2; end else print O

1

LL parsing

e L = left-to-right
e L = leftmost derivation

S — if E then S else S i:?nSdL
S — begin § L |
S int £
— prin F — num = num

1f 27= 3 begin print 1; print 2; end else print 0

LL parsing

e L = left-to-right
e L = leftmost derivation

L d
S — if E then S else S e
S — begin S L ’
S int £
— b E — num = num

1f 2 = 3 begin print 1; print 2; end else print O

1

LL parsing

e L = left-to-right
e L = leftmost derivation

: . — end
S — 1if E then S else §
. L —: SL
S — begin S L
Int £
S —>[prn E — num = num

1f 2 = 3 begin print 1; print 2; end else print O

“Prefix” languages (Scheme/Lisp) are easily parsed with LL parsers (zero lookahead)

LR parsing

S—>S§5: S E — id
o L = [eft-to-right S—i1d:= E E — num
* R = rightmost derivation * S > print (L)© E — E + E

a := 7;
B e @ o (@ - 5 B &)

When parse is here, can't determine whether it's an assign (: =) or addition (+)

Need to save input (lookahead) to some memory, like a stack! this is a job for a (D)PDA!

Stack Input Action
push :
1 a :=7 ;b:=c+ (d:=5+6,4d) $ shift | “push”
1 1dyg ﬁ :=7 ; b:=c+ (d:=5+6,d) $ shift
State {1dg :=¢ 7 ; b:=c+ (d:=5+6,d) $ shift
name 1 1dg : =g numyg ; b :=c+ (d:=5+6 , d) $ reduce E — num
11dg :=¢ Eqq i b:=c+ (d:=5+6, d) § reduce S — id:=E
Y i b:=c+ (d:=5+6 , d) $§ shift

LR parsing
S—>8§5; 8 E — id
o L = [eﬂ‘_-tg-right S—i1d:= E E — num

* R = rightmost derivation S —prnt(L) E — E + E

Stack Input Action

1 a :=7 ; b:=c+ (d:=5+6,d) $ shift

1 1d4 :=7 ; b:=c+ (d:=5+6,d4d) $ shift

Lidy : =g ﬁ7;b=c+(d=5+6,d)$ shift

1 1dg :=¢ numy ;i b :=c+ (d:=5+6 , d) $ reduce E — num

1 id4 1 =6 Ell ; b :=c+ (d :=5 + 6 , d) $ reduce S — 1d:=E

1 $2 i b:=c+ (d:=5+6,4d) $ shift 144

LR parsing
S—>8§5; 8 E — id
o L = [eﬂ‘_-tg-right S—i1d:= E E — num

* R = rightmost derivation S —prnt(L) E — E + E

Stack Input Action

1 a :=7 ; b:=c+ (d:=5+6,d) $ shift

1 1d4 =7 ; b:=c+ (d:=5+6,d) % shift

1 id4 1=6 7 ;b :=c+ (d:=5+6,4d) $ shift

1 ids : =¢ numdy ﬁ ;i b :=c+ (d:=5+6 , d) $ reduce E — num

1 id4 1 =6 Ell ; b :=c+ (d :=5 + 6 , d) $ reduce S — 1d:=E

192 i b:=c+ (d:=5+6,4d) $ shift 145

LR parsing
S—>8§5; 8 E — id
o L = [eft-t()-right S—i1d:= E E — num

* R = rightmost derivation * S > print (L)© E — E + E

Stack Input Action

1 a :=7 ; b:=c+ (d:=5+6,d) % shift

1 1dg Candetermine | := ¢ + (d := 5+ 6 , d) $ shift

iy i=¢ (rightmostirule | ._ o , (g :=5 46, d) $ | shif

1 1dg4 : =g numqq ; b :=c+ (d:=5+6 , d) $ reduce E — num

1id4 1 =6 Ell ﬁb :=c + (d :=5+6 , d) % reduce S — 1d:=E

192 7 b:=c+ (d:=5+6, d) § shift 146

LR parsing
S—>8§5; 8 E — id
o L = [eft-t()-right S—i1d:= E E — num

* R = rightmost derivation * S > print (L)© E — E + E

Stack Input Action

1 a :=7 ; b:=c+ (d:=5+6,d) % shift

1 1d4 :=7 ; b:=c+ (d:=5+6,d) $ shift

11dg4 :=¢ Candetermine = ¢ + (d :=5 + 6 , d) § shift

| 1d4 :=¢ numyq (rightmost)rule - ¢ + (d :=5 +6 , d) $ reduce E — num

1 id4 1 =6 Ell ;i b :=c+ (d :=5+6 , d) $ reduce S — 1d:=E

192 ﬁ b :=c+ (d:=5+6, d) $ shift 147

LR parsing
S—>8§5; 8 E — id
o L = [eﬂ‘_-tg-right S—i1d:= E E — num

* R = rightmost derivation S —prnt(L) E — E + E

Stack Input Action

1 a :=7 ; b:=c+ (d:=5+6,d) $ shift

1 1d4 =7 ; b:=c+ (d:=5+6,d) % shift

1 id4 1=6 7 ; b:=c+ (d:=5+6,4d) $ shift

1 1dg :=¢ numy ;i b :=c+ (d:=5+6 , d) $ reduce E — num

1 id4 1 =6 Ell ; b :=c+ (d :=5 + 6 , d) $ reduce S — 1d:=E

192 i b:=c+ (d:=54+6,4d) $ shift 148

To learn more, take a Compilers Class!

Unambiguous Grammars Ambiguous
Grammars
L(k) LR(k)

L) | RO
‘ \

A program (string of chars)

Lexer
(DFAs / NFASs)

Program “words”

Parser
(DPDAS)

Abstract Syntax tree (AST)

This phase needs computation that goes beyond CFLs

149

tistteet, PUumping Lemma for Regular Langs

« Pumping Lemma describes how strings repeat

« Regular language strings repeat using Kleene start operation
 substrings are independent! - N

Repeating pattern J

7| atter repeat
A non-regular language: N\ol0)
n4n , ': 1‘
{O 1 | n 2z 0} Before repeat > N
Kleene star can’t express this pattern: e
2nd part depends on (length of) 15t part _____|Independent /

* Q: How do CFLs repeat?

Repetition and Dependency in CFLs

Parts before/after repetition point are linked

Repetition ‘é — 041 {On#1ﬂ| n > 0}
A— B

B — # /}‘1\ repetition

an
A
/| N\

=
e
O 0 0 # 1 1 1
A= 0A1 = 00411 = 000A111 = 0008111 = 000#111

How Do Strings in CFLs Repeat?

e Strings in regular languages repeat states

NFA can take loop transition
any number of times, to
process repeated y in input

e Strings in CFLs repeat su btrees In the parse tree

One repeated subtree means that it
can be repeated any number of times

Linked parts

153

Pumping Lemma for CFLS

Pumping lemma for context-free languages If A is a context-free language,
then there is a number p (the pumping length) where, if s is any string in A of
length at least »_then < maw he divided into five pieces s = uvzyz satistying the

Now there are two pumpable parts.

conditions But they must be pumped together!

1. for each ¢ > 0, wvtzy'z € A,
2. |vy| > 0, and

3. “U:By| < p. Pumping lemma If A is a regular
pumping length) where if s is any stri

divided into three pieces, s = xyz, sat

T

R

R

' Yy Z

v T
rd |~ 4

Y

T

per p (the
s may be

1. for each i > 0, zy'z € A,

Two pumpable parts,

2. |y| > 0, and pumped together

3. |xy| < p.

=4

A Non CFL example

language B = {a"b"c"|n > 0} is not context free
Intuition

e Strings In CFLs can have two parts that are “pumped” together
 This language requires three parts to be “pumped” together

e So it's not a CFL!

Pumping lemma for context-free languages If A is a context-free language,

Want to prove. apnch iS not a CFL then there is a number p (the pumping length) where, if s is any string in A of

length at least p, then s may be divided into five pieces s = uvzyz satisfying the
conditions
1. for each i > 0, uvizyiz € A;
2. |vy| > 0, and
3. Juzy| < p. Reminder: CFL Pumping lemma says:
all strings a"b"c" > length p are splittable
into uvxyz where v and y are pumpable

Proof (by contradiction): | Nowwe must find a contradiction ...

e Assume: a"b"c" is a CFL

« So it must satisfy the pumping lemma for CFLs
 |.e, all strings > length p are pumpable

° Counterexample — apbpcp Contradiction if: string > length p that is not

splittable into uvxyz where v and y are pumpable

pas pbs pbs

a..n..c..

Pumping lemma for context-free languages If A is a context-free language,

Want to prove. apnch iS not a CFL then there is a number p (the pumping length) where, if s is any string in A of

length at least p, then s may be divided into five pieces s = uvzyz satisfying the

conditions

Possible Splits P
Proof (by contradiction):
 Assume: a"b"c" is a CFL

« So It must satisfy the pumping lemma for CFLs
* |.e, all strings > length p are pumpable
Contradiction if: string > length p that is not

* COUHtEI‘EXample = apbpcp splittable into uvxyz where v and y are pumpable

- Possible Splits (using condition # 3: [vxy| < p) pas pbs pbs
X[+ vyxis all as
X|+ vyxis all bs
3
X
X

vyxis all cs a..n..cC..

vyx has as and bs \ ' J

aPbPcP cannot be split into uvxyz D)
where v and y are pumpable VX) o o0

vyx has bs and cs

So a"pbc! is not a CFL
(justification:
contrapositive of CFL pumping lemma)

Another Non-CFL D = {ww| w € {0,1}*}

Be careful when choosing counterexample s: 0P10P1
This s can be pumped according to CFL pumping lemma:

01 01
r— —

rmm—— —
000---000 O 1 O 000---0001
N, e o o o e e

u () 2 Yy e
Pumping v and y (together) produces string still in D ' |
« CFL Pumping Lemma conditions:/1 1. for each ¢ > 0, uwv'xy'z € A,

This doesn’t prove that the language is a CFL! 2. |vy| > 0, and
It only means that this attempt to prove that 3. |vzy| < p.
the language is not a CFL failed.

Another Non-CFL D = {ww| w € {0,1}*}

* Need another counterexample string s:

If vyx is contained in first or second half, then
any pumping will break the match

e W

OP1POP1P

\e— —

So vyx must straddle the middle
But any pumping still breaks the match because order is wrong

e CFL Pumping Lemma conditions: 1. foreachi > 0, uv'zy'z € A,
2. |vy| > 0, and

Now we have proven that 3. |vzy| < p.
this language is not a CFL!

A Practical Non-CFL

XML

e ELEMENT - <TAG>CONTENT</TAG>
« Where TAG is any string

« XML also looks like this non-CFL: D = {ww| w € {0,1}*}

* This means XML is not context-free!
« Note: HTML is context-free because ...
e ...there are only a finite number of tags,
« so they can be embedded into a finite number of rules.

e In practice:
« XML is parsed as a CFL, with a CFG
« Then matching tags checked in a 2"d pass with a more powerful machine ...

Mewt Tine: A MOre Powerful Machine ...

M accepts its input if it is in language: B = {w#w| w € {0,1}*}

My = “On input string w: Infinite memory, initially starts with input

1. Zig-zag across the tape to corresponding positions on either
side’ot the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

Can move to, and read/write
from, arbitrary memory locations!

In-class quiz 10/25

See gradescope

167

