UMB CS420

Turing Machines (TMs)

Thursday, October 27, 2022

%/{/{0«/{0@#{@/{&?

« HW 6 out
e due Sun 10/30 11:59pm EST

CS 420: Where We've Been, Where We're Going

» Turing Machines (TMs) @

« Memory: Infinite tape, arbitrary read/write
« Expresses any “computation”

* PDAs: recognize context-free language
A oas® Memory: Infinite stack, push/pop only

uring-recognizable

) context-free
* DFAs / NFAs: recognize regular langs
« Memory: finite states

A— B < Can't express: arbitrary dependency, decidable
b « eg, {ww| w € {0,1}"} /

Algorithms: A
special class of
halting TMs

e Can't express: dependency
e.g, {0"1"|n > 0}

Start t h e n
L L > th > the) ".@ 3

Alan Turing

* First to formalize the models of computation we're studying
* |.e., he invented this course

« Worked as codebreaker during WW2

T
e —

« Also studied Artificial Intelligence o

e The Turing Test

TURING TEST EXTRA CREDIT:

CONVINCE THE EXAMINER
THAT HES A COMPUTER.

YOU KNOW, YOU MAKE
SOME REALLY GOOD POINTS.

!
I'M ... NOTEVEN SURE
WHO I AM ANYMORE.

iy

Finite Automata vs Turing Machines

 Turing Machines can read and write to arbitrary “tape” cells
« Tape Initially contains input string

input | | Empty tape locations

« Tape Is infinite

States l

head abab'l_ll_ll_l-é...
« Fach step: “head” can move left or right

 Turing Machine can accept/reject at any time

Call a language Turing-recognizable if some Turing machine
recognizes It.

This is an informal TM description
one “step” =

TU rl ng MaC h | n e Exa m p le many formal transitions

input
. 1 " e *
Let: M accepts inputs in language B = {w#w| w € {0,1}*} |
| | —
M, = “On input string w: head 011000#011000u ...

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

“Cross off” =

“_n

write “x” char

Turing Machine Example

M, accepts inputs in language B = {w#w| w € {0,1}*}

. . * j
M; = “On input string w: “Cross off” = write “x" char 011000#011000u ...

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

“Cross off” =

“_n

write “x” char

Y
x11000#011000uw ...

Turing Machine Example

M, accepts inputs in language B = {w#w| w € {0,1}*}

M; = “On input string w: “Cross off” = write “x" char 011000#011000u ...
. _ ¥ L ¥ j
1. Zlg zag across the tape to corresponding positions on elthfzr 4 000£011000u ...
side of the # symbol to check whether these positions contain —
the same symbol. If they do not, or if no # is found, reject. x11000#x11000u ...

Cross off symbols as they are checked to keep track of which
symbols correspond.

“Cross off” =

“_n

write “x” char

Turing Machine Example

M, accepts inputs in language B = {w#w| w € {0,1}*}

. . oy
M, = “On input string w: Head “zags” back to start 011000#011000

1. Zig-zag across the tape to corresponding positions on either

Y
. .. . x11000#011000
side of the # symbol to check whether these positions contain

—

the same symbol. If they do not, or if no # is found, reject. x11000#x11000
Cross off symbols as they are checked to keep track of which —

x11000#x11000
symbols correspond.

“Cross off” =

“_n

write “x” char

Turing Machine Example

M, accepts inputs in language B = {w#w| w € {0,1}*}

. . B
M, = “On input string w: Continue crossing off 011000#0
1. Zig-zag across the tape to corresponding positions on either B
. .. . x11000#0
side of the # symbol to check whether these positions contain —
the same symbol. If they do not, or if no # is found, reject. x11000#x
Cross off symbols as they are checked to keep track of which Y 110004
symbols correspond. X__; h
“Cross off” = xx1000#x

“_n

write “x” char

1000

1000

1000

1000

1000

...

...

I

uo...

Turing Machine Example

M, accepts inputs in language B = {w#w| w € {0,1}*}

M = “On input string w:

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

2. When all symbols to the left of the # have been crossed off,
check for any remaining symbols to the right of the #. If any
symbols remain, reject; otherwise, accept.”

—
011000#0

B
x11000#0

xllO()O#_gc

—)¢(11000#X

@1000#}:

!

X X X XXX #X

Turing Machine Example

M, accepts inputs in language B = {w#w| w € {0,1}*}

M = “On input string w: jOllOOO#OllOOOu...
1. Zlg—zag across the tape to corresponding positions on elthfzr X—i L 000#011000u ..

side of the # symbol to check whether these positions contain —

the same symbol. If they do not, or if no # is found, reject. x11000#x11000u ...

Cross off symbols as they are checked to keep track of which —

symbols correspond.

x11000#x11000uw ...

}ﬂ{lOOO#XllOOOu...
! —
2. When all symbols to the left of the # have been crossed off, XXXXXX#XXXXXXU ...
check for any remaining symbols to the right of the #. If any accept

symbols remain, reject; otherwise, accept.”

Turing Machines: Formal Definition

A Turing machine is a 7-tuple, (Q, %, I, 9, qo, Gaccept, Greject), Where
Q, 2, I are all finite sets and

1. @ is the set of states,

. 2 is the input alphabet not containing the blank symbol o
. I is the tape alphabet, where u = T'and ¥ C T,

6: Q x I'—Q x I' x {LL.R} is the transition function,

. go € €29 s¢lWrite | move

. Qaccept € @ 15 the accept state, and

. Greject € @ 1s the reject state, where greject 7 Gaccept-

B = {w#w| w € {0,1}*}

Formal Turing Machine Example

Read char (0 or 1), cross it off, move head R(ight)

’

01 O0OO0O#011000uw ..

oy

x 1 OO0OO0O#011000wu

x 1 000#—}¢(11000|_|

?{1 O0O0O#x11000wu

x—jc O0O0O#x11000uw ..
Y

X X XXX H#HEXXXXXXU ..
accept

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where
Q, X, T are all finite sets and
1. @ is the set of states,
¥ is the input alphabet not containing the blank symbol v,
I" is the tape alphabet, where u € "'and X C T,
0: Q xI'—@Q x T x {L., R} is the transition function,
go € read es| write | move
Gaccepr € @ 15 the accept state, and

SN I

Grejece € @ 15 the reject state, where grejece # Gaceept-

B = {w#w| w € {0,1}*}

Formal Turing Machine Example

—
011000#011000u ..

-

x11000#011000u ... 'z

x11000#%¥11000u : :

— t Move Right until # Move Right until #

x11000#x11000u ...
0,1—R @ qs3 0,1—R
& B

xx1000#x11000uw ..
v

X X XX XXHEXXXXX XU ..

accept x—R ‘@ @ @’ x—R

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where N Cross Off 4
Q, X, T are all finite sets and ',{-\ (matChmg) 7
L] Oor1l >
1. Q is the set of states, or
2. X is the input alphabet not containing the blank symbol L, Js 0,1,x—L
3. I' is the tape alphabet, where u € 'and ¥ C T,
4. 6: Q xI'—Q xI'" x {L.,R} is the transition function, #—1
5. qo € read | write | move
6. Gaccepr € @ 1s the accept state, and \ x—R q 0,1—L
7. Greject € @ 1s the reject state, where grejece 7 Gaccept-

B = {w#w| w € {0,1}*}

Formal Turing Machine Example

xx1000#x11000uw ..
v

X X XX XXHEXXXXX XU ..

accept x—R ‘@ @ @’ x—R

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where
Q, X, T are all finite sets and

1. @ is the set of states,

2. ¥ is the input alphabet not containing the blank symbol v, “Zag” Left @. 0,1,x—1,
3. I is the tape alphabet, where u € I'and 3 C T, to last x

4. 5: Q x '—Q x I x {L.R} is the transition function, #—1

5. 90 € read ksl write | move

6. Gaccepr € @ 1s the accept state, and \ x—R qr 0, 1—L

7.

Grejece € @ 15 the reject state, where grejece # Gaceept-

B = {w#w| w € {0,1}*}

Formal Turing Machine Example

Read char (0 or 1), cross it off, move head R(ight)

’

01 O0OO0O#011000uw ..

Y

x 1 OO0OO0O#011000wu

x 1 000#—}¢(11000|_|

?{1 O0O0O#x11000wu

x—jc O0O0O#x11000uw ..
Y

X X XXX XH#EXXXXX XU ..
accept

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where
Q, X, T are all finite sets and
1. @ is the set of states,
¥ is the input alphabet not containing the blank symbol v,
I" is the tape alphabet, where u € "'and X C T,
0: Q xI'—@Q x T x {L., R} is the transition function,
go € read es| write | move
Gaccepr € @ 15 the accept state, and

SN I

Grejece € @ 15 the reject state, where grejece # Gaceept-

Formal Turing Machine Example

’

01 O0OO0O#011000uw ..
Y

x 1 O0OO0O#01 1000w ...
x 1 000#—}¢(11000|_|..
?{1 O0O0O#x11000uw ...
X—}‘L{ OOOﬁXllOOOu..

v Ty
X X XXX XH#EXXXXX XU ..

accept

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where
Q, X, T are all finite sets and
1. @ is the set of states,
¥ is the input alphabet not containing the blank symbol v,
I" is the tape alphabet, where u € "'and X C T,
0: Q xI'—@Q x T x {L., R} is the transition function,
go € read es| write | move
Gaccepr € @ 15 the accept state, and

SN I

Grejece € @ 15 the reject state, where grejece # Gaceept-

\ X—>R

B = {w#w| w € {0,1}*}

Accept if all
crossed out

Reject state not shown
Any transition not shown

goes 1o reject state

Turing Machine: Informal Description

» M accepts if inputisin language B = {w#w| w € {0,1}*}

M; = “On input string w:

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they Ao=e oot s found, reject.
Cross off symbols as thes’ We will (mostly) \n track of which

bol d. stick to informal
TR TR descriptions of

2. When all symbols to Turing machines, _>n crossed off,
check for any remaining & like this one At of the #. If any
symbols remain, reject; otherwise;—.ccept.”

TM Informal Description: Caveats

« TM informal descriptions are not a “do whatever” card
« must be equivalent to a formal tuple
Analogy:
 informal TM ~ function definition in “high level” language
« formal TM ~ function definition in bytecode or assembly

* Input

« Must be named (like a function parameter), e.g., w
« Assume string of chars from the alphabet (for now)

« An informal “step” represents a finite # of formal transitions
e It cannot run forever
« E.g, can’t say “try all numbers” as a “step”

Non-halting Turing Machines (TMs) <®

« A Turing Machine can run forever
« E.g, the head can move back and forth in a loop

* Thus, there are two classes of Turing Machines:
« A recognizer is a Turing Machine that may run forever (all possible TMs)
A decider is a Turing Machine that always halts.

Call a language Turing-recognizable if some Turing machine Call a language Turing-decidable or simply decidable if some
recognizes it. Turing machine decides it.

Formal Definition of an “Algorithm”

 An algorithm is equivalent to a Turing-decidable Language
(always halts)

Turing-recognizable

decidable

context-free

Turing Machine Variations

THUS, FOR ANY NONDETERMINISTIC TURING
MACHINE M THAT RUNS IN SOME POLYNOMIAL
TIME p(r), WE CAN DEVISE AN ALGORITHM

THAT TAKES AN INPUT w OF LENGTH n AND
PRODUCES E,,. THE RUNNING TIME IS O(pin)
ON A MULTITAPE DETERMINISTIC TURING
MACHINE AND ...

WTF, MAN, I JUST
WANTED To LEARN
HowW T0 PROGRAM

VIDEO GAMES,

Y
O(1]0 0| u
1. Multi-tape TMs | \/ ,
a|ada|a|u
Y
b|la|u
Deterministic Nondeterministic
computation computation
o . Q: start (.}f—\
2. Non-deterministic TMs (Y
L. : ![1.
L reject -(1
R

« accept or reject

* accept

We will prove that
these TM variations
are equivalent to
deterministic,
single-tape
machines

Reminder: Equivalence of Machines

« Two machines are equivalent when ...

. ... they recognize the same language

Theorem: Single-tape TM < Multi-tape TM

= |f a single-tape TM recognizes a language,
then a multi-tape TM recognizes the language
 Single-tape TM is equivalent to ...
e ... multi-tape TM that only uses one of its tapes
e (could you write out the formal conversion?)

& |f a multi-tape TM recognizes a language,
then a single-tape TM recognizes the language

« Convert: multi-tape TM - single-tape TM

35

Multi-tape TM =» Single-tape TM

Idea: Use delimiter (#) on single-tape to simulate multiple tapes
« Add “dotted” version of every char to simulate multiple heads

¥

O|11(0(1(O0|u]...
M !
dalalal|luUJ] ...
e
bla]|u
S + n ° °
#01010#_aaa#baiu

Theorem: Single-tape TM < Multi-tape TM

= If a single-tape TM recognizes a language,
then a multi-tape TM recognizes the language

 Single-tape TM is equivalent to ...
* ... multi-tape TM that only uses one of its tapes

& If a multi-tape TM recognizes a language,
then a single-tape TM recognizes the language

« Convert: multi-tape TM - single-tape TM

Check-in Quiz 10/27

On gradescope

