Non-CFLs

Tuesday, October 25, 2022

(AN UNMATCHED LEFT PARENTHESIS CREATES AN UNRESOLVED TENSION THAT WILL STAY WITH YOU ALL DAY.

Announcements

- HW 5 in
 - Due 10/23 11:59pm EST
- HW 6 out
 - Due 10/30 11:59pm EST

Last Time: Generating vs Parsing

- In practice, parsing a string more important than generating one
 - E.g., a compiler (first step) parses source code into a parse tree
 - (Actually, any program with string inputs must first parse it)

But:

- PDAs are non-deterministic (like NFAs)
- Compiler's parsing algorithm must be deterministic
- <u>So</u>: to model parsers, we need a **Deterministic PDA** (DPDA)

Last Time: DPDA: Formal Definition

The language of a DPDA is called a *deterministic context-free language*.

A deterministic pushdown automaton is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$,

where Q, Σ , Γ , and F are all finite sets, and

- **1.** Q is the set of states,
- 2. Σ is the input alphabet,
- **3.** Γ is the stack alphabet,
- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow (Q \times \Gamma_{\varepsilon}) \cup \{\emptyset\}$ is the transition function
- **5.** $q_0 \in Q$ is the start state, and
- **6.** $F \subseteq Q$ is the set of accept states.

A *pushdown automaton* is a 6-tuple

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet,
- **3.** Γ is the stack alphabet,
- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$
- **5.** $q_0 \in Q$ is the start state, and
- **6.** $F \subseteq Q$ is the set of accept states.

<u>Difference:</u> **DPDA has only one possible action,** for any given <u>state</u>, <u>input</u>, and <u>stack op</u> (similar to **DFA** vs **NFA**)

This must take into account ε reads or stack ops! E.g., if $\delta(q, a, X)$ is valid, then $\delta(q, \varepsilon, X)$ must not be

DPDAs are <u>Not</u> Equivalent to PDAs!

Parsing = generating reversed:

- start with string
- end with parse tree

- $R \to S \mid T$ $S \rightarrow aSb$ ab $T
 ightarrow \mathbf{a} T \mathbf{b} \mathbf{b} \, | \, \mathbf{a} \mathbf{b} \mathbf{b}$
- PDA: can non-deterministically "try all rules" (abandoning failed attempts);
- **DPDA**: must <u>choose one</u> rule at each step!

Should use *S* rule $aaabbb \rightarrow aaSbb$ aaa Should use *T* rule When parsing reaches which rule to use, S or T?

this input position,

To choose "correct" rule, need to "look ahead" at rest of the input!

PDAs recognize CFLs, but DPDAs only recognize DCFLs! (a subset of CFLs)

Subclasses of CFLs

- L = left-to-right
- L = leftmost derivation

Game: <u>"You're the Parser"</u>: Guess which rule applies?

1
$$S \rightarrow \text{if } E \text{ then } S \text{ else } S$$

- $\stackrel{2}{\longrightarrow} S \stackrel{}{\longrightarrow} \text{begin } S L$
- $3 S \rightarrow \text{print } E$

$$\stackrel{4}{\sim} L \rightarrow \text{end}$$

$$5 L \rightarrow ; SL$$

$$6 E \rightarrow \text{num} = \text{num}$$

if 2 = 3 begin print 1; print 2; end else print 0

- L = left-to-right
- L = leftmost derivation

```
1 S \rightarrow \text{if } E \text{ then } S \text{ else } S
```

 $2 S \rightarrow \text{begin } S L$

 $\mathbf{S} S \to \text{print } E$

$$\stackrel{4}{\sim} L \rightarrow \text{end}$$

$$5 L \rightarrow ; SL$$

$$6 E \rightarrow \text{num} = \text{num}$$

if
$$2 = 3$$
 begin print 1; print 2; end else print 0

- L = left-to-right
- L = leftmost derivation

- 1 $S \rightarrow \text{if } E \text{ then } S \text{ else } S$
- $2 S \rightarrow \text{begin } S L$
- $\mathbf{S} S \to \text{print } E$

- $\stackrel{4}{\sim} L \rightarrow \text{end}$
- $5 L \rightarrow ; SL$
- $6 E \rightarrow \text{num} = \text{num}$

if 2 = 3 begin print 1; print 2; end else print 0

- L = left-to-right
- L = leftmost derivation

- $1 S \rightarrow \text{if } E \text{ then } S \text{ else } S$
- $2 S \rightarrow \text{begin } S L$
- $S \rightarrow \text{print } E$

- $\stackrel{4}{\sim} L \rightarrow \text{end}$
- $5 L \rightarrow ; SL$
- $6 E \rightarrow \text{num} = \text{num}$

if 2 = 3 begin print 1; print 2; end else print 0

"Prefix" languages (Scheme/Lisp) are easily parsed with LL parsers (zero lookahead)

1
$$S \rightarrow S$$
; S 4 $E \rightarrow id$
2 $S \rightarrow id := E$ 5 $E \rightarrow num$

• L = left-to-right

State

name

• **R** = rightmost derivation $\stackrel{3}{\circ}$ $S \rightarrow \text{print} (L) \stackrel{6}{\circ} E \rightarrow E + E$

$$a := 7;$$
 $b := c + (d := 5 + 6, d)$

When parse is here, can't determine whether it's an assign (:=) or addition (+)

Need to <u>save</u> input (lookahead) to some memory, like a **stack**! this is a job for a (D)PDA!

```
Stack
                                                                          Action
        push
                   a:= 7; b:= c+(d:= 5+6,d)$
                                                                          shift
                                                                                "push"
                   1 := 7; b := c + (d := 5 + 6, d) $
7; b := c + (d := 5 + 6, d) $
                                                                          shift
id_4 :=_6
                                                                         shift
                             ; b := c + ( d := 5 + 6 , d ) \$ reduce E \rightarrow \text{num}
_{1} id_{4} :=_{6} num_{10}
                            ; b := c + (d := 5 + 6, d) \$ reduce S \rightarrow id := E
_{1} id_{4} :=_{6} E_{11}
                             ; b := c + (d := 5 + 6, d)
_1 S_2
                                                                          shift
```

- L = left-to-right
- **R** = rightmost derivation

```
S \rightarrow S; S E \rightarrow id

S \rightarrow id := E E \rightarrow num

S \rightarrow print (L) E \rightarrow E + E
```

```
Stack
                                                                   Action
                                           Input
                  a := 7 ; b := c + (d := 5 + 6 , d) $
                                                                   shift
                       7; b := c + (d := 5 + 6, d)$
                                                                   shift
1 id4
                          ; b := c + (d := 5 + 6, d)
_{1} id_{4} := 6
                                                                  shift
                          ; b := c + (d := 5 + 6, d)
                                                                  reduce E \rightarrow num
_{1} id_{4} :=_{6} num_{10}
                          ; b := c + (d := 5 + 6, d) $
                                                                  reduce S \rightarrow id := E
_{1} id_{4} :=_{6} E_{11}
                          ; b := c + (d := 5 + 6, d)
_1 S_2
                                                                   shift
```

- L = left-to-right
- **R** = rightmost derivation

```
S \rightarrow S; S E \rightarrow id

S \rightarrow id := E E \rightarrow num

S \rightarrow print (L) E \rightarrow E + E
```

```
Stack
                                                                   Action
                                           Input
                  a := 7 ; b := c + (d := 5 + 6 , d) $
                                                                   shift
                    := 7 ; b := c + (d := 5 + 6 , d) $
                                                                   shift
1 id4
_1 id_4 :=_6
                          ; b := c + (d := 5 + 6, d)
                                                                  shift
                           b := c + (d := 5 + 6, d)  reduce E \rightarrow num
_{1} id_{4} :=_{6} num_{10}
                          ; b := c + (d := 5 + 6, d)$
                                                                  reduce S \rightarrow id := E
_{1} id_{4} :=_{6} E_{11}
                          ; b := c + (d := 5 + 6, d)
_1 S_2
                                                                   shift
```

 $1 S \rightarrow S ; S \qquad 4 E \rightarrow id$

- L = left-to-right $2S \rightarrow id := E$ $5E \rightarrow num$
- R = rightmost derivation $\stackrel{3}{\circ} S \rightarrow \text{print} (L) \stackrel{6}{\circ} E \rightarrow E + E$

```
Action
Stack
                a := 7 ; b := c + (d := 5 + 6 , d) $
                                                              shift
               Can determine
                            := c + (d := 5 + 6, d) $
                                                              shift
1 id4
               (rightmost) rule
_1 id_4 :=_6
                            := c + (d := 5 + 6, d) $
                                                            shift
                        ; b := c + ( d := 5 + 6 , d ) \$ reduce E \rightarrow \text{num}
_{1} id_{4} :=_{6} num_{10}
                       _{1} id_{4} :=_{6} E_{11}
_1 S_2
```

- L = left-to-right

- $1 S \rightarrow S ; S \qquad 4 E \rightarrow id$
- $S \rightarrow id := E$ $S \rightarrow num$
- **R** = rightmost derivation $\stackrel{3}{\circ} S \rightarrow \text{print}(L) \stackrel{6}{\circ} E \rightarrow E + E$

```
Stack
                                                Input
                                                                           Action
                    a := 7 ; b := c + (d := 5 + 6 , d) $
                                                                           shift
                       := 7 ; b := c + (d := 5 + 6 , d) $
                                                                           shift
1 id4
_1 id_4 :=_6
                      Can determine = c + (d := 5 + 6, d)
                                                                          shift
                      (rightmost) rule = c + (d := 5 + 6, d) $
                                                                         reduce E \rightarrow num
_{1} id_{4} :=_{6} num_{10}
                             ; b := c + (d := 5 + 6 , d) \Rightarrow reduce S \rightarrow id := E
_{1} id_{4} :=_{6} E_{11} \checkmark
                             \uparrow b := c + ( d := 5 + 6 , d ) $
_1 S_2
                                                                           shift
```

- L = left-to-right
- **R** = rightmost derivation

```
S \rightarrow S; S E \rightarrow id

S \rightarrow id := E E \rightarrow num

S \rightarrow print (L) E \rightarrow E + E
```

```
Stack
                                                                     Action
                                            Input
                  a := 7 ; b := c + (d := 5 + 6 , d) $
                                                                     shift
                     := 7 ; b := c + (d := 5 + 6 , d) $
                                                                     shift
1 id4
_{1} id_{4} :=_{6}
                        7; b := c + (d := 5 + 6, d)$
                                                                    shift
                           ; b := c + (d := 5 + 6, d) $
                                                                   reduce E \rightarrow num
_{1} id_{4} :=_{6} num_{10}
                           ; b := c + (d := 5 + 6, d) $
                                                                   reduce S \rightarrow id := E
_{1} id_{4} :=_{6} E_{11}
_1 S_2
                             b := c + (d := 5 + 6, d) $
                                                                     shift
```

To learn more, take a Compilers Class!

Flashback: Pumping Lemma for Regular Langs

Pumping Lemma describes how strings repeat

Regular language strings repeat using Kleene start operation

• substrings are independent!

A non-regular language:

$$\{\mathbf{0}^n_{\wedge}\mathbf{1}^n_{\wedge}|\ n\geq 0\}$$

Kleene star can't express this pattern: 2nd part depends on (length of) 1st part Repeating pattern

After repeat

Before repeat

Independent

• Q: How do CFLs repeat?

Repetition and Dependency in CFLs

Parts before/after repetition point are linked Repetition repetition $B \to \#$

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000#111$$

How Do Strings in CFLs Repeat?

NFA can take loop transition any number of times, to process repeated y in input

• Strings in regular languages repeat states

• Strings in CFLs repeat subtrees in the parse tree

One repeated subtree means that it

Pumping Lemma for CFLS

Pumping lemma for context-free languages If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p then s may be divided into five pieces s = uvxyz satisfying the conditions Now there are two pumpable parts.

But they must be pumped together!

- 1. for each $i \geq 0$, $uv^i xy^i z \in A$,
- **2.** |vy| > 0, and
- 3. $|vxy| \le p$.

Pumping lemma If A is a regular pumping length) where if s is any stridivided into three pieces, s = xyz, sat

- 1. for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \le p$.

pumped together

A Non CFL example

language $B = \{ \mathbf{a}^n \mathbf{b}^n \mathbf{c}^n | n \ge 0 \}$ is not context free

Intuition

- Strings in CFLs can have two parts that are "pumped" together
- This language requires three parts to be "pumped" together
- So it's not a CFL!

Want to prove: $a^nb^nc^n$ is not a CFL

Proof (by contradiction): Now we must find a contradiction ...

- Assume: $a^nb^nc^n$ is a CFL
 - So it must satisfy the pumping lemma for CFLs
 - I.e., all strings \geq length p are pumpable
- Counterexample = $a^p b^p c^p$

Pumping lemma for context-free languages If *A* is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces s = uvxyz satisfying the conditions

- 1. for each $i \geq 0$, $uv^i x y^i z \in A$
- **2.** |vy| > 0, and
- 3. $|vxy| \le p$.

Contradiction if: string \geq length p that is **not splittable** into *uvxyz* where *v* and *y* are pumpable

Reminder: CFL Pumping lemma says: all strings $a^n b^n c^n \ge \text{length } p$ are splittable into *uvxyz* where *v* and *y* are pumpable

Want to prove: $a^nb^nc^n$ is not a CFL

Possible Splits

Proof (by contradiction):

Contradiction

Not

pumpable

- Assume: $a^nb^nc^n$ is a CFL
 - So it must satisfy the pumping lemma for CFLs
 - I.e., all strings \geq length p are pumpable
- Counterexample = $a^p b^p c^p$

Contradiction if: string \geq length p that is **not** splittable into uvxyz where v and y are pumpable

- Possible Splits (using condition # 3: $|vxy| \le p$)
- vyx is all as
- vyx is all bs
- **№** *vyx* is all cs
- vyx has as and bs
- vyx has bs and cs

So $a^nb^nc^n$ is not a CFL

(justification:

contrapositive of CFL pumping lemma)

Pumping lemma for context-free languages If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces s = uvxyz satisfying the conditions

- 1. for each $i \geq 0$, $uv^i x y^i z \in A$,
- **2.** |vy| > 0, and
- 3. $|vxy| \le p$.

Another Non-CFL $D = \{ww | w \in \{0,1\}^*\}$

Be careful when choosing counterexample $s: 0^p 10^p 1$

This s can be pumped according to CFL pumping lemma:

Pumping v and y (together) produces string still in D

• CFL Pumping Lemma conditions: $\ \blacksquare 1$. for each $i \ge 0$, $uv^i xy^i z \in A$,

This doesn't prove that the language is a CFL! It only means that this attempt to prove that the language is not a CFL failed.

2.
$$|vy| > 0$$
, and

Another Non-CFL $D = \{ww | w \in \{0,1\}^*\}$

Need another counterexample string s:

If vyx is contained in first or second half, then any pumping will break the match

$$\bigcap^p \mathbf{1}^p \mathsf{0}^p \mathbf{1}^p$$

So vyx must straddle the middle

But any pumping still breaks the match because order is wrong

- CFL Pumping Lemma conditions: 1. for each $i \ge 0$, $uv^i xy^i z \in A$,

 - **2.** |vy| > 0, and
 - **3.** $|vxy| \leq p$.

Now we have proven that this language is not a CFL!

A Practical Non-CFL

- XML
 - ELEMENT → <TAG>CONTENT</TAG>
 - Where TAG is any string
- XML also looks like this <u>non-CFL</u>: $D = \{ww | w \in \{0,1\}^*\}$
- This means XML is not context-free!
 - Note: HTML is context-free because ...
 - ... there are only a finite number of tags,
 - so they can be embedded into a finite number of rules.
- <u>In practice</u>:
 - XML is <u>parsed</u> as a CFL, with a CFG
 - Then matching tags checked in a 2nd pass with a more powerful machine ...

Next Time: A More Powerful Machine ...

 M_1 accepts its input if it is in language: $B = \{w \# w | w \in \{0,1\}^*\}$

 $M_1 =$ "On input string w:

Infinite memory, initially starts with input

1. Zig-zag across the tape to corresponding positions on either side of the # symbol to check whether these positions contain the same symbol. If they do not, or if no # is found, reject. Cross off symbols as they are checked to keep track of which symbols correspond.

Can move to, and read/write from, arbitrary memory locations!

In-class quiz 10/25

See gradescope