UMB CS 420

Undecidability \

November 9, 2002

‘ Turing-recognizable

decidable

context-free

%/{/{0«/{0@#{@/{&?

« HW 8 out
e due Mon 11/14 11:59pm EST

Feeqp: Decidability of Regular and CFLs

Apra = {(B,w)| B is a DFA that accepts input string w } Decidable

Anra = {(B,w)| B is an NFA that accepts input string w } Decidable

Arex = {(R,w)| R is a regular expression that generates string w} Decidable

e Epra = {(A)| Aisa DFA and L(A) = 0} Decidable
* EQpra = {(A,B)| A and B are DFAs and L(A) = L(B)} Decidable
e Acrc = {(G,w)| G is a CFG that generates string w} Decidable
* Ecre = {(G)| GisaCFG and L(G) = 0} Decidable
* EQcrc = {(G,H)| G and H are CFGs and L(G) = L(H)} Undecidable?

e Avm = {(M,w)| M isaTMand M accepts w} Undecidable?

7
Thm: Aty is ‘Turing-recognizable Q////

Atm = {(M,w)| M i1sa TM and M accepts w}

U = “On input (M, w), where M is a TM and w is a string:
1. Simulate M on input w.

2. If M ever enters its accept state, accept; if M ever enters its
reject state, reject.”

U = Implements TM computation steps aqial - axgp
« “Computer” that can simulate other computers
* |.e,, “The Universal Turing Machine”
* Problem: U loops when M loops

So it's a recognizer, not a decider

Not in here? e

Thm: A+ is undecidable
Atm = {(M,w)

M isa TM and M accepts w }

« 777 It's hard to prove that

something is not true!

e.g, proving a language is not regular ...
is harder than proving a language is regular

It's sometimes possible, but might
require|new proof techniques!

e.g., pumping lemma,
proof by contradiction for
proving non-regularness

Kinds of Functions (a fn maps DoMAIN - RANGE)

. Injective, a.k.a. “one-to-one”
« Every element in DoMAIN has a unique mapping {

* How to remember:
« Entire DoMAIN is mapped “in” to the RANGE

X Y

* Surjective, aka, “onto” 1 D
« Every element in RANGE is mapped to 2 B

« How to remember: ’ -

« “Sur” = “over” (eg, survey); DoMAIN is mapped “over” the RANGE)

X Y
* Bijective, aka, “correspondence” or “one-to-one correspondence” ; E
* |s both injective and surjective .. .
« Unique pairing of every element in DoMAIN and RANGE s A

Countability

« A setis “countable” if it is:
* Finite
 Or, there exists a bijection between the set and the natural numbers

* |n this case, the set has the same size as the set of natural numbers
 This is called “countably infinite”

Exercise: Which set is larger?

 The set of:

 Natural numbers, or
 Even numbers?

* They are the same size! Both are countably infinite
« Proof: Bijection:

n f(n) =2n

1 2 Every natural number

9 4 maps to a unique even
number, and vice versa

3 6

Exercise: Which set is larger?

* The set of:

 Natural numbers N, or
-+ Positive rational numbers? Q = {Z|m,n € N'}

* They are the same size! Both are countably infinite

[

But these don’t get mapped to:
(not a bijection)

Exercise: Which set is larger?

* The set of:
 Natural numbers N, or
+ Positive rational numbers? Q = {Z|m,n € N'}

* They are the same size! Both are countably infinite

Another mapping: \

This is a bijection bc
every natural number
maps to a unique
fraction, and vice versa

(1] I1SN ot [S18])

Exercise: Which set is larger?

* The set of:
 Natural numbers N, or :
- Real numbers? TR This proof
- There are more real numbers. It is uncountably infinite.| technique s
called
. diagonalization
Proof, by contradiction: g
« Assume a bijection between natural and real numbers exists.
« So: every nat num maps to a unique real, and vice versa - £(n)
ut we show that in any given mapping, , e.g: "1 314159, ..
« Some real number is not mapped to ... different 2 | 55.85655. ..
« E.g,a number that has different digits at each position: 3| 0.193h5...
v=0.464 ... | 0%

« This numbercannot be in the mapping ...

1t A hypothetical i
* ... S0 we have a contradiction! ypothetical mapping

Georg Cantor

 Invented set theory
« Came up with countable infinity (1873)

« And uncountability:

Vovr S7nvA 7

Vo vov...
BUT THERE'S NOTHING
LARGER THAN THAT...
\S THERE?

A formative day for Georg Cantor.

« Also: how to show uncountability with “diagonalization” technique

Diagonalization with Turing Machines

Diagonal: Result of Giving a TM its own Encoding as Input

\ (My) (My) (M;3)

All TM Encodings

(My) (D)
—— M, | accept reject accept reject accept
1> | accept accept accept accept accept
Ms | reject reject reject reject reject
All TMs,_!Il/[4 accept accept reject reject accept
. _ 5
T IDN\~ reject reject accept accept :
construct |/ . 't must both

TM D can't exist!

“opposite”
TM D

accept and reject!

What
should
happen

here?

3 Easy Steps!

Thm: Aty is undecidable
Atm = {(M,w)| M 1sa TM and M accepts w}

Proof by contradiction:
1. Assume A;, Is decidable. So there exists-a decider H for it:

accept 1t M accepts w
H((M, w)) = { g

reject it M does not accept w

2. Use H in another TM ... the impossible “opposite” machine:
D = “On input (M), where M is a TM:

Frrc;m(’)chg 1. Run H oninput (M, (M)).<— Result of giving a TM itself as input
viou
P slide 2. Output the opposite of what H outputs. That is, it H accepts,

reject; and if H rejects, accept.”<— Do the opposite

3 Easy Steps!

Thm: Aty is undecidable
Atm = {(M,w)| M i1sa TM and M accepts w}

Proof by contradiction: [1hic cannot be true
1. Assume A, IS decidable. So there exists a decider H for it:

H((M, w)) accept it M accepts w
b w — . .
reject it M does not accept w

2. Use Hin another TM ... the impossible “opposite” machine:

D = t (M), where M is a TM:
From the 1 >

previous .
slide 2. Output the opposite of what

reject; and if H rejects, accept.”

3. But D does not exist! Contradiction! So the assumption is false:

. Run H on1n
That is, it H accepts,

Fasier Undecidability Proofs

« We proved Amv = {(M,w)| M isaTMand M accepts w} yndecidable ...

... by contradiction:
« By showing its decider can help create impossible decider “D"!

 Hard: Coming up with “D” (needed to invent diagonalization)

e But then we more easily reduced Atm to “D” e

(M) (Mz) (Ms) (Msy) --- (D)

My | accept reject accept reject accept
M, | accept accept accept accept accept
reject

My | accepl accepl reject reject accept
?

D reject reject accept accept

e Fasier: reduce problems to Atm!

l.e., “Algorithm to determine if a TM is an decider”?

The Halting Problem
HALT vy = {(M,w)| M isa TM and M halts on input w}
Thm: HA LTt 1s undecidable
Proof, by contradiction:
« Assume HALTtm has decider R; use it to create decider forAtwm :

THE HALTING PROBLEM IS EASY TO SOLVE.
IF THE PROGRAM RUNS TOO LONG, T TAKE

THIS STICK AND BEAT THE COMPUTER
UNTIL IT STOPS, T

c contradiction

« But A, Is undecidable and has no decider!

What if Alan Turing had been an engineer?

The Halting Problem

HALT vy = {(M,w)| M isa TM and M halts on input w}
Thm: HALT 1\ is undecidable
M, by contradiction: Using our hypothetical decider R

« Assume HALTtm has decider R; use it to create decider forAtwm :

S = “On input (M, w), arrencoding of a TM M and a string w:
1. Run TM R on input (M, w).

2. If R rejects, reject. This means M loops on input w
3. It R accepts, simulate M on w until 1t halts.<— This step always halts
4. It M has accepted, accept; it M has rejected, reject.”

Termination argument:

Step 1: Ris a decider so always halts
Step 3: M always halts bc R said so

The Halting Problem
HALT vy = {(M,w)| M isa TM and M halts on input w}
Thm: HA LTt 1s undecidable
Proof, by contradiction:
« Assume HALTtm has decider R; use it to create decider forAtwm :

“On input (M, w), an encoding of a TM M and a string w:
on input (M, w).
2. If R rejects, reject:

3. If R accepts, simulate M on w

« But A, Is undecidable!
* |.e,, the decider we just created does not exist! So HALT 1y is undecidable

Fasier Undecidability Proofs

In general, to prove the undecidability of a language,
use proof by contradiction:

1. Assume the language is decidable (and thus has a decider)

2. Show that its decider can be used to create another decider ...

... for a known undecidable language ...

3. ...which cannot have a decider! That's a Contradiction!

Sumary: The Limits of Algorithms

* Apra = {(B,w)| B is a DFA that accepts input string w } Decidable
e Acec = {{(G,w)| G is a CFG that generates string w} Decidable
e Atm = {(M,w)| M isa TM and M accepts w) Undecidable
* Fpra = {(A)| AisaDFAand L(A) = 0} Decidable
* Ecre = {(G)| Gis a CFG and L(G) = (1} Decidable

next |* frryy = {(M)| M isaTM and L(M) = 0} Undecidable

Check-in Quiz 11/10

On gradescope

