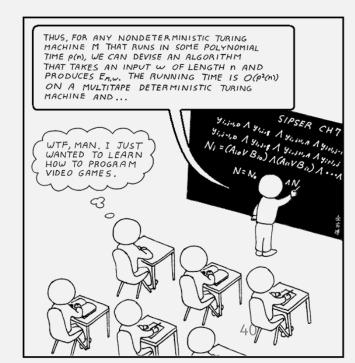
# **UMB CS420 Nondeterministic TMs**

Tuesday, November 1, 2022

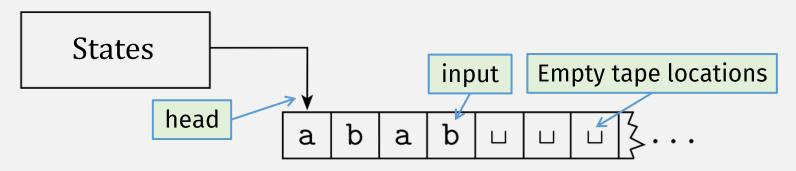


### Announcements

- HW 6 in
  - Due Sun 10/30 11:59pm EST
- HW 7 out
  - Due Sun 11/6 11:59pm EST

### Last Time: Turing Machines

- Turing Machines can read and write to arbitrary "tape" cells
  - Tape initially contains input string
- The tape is infinite
  - (to the right)



• On a transition, "head" can move left or right 1 step

Call a language *Turing-recognizable* if some Turing machine recognizes it.

# Turing Machine: High-Level Description

•  $M_1$  accepts if input is in language  $B = \{w \# w | w \in \{0,1\}^*\}$ 

 $M_1 =$  "On input string w:

1. Zig-zag across the side of the # symbols.

Cross off symbols as symbols correspond.

We will (mostly) stick to informal descriptions of Turing machines, like this one

positions on either

(But it must always correspond to some precise formal description)

keep track of which

2. When all symbols to the check for any remaining s symbols remain, reject; ot

Analogy:

High-level (e.g., Python) <u>function definitions</u>

VS

<u>assembly language</u>

### Turing Machines: Formal Definition

```
A Turing machine is a 7-tuple, (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}), where Q, \Sigma, \Gamma are all finite sets and
```

- **1.** Q is the set of states,
- 2.  $\Sigma$  is the input alphabet not containing the **blank symbol**  $\Box$
- **3.**  $\Gamma$  is the tape alphabet, where  $\square \in \Gamma$  and  $\Sigma \subseteq \Gamma$ ,
- **4.**  $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$  is the transition function,
- 5.  $q_0 \in \mathcal{C}$  read e sta write to move
- **6.**  $q_{\text{accept}} \in Q$  is the accept state, and
- 7.  $q_{\text{reject}} \in Q$  is the reject state, where  $q_{\text{reject}} \neq q_{\text{accept}}$ .

### Flashback: DFAS VS NFAS

#### A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ , where

- 1. Q is a finite set called the *states*,
- 2.  $\Sigma$  is a finite set called the *alphabet*,
- 3.  $\delta: Q \times \Sigma \longrightarrow Q$  is the *transition function*,
- **4.**  $q_0 \in Q$  is the **start state**, and
- **5.**  $F \subseteq Q$  is the *set of accept states*.

VS

Nondeterministic transition produces <u>set</u> of possible next states

#### A nondeterministic finite automaton

is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ , where

- **1.** Q is a finite set of states,
- 2.  $\Sigma$  is a finite alphabet,
- 3.  $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$  is the transition function,
- **4.**  $q_0 \in Q$  is the start state, and
- **5.**  $F \subseteq Q$  is the set of accept states.

### Remember: Turing Machine Formal Definition

A **Turing machine** is a 7-tuple,  $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ , where  $Q, \Sigma, \Gamma$  are all finite sets and

- **1.** Q is the set of states,
- **2.**  $\Sigma$  is the input alphabet not containing the *blank symbol*  $\Box$ ,
- **3.**  $\Gamma$  is the tape alphabet, where  $\sqcup \in \Gamma$  and  $\Sigma \subseteq \Gamma$ ,
- **4.**  $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$  is the transition function,
- **5.**  $q_0 \in Q$  is the start state,
- **6.**  $q_{\text{accept}} \in Q$  is the accept state, and
- 7.  $q_{\text{reject}} \in Q$  is the reject state, where  $q_{\text{reject}} \neq q_{\text{accept}}$ .

#### Nondeterministic Nondeterministic Nondeterministic Turing Machine Formal Definition

```
A Nondeterministic is a 7-tuple, (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}), where Q, \Sigma, \Gamma are all finite sets and
```

- **1.** Q is the set of states,
- **2.**  $\Sigma$  is the input alphabet not containing the *blank symbol*  $\Box$ ,
- **3.**  $\Gamma$  is the tape alphabet, where  $\sqcup \in \Gamma$  and  $\Sigma \subseteq \Gamma$ ,

**4.** 
$$\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$$
  $\delta: Q \times \Gamma \longrightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$ 

- **5.**  $q_0 \in Q$  is the start state,
- **6.**  $q_{\text{accept}} \in Q$  is the accept state, and
- 7.  $q_{\text{reject}} \in Q$  is the reject state, where  $q_{\text{reject}} \neq q_{\text{accept}}$ .

### Thm: Deterministic TM ⇔ Non-det. TM

- ⇒ If a deterministic TM recognizes a language, then a non-deterministic TM recognizes the language
  - Convert: Deterministic TM → Non-deterministic TM ...
  - ... change Deterministic TM  $\delta$  fn output to a one-element set
    - (just like conversion of DFA to NFA --- HW 2, Problem 2)
  - DONE!
- ← If a non-deterministic TM recognizes a language, then a deterministic TM recognizes the language.
  - <u>Convert:</u> Non-deterministic TM → Deterministic TM ...
  - ... ???

### Review: Nondeterminism

Deterministic Nondeterministic computation computation • start In nondeterministic computation, every step can branch into a set of "states" reject What is a "state" for a TM? accept or reject

## Flashback: PDA Configurations (IDS)

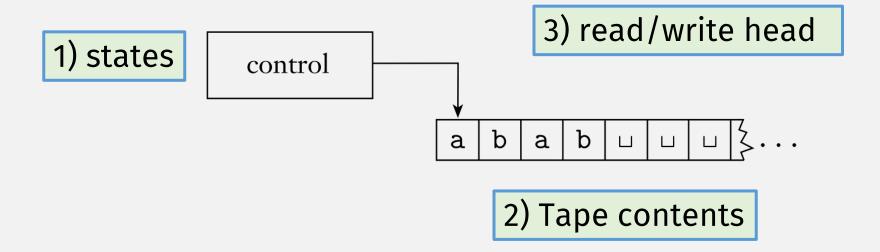
• A configuration (or ID) is a "snapshot" of a PDA's computation

• 3 components  $(q, w, \gamma)$ : q = the current statew = the remaining input string

 $\gamma$  = the stack contents

A sequence of configurations represents a PDA computation

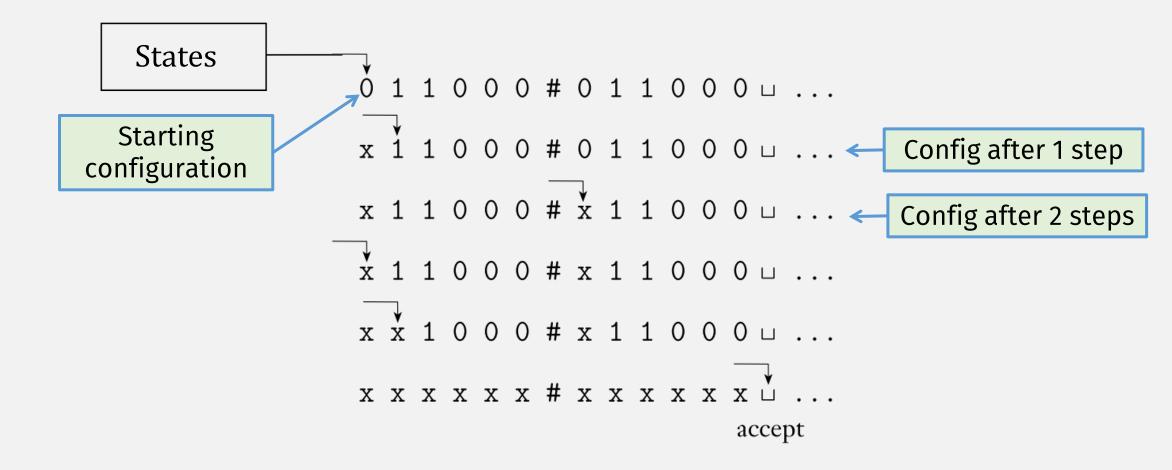
# TM Configuration (ID) = ???



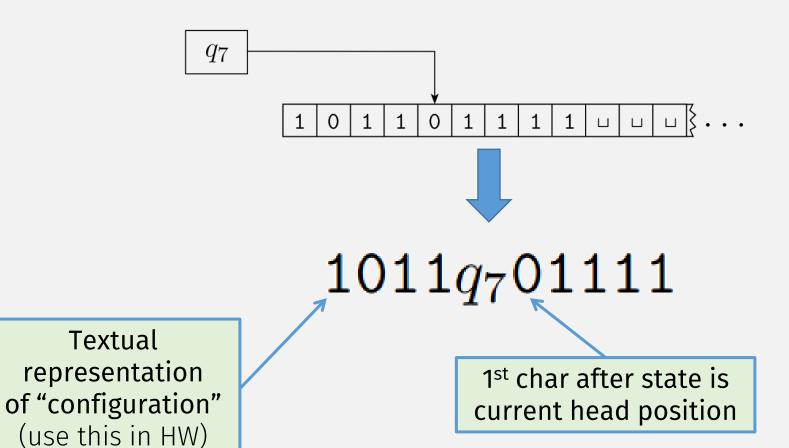
A *Turing machine* is a 7-tuple,  $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ , where  $Q, \Sigma, \Gamma$  are all finite sets and

- **1.** Q is the set of states,
- **2.**  $\Sigma$  is the input alphabet not containing the *blank symbol*  $\sqcup$ ,
- **3.**  $\Gamma$  is the tape alphabet, where  $\sqcup \in \Gamma$  and  $\Sigma \subseteq \Gamma$ ,
- **4.**  $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$  is the transition function,
- **5.**  $q_0 \in Q$  is the start state,
- **6.**  $q_{\text{accept}} \in Q$  is the accept state, and
- 7.  $q_{\text{reject}} \in Q$  is the reject state, where  $q_{\text{reject}} \neq q_{\text{accept}}$ .

### TM Configuration = State + Head + Tape



### TM Configuration = State + Head + Tape



### TM Computation, Formally

Single-step head confige (Right) 
$$\alpha q_1 \mathbf{a} \beta \vdash \alpha \mathbf{x} q_2 \beta$$
 if  $q_1, q_2 \in Q$  write  $\delta(q_1, \mathbf{a}) = (q_2, \mathbf{x}, \mathbf{R})$  read  $\mathbf{a}, \mathbf{x} \in \Gamma$   $\alpha, \beta \in \Gamma^*$  (Left)  $\alpha bq_1 \mathbf{a} \beta \vdash \alpha q_2 b\mathbf{x} \beta$  if  $\delta(q_1, \mathbf{a}) = (q_2, \mathbf{x}, \mathbf{L})$ 

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$$

#### **Extended**

Base Case

$$I \stackrel{*}{\vdash} I$$
 for any ID  $I$ 

Recursive Case

$$I \stackrel{*}{\vdash} J$$
 if there exists some ID  $K$  such that  $I \vdash K$  and  $K \stackrel{*}{\vdash} J$ 

Edge cases: 
$$q_1\mathbf{a}\beta \vdash q_2\mathbf{x}\beta$$

Head stays at leftmost cell

$$\alpha q_1 \vdash \alpha \lrcorner q_2$$

if 
$$\delta(q_1, \mathbf{a}) = (q_2, \mathbf{x}, \mathbf{L})$$

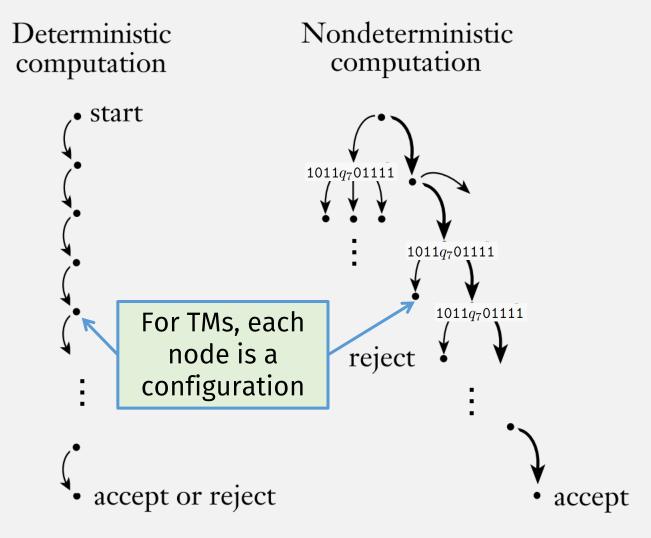
(L move, when already at leftmost cell)

if 
$$\delta(q_1, \square) = (q_2, \square, R)$$

(R move, when at rightmost filled cell)

Add blank symbol to config

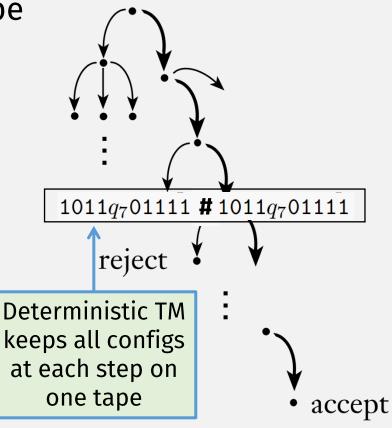
### Nondeterminism in TMs



1st way

- Simulate NTM with Det. TM:
  - Det. TM keeps multiple configs single tape
    - Like how single-tape TM simulates multi-tape
  - Then run all computations, concurrently
    - I.e., 1 step on one config, 1 step on the next, ...
  - Accept if any accepting config is found
  - Important:
    - Why must we step configs concurrently?

Nondeterministic computation



### Interlude: Running TMs inside other TMs

If TMs are function definitions, then they can be <u>called</u> like functions ...

#### **Exercise**:

• Given: TMs  $M_1$  and  $M_2$ 

• Create: TM M that accepts if <u>either</u>  $M_1$  or  $M_2$  accept

"loop" means input string not accepted

#### Possible solution #1:

M = on input x,

- 1. Call  $M_1$  with arg x; accept if  $M_1$  accepts
- 2. Call  $M_2$  with arg x; accept if  $M_2$  accepts

| $M_1$  | $M_2$  | M      |
|--------|--------|--------|
| reject | accept | accept |
| accept | reject | accept |
|        |        | ***    |

Note: This solution would be ok if we knew  $M_1$  and  $M_2$  were deciders (which halt on all inputs)

### Interlude: Running TMs inside other TMs

If TMs are function definitions, then they can be <u>called</u> like functions ...

#### **Exercise**:

• Given: TMs  $M_1$  and  $M_2$ 

• Create: TM M that accepts if <u>either</u>  $M_1$  or  $M_2$  accept

... with concurrency!

#### Possible solution #1:

M = on input x,

- 1. Call  $M_1$  with arg x; accept if  $M_1$  accepts
- 2. Call  $M_2$  with arg x; accept if  $M_2$  accepts

| $M_1$  | $M_2$  | M      |
|--------|--------|--------|
| reject | accept | accept |
| accept | reject | accept |
| accept | loops  | accept |
| loops  | accept | loops  |

#### Possible solution #2:

M = on input x,

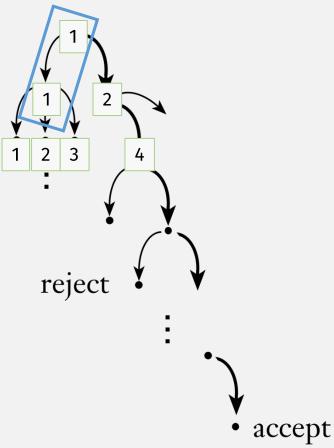
- 1. Call  $M_1$  and  $M_2$  with x concurrently, i.e.,
  - a) Run  $M_1$  with x for 1 step; accept if  $M_1$  accepts
  - b) Run  $M_2$  with x for 1 step; accept if  $M_2$  accepts
  - c) Repeat

| $M_1$  | $M_2$  | M      |   |
|--------|--------|--------|---|
| reject | accept | accept |   |
| accept | reject | accept | V |
| accept | loops  | accept |   |
| loops  | accept | accept | V |

2<sup>nd</sup> way (Sipser)

- Simulate NTM with Det. TM:
  - Number the nodes at each step
  - Check all tree paths (in breadth-first order)
    - 1
    - 1-1

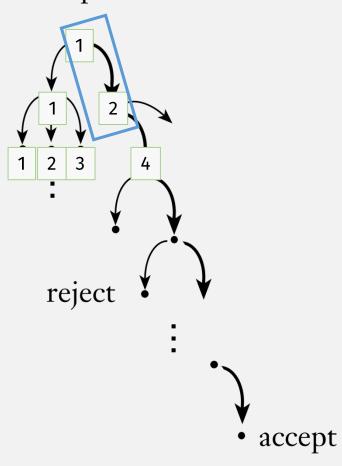




2<sup>nd</sup> way (Sipser)

- Simulate NTM with Det. TM:
  - Number the nodes at each step
  - Check all tree paths (in breadth-first order)
    - 1
    - 1-1
    - 1-2

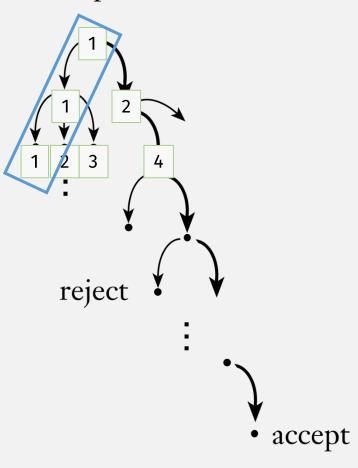
Nondeterministic computation



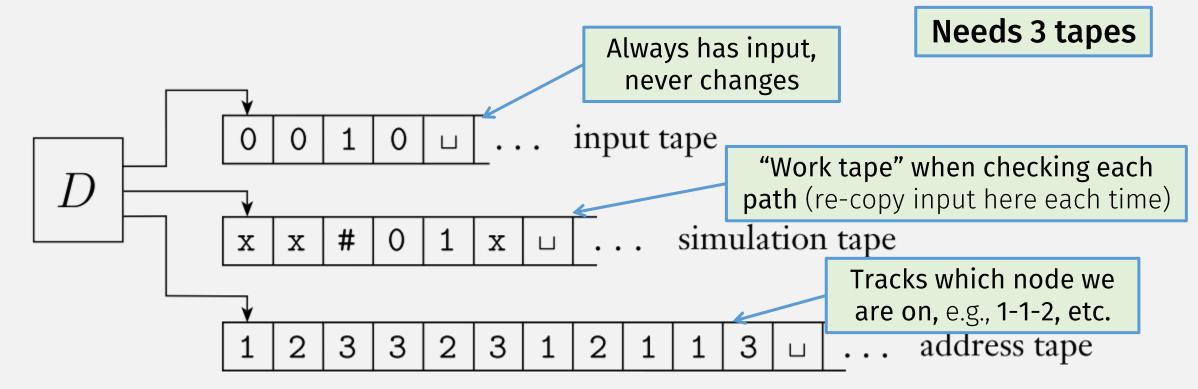
2<sup>nd</sup> way (Sipser)

- Simulate NTM with Det. TM:
  - Number the nodes at each step
  - Check all tree paths (in breadth-first order)
    - 1
    - 1-1
    - 1-2
    - 1-1-1

# Nondeterministic computation



2<sup>nd</sup> way (Sipser)



- If a deterministic TM recognizes a language,
   then a nondeterministic TM recognizes the language
  - Convert Deterministic TM → Non-deterministic TM

- - Convert Nondeterministic TM → Deterministic TM

### Conclusion: These are All Equivalent TMs!

Single-tape Turing Machine

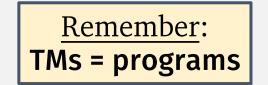
Multi-tape Turing Machine

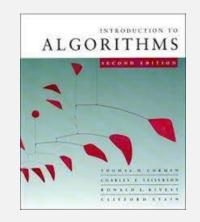
Non-deterministic Turing Machine

## Turing Machines and Algorithms

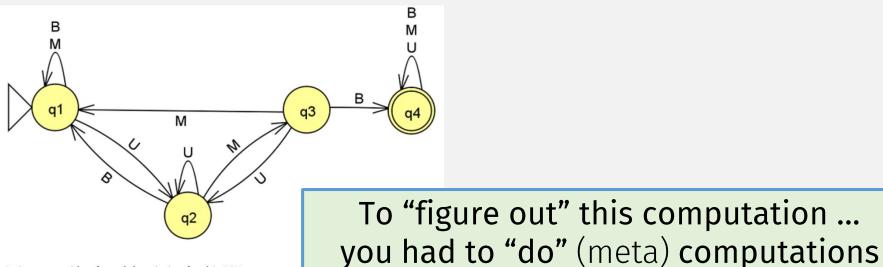
- Turing Machines can express any "computation"
  - I.e., a Turing Machine models (Python, Java) programs (functions)!
- 2 classes of Turing Machines
  - Recognizers may loop forever

- **Deciders**\_always halt
- Deciders = Algorithms
  - I.e., an algorithm is any program that always halts





### Flashback: HW 1, Problem 1



1. Come up with a formal description for this DFA.

Recall that a DFA's formal description has five components,  $M=(Q,\Sigma,\delta,q_{start},F).$ 

You may assume that the alphabet contains only the symbols from the diagram.

2. Then for each of the following, say whether the computation represents an accepting computation or not (make sure to review the definition of an accepting computation)

If the answer is no, explain why not.:

- a.  $\hat{\delta}(q1, \mathtt{UUMB})$
- b.  $\hat{\delta}(q1, \mathtt{UMMB})$
- c.  $\hat{\delta}(q2, \mathtt{UMBB})$
- d.  $\hat{\delta}(q3,arepsilon)$
- e.  $\hat{\delta}(q3, \mathtt{UMASSBOSTON})$

This represents computation by a DFA

69

(e.g., in your head)

### Flashback: DFA Computations

Define the extended transition function:  $\hat{\delta}: Q \times \Sigma^* \to Q$ 

Base case:  $\hat{\delta}(q, \epsilon) = q$ 

First char

Last chars

Remember: TMs = programs

Recursive case:  $\hat{\delta}(q, a_1 w_{rest}) = \hat{\delta}(\delta(q, a_1), w_{rest})$ 

Single transition step

Calculating this computation requires (meta) computation!

Could you implement this (meta) computation as an algorithm?

A function: DFAaccepts(B,w) returns TRUE if DFA B accepts string w

- 1) Define "current" state  $q_{\mathrm{current}}$  = start state  $q_0$
- 2) For each input char  $a_i$  ...
  - a) Define  $q_{\text{next}} = \delta(q_{\text{current}}, a_i)$
  - b) Set  $q_{\text{current}} = q_{\text{next}}$
- 3) Return TRUE if  $q_{\mathrm{current}}$  is an accept state

### The language of **DFAaccepts**

Function DFAaccepts(B,w) returns TRUE if DFA B accepts string w

$$A_{\mathsf{DFA}} = \{ \langle B, w \rangle | \ B \text{ is a DFA that accepts input string } w \}$$

But a language is a set of strings?

### Interlude: Encoding Things into Strings

- Definition: A Turing machine's input is always a string
- But: A TM (program)'s input could also be a list, graph, DFA, ...?
- Solution: anything used as TM input must be encoded as string

Notation: <Something> = string encoding for Something

• A tuple combines multiple encodings, e.g., <*B*, *w*> (from prev slide)

Example: Possible string encoding for a DFA?

DFA?

But in this class, we don't care about what the encoding is!

| Cautomaton |

ate name="q2"
$$\times$$
file ate name="q3" $\times$ fstate>
The list of transitions
from>0
to>0
to>0
to>0
to>0
(Q,  $\Sigma$ ,  $\delta$ ,  $q_0$ ,  $F$ )

(written as string) 72

### Interlude: High-Level TMs and Encodings

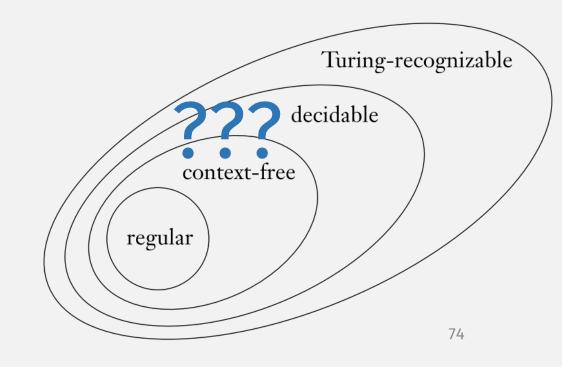
### A high-level TM description:

- 1. Doesn't need to describe exactly how input string is encoded
- 2. Assumes input is a "valid" encoding
  - · Invalid encodings are implicitly rejected

### The language of **DFAaccepts**

$$A_{\mathsf{DFA}} = \{ \langle B, w \rangle | \ B \text{ is a DFA that accepts input string } w \}$$

- DFAaccepts is a Turing machine
- But is it a decider or recognizer?
  - I.e., is it an algorithm?
- To show it's an algo, need to prove:  $A_{\mathsf{DFA}}$  is a decidable language



### How to prove that a language is decidable?

Create a Turing machine that decides that language!

#### Remember:

- A decider is Turing Machine that always halts
  - I.e., for any input, it either accepts or rejects it.
  - It must never go into an infinite loop

### How to Design Deciders

- If TMs = Programs ...... then **Creating** a TM = Programming
- E.g., if HW asks "Show that lang L is decidable" ...
  - .. you must create a TM that decides L; to do this ...
  - ... think of how to write a (halting) program that does what you want

### Next Time: ADFA is a decidable language

 $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | \ B \text{ is a DFA that accepts input string } w \}$ 

Decider for  $A_{DFA}$ :

### Check-in Quiz 11/1

On gradescope