Turing Machines (TMs)

Thursday, October 27, 2022

Announcements

- HW 6 out
 - due Sun 10/30 11:59pm EST

CS 420: Where We've Been, Where We're Going

Turing Machines (TMs)

- Memory: Infinite tape, arbitrary read/write
- Expresses any "computation"

PDAs: recognize context-free languages

 $A \rightarrow 0A1$ • Memory: Infinite stack, push/pop only

 $A \rightarrow B$ • Can't express: <u>arbitrary</u> dependency,

• e.g., $\{ww|\ w\in\{\text{0,1}\}^*\}$

DFAs / NFAs: recognize regular langs

- Memory: finite states
- Can't express: dependency e.g., $\{0^n \mathbf{1}^n | n \ge 0\}$

Alan Turing

- First to formalize the models of computation we're studying
 - I.e., he invented this course

Worked as codebreaker during WW2

- Also studied Artificial Intelligence
 - The Turing Test

Finite Automata vs Turing Machines

- Turing Machines can read and write to arbitrary "tape" cells
 - Tape initially contains input string
- Tape is infinite

- Each step: "head" can move left or right
- Turing Machine can accept/reject at any time

Call a language *Turing-recognizable* if some Turing machine recognizes it.

This is an **informal TM description**one "step" =
many formal transitions

<u>Let:</u> M_1 accepts inputs in language $B = \{w\#w|\ w \in \{\mathtt{0,1}\}^*\}$

tape

 M_1 = "On input string w:

head

0 1 1 0 0 0 # 0 1 1 0 0 0 u ...

1. Zig-zag across the tape to corresponding positions on either side of the # symbol to check whether these positions contain the same symbol. If they do not, or if no # is found, reject.

Cross off symbols as they are checked to keep track of which symbols correspond.

"Cross off" = write "x" char

 M_1 accepts inputs in language $B = \{w \# w | w \in \{0,1\}^*\}$

```
M_1 = "On input string w:
```

"Cross off" = write "x" char

```
"Cross off" = write "x" char
```

```
0 1 1 0 0 0 # 0 1 1 0 0 0 □ ...

x 1 1 0 0 0 # 0 1 1 0 0 0 □ ...
```

 M_1 accepts inputs in language $B = \{w \# w | w \in \{0,1\}^*\}$

```
M_1 = "On input string w:
```

"Cross off" = write "x" char

```
      0 1 1 0 0 0 # 0 1 1 0 0 0 □ ...

      x 1 1 0 0 0 # 0 1 1 0 0 0 □ ...

      x 1 1 0 0 0 # x 1 1 0 0 0 □ ...
```

```
"Cross off" = write "x" char
```

 M_1 accepts inputs in language $B = \{w \# w | w \in \{0,1\}^*\}$

```
M_1 = "On input string w:
```

Head "zags" back to start

```
      0
      1
      1
      0
      0
      0
      1
      1
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
```

```
"Cross off" = write "x" char
```

 M_1 accepts inputs in language $B = \{w \# w | w \in \{0,1\}^*\}$

 M_1 = "On input string w:

Continue crossing off

```
"Cross off" = write "x" char
```

```
      0 1 1 0 0 0 # 0 1 1 0 0 0 □ ...

      x 1 1 0 0 0 # 0 1 1 0 0 0 □ ...

      x 1 1 0 0 0 # x 1 1 0 0 0 □ ...

      x 1 1 0 0 0 # x 1 1 0 0 0 □ ...
```

 M_1 accepts inputs in language $B = \{w \# w | w \in \{0,1\}^*\}$

 M_1 = "On input string w:

- 1. Zig-zag across the tape to corresponding positions on either side of the # symbol to check whether these positions contain the same symbol. If they do not, or if no # is found, reject. Cross off symbols as they are checked to keep track of which symbols correspond.
- 2. When all symbols to the left of the # have been crossed off, check for any remaining symbols to the right of the #. If any symbols remain, reject; otherwise, accept."

```
      0
      1
      1
      0
      0
      0
      1
      1
      0
      0
      0
      0
      1
      1
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
```

 M_1 accepts inputs in language $B = \{w \# w | w \in \{0,1\}^*\}$

 M_1 = "On input string w:

- 1. Zig-zag across the tape to corresponding positions on either side of the # symbol to check whether these positions contain the same symbol. If they do not, or if no # is found, reject. Cross off symbols as they are checked to keep track of which symbols correspond.
- 2. When all symbols to the left of the # have been crossed off, check for any remaining symbols to the right of the #. If any symbols remain, reject; otherwise, accept."

Turing Machines: Formal Definition

```
A Turing machine is a 7-tuple, (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}), where Q, \Sigma, \Gamma are all finite sets and
```

- **1.** Q is the set of states,
- 2. Σ is the input alphabet not containing the **blank symbol** \Box
- **3.** Γ is the tape alphabet, where $\square \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- 5. $q_0 \in \mathcal{C}$ read le sta write to move
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

$$B = \{ w \# w | w \in \{0,1\}^* \}$$

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet not containing the **blank symbol** \sqcup ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- **5.** $q_0 \in \text{read} \ \ \text{es} \ \ \text{write} \ \ \ \text{move}$
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet not containing the **blank symbol** \sqcup ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- 5. $q_0 \in \text{read} \triangleright s$ write move
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet not containing the **blank symbol** \sqcup ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- 5. $q_0 \in \text{read}$ es write move
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

 $B = \{ w \# w | w \in \{0,1\}^* \}$

Formal Turing Machine Example

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet not containing the **blank symbol** \sqcup ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- **5.** $q_0 \in \text{read} \ \ \text{es} \ \ \text{write} \ \ \ \text{move}$
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

$$B = \{ w \# w | w \in \{0,1\}^* \}$$

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet not containing the **blank symbol** \sqcup ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- 5. $q_0 \in \text{read} \text{ e s}$ write move
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

Turing Machine: Informal Description

• M_1 accepts if input is in language $B = \{w\#w|\ w \in \{0,1\}^*\}$

M_1 = "On input string w:

- 1. Zig-zag across the tape to corresponding positions on either side of the # symbol to check whether these positions contain the same symbol. If they do not if no # is found, reject. Cross off symbols as they symbols correspond. We will (mostly) track of which stick to informal descriptions of
- 2. When all symbols to Turing machines, n crossed off, check for any remaining like this one at of the #. If any symbols remain, reject; otherwise, cept."

TM Informal Description: Caveats

- TM informal descriptions are <u>not</u> a "do whatever" card
 - must be equivalent to a formal tuple Analogy:
 - informal TM ~ function definition in "high level" language
 - formal TM ~ function definition in bytecode or assembly
- Input
 - Must be named (like a function parameter), e.g., w
 - Assume string of chars from the alphabet (for now)
- An informal "step" represents a finite # of formal transitions
 - It cannot run forever
 - E.g., can't say "try all numbers" as a "step"

Non-halting Turing Machines (TMs)

- A Turing Machine can <u>run forever</u>
 - E.g., the head can move back and forth in a loop
- Thus, there are two classes of Turing Machines:
 - A recognizer is a Turing Machine that may run forever (all possible TMs)
 - A decider is a Turing Machine that always halts.

Call a language *Turing-recognizable* if some Turing machine recognizes it.

Call a language *Turing-decidable* or simply *decidable* if some Turing machine decides it.

Formal Definition of an "Algorithm"

• An algorithm is equivalent to a Turing-decidable Language

Turing Machine Variations

1. Multi-tape TMs

2. Non-deterministic TMs

We will prove that these TM variations are **equivalent to** deterministic, single-tape machines

Reminder: Equivalence of Machines

• Two machines are equivalent when ...

• ... they recognize the same language

Theorem: Single-tape TM ⇔ Multi-tape TM

- ⇒ If a single-tape TM recognizes a language, then a multi-tape TM recognizes the language
 - Single-tape TM is equivalent to ...
 - ... multi-tape TM that only uses one of its tapes
 - (could you write out the formal conversion?)
- ← If a multi-tape TM recognizes a language,
 then a single-tape TM recognizes the language
 - <u>Convert</u>: multi-tape TM → single-tape TM

Multi-tape TM → Single-tape TM

Idea: Use delimiter (#) on single-tape to simulate multiple tapes

• Add "dotted" version of every char to <u>simulate</u> multiple <u>heads</u>

<u>Theorem</u>: Single-tape TM ⇔ Multi-tape TM

- ✓ ⇒ If a single-tape TM recognizes a language, then a multi-tape TM recognizes the language
 - Single-tape TM is equivalent to ...
 - ... multi-tape TM that only uses one of its tapes
- ✓ ← If a multi-tape TM recognizes a language, then a single-tape TM recognizes the language
 - Convert: multi-tape TM → single-tape TM

Check-in Quiz 10/27

On gradescope