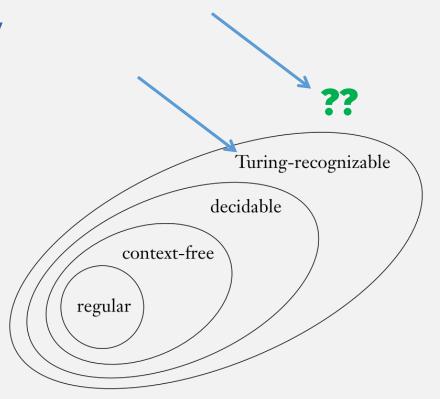
UMB CS 420 Undecidability

November 9, 2002



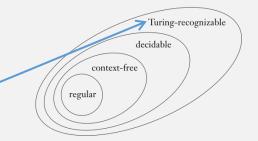
Announcements

- HW 8 out
 - due Mon 11/14 11:59pm EST

Recap: Decidability of Regular and CFLs

- $A_{\mathsf{DFA}} = \{\langle B, w \rangle | \ B \text{ is a DFA that accepts input string } w\}$ Decidable
- $A_{NFA} = \{\langle B, w \rangle | B \text{ is an NFA that accepts input string } w\}$ Decidable
- $A_{REX} = \{\langle R, w \rangle | R \text{ is a regular expression that generates string } w \}$ Decidable
- $E_{\mathsf{DFA}} = \{ \langle A \rangle | \ A \text{ is a DFA and } L(A) = \emptyset \}$ Decidable
- $EQ_{\mathsf{DFA}} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$ Decidable
- $A_{CFG} = \{\langle G, w \rangle | G \text{ is a CFG that generates string } w\}$ Decidable
- $E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$ Decidable
- $EQ_{\mathsf{CFG}} = \{ \langle G, H \rangle | G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}$ Undecidable?
- $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$ Undecidable?97

Thm: A_{TM} is Turing-recognizable



 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$

U = "On input $\langle M, w \rangle$, where M is a TM and w is a string:

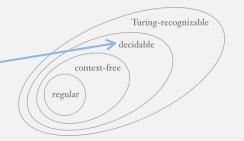
- 1. Simulate M on input w.
- 2. If M ever enters its accept state, accept; if M ever enters its reject state, reject."

U = Implements TM computation steps $\alpha q_1 \mathbf{a}\beta \vdash \alpha \mathbf{x} q_2\beta$

- "Computer" that can simulate other computers
- i.e., "The Universal Turing Machine"
- Problem: *U* loops when *M* loops

So it's a **recognizer**, <u>not</u> a decider

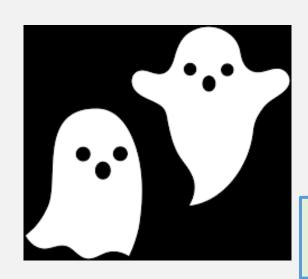
Not in here?



Thm: A_{TM} is undecidable

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$

• ???



It's hard to prove that something is <u>not true!</u>

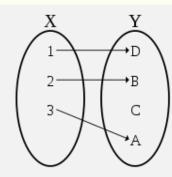
e.g., proving a language <u>is not regular</u>... is harder than proving a language <u>is regular</u>

It's sometimes possible, but might require new proof techniques!

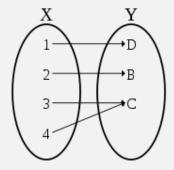
e.g., **pumping lemma**, **proof by contradiction** for proving non-regularness

Kinds of Functions (a fn maps Domain → Range)

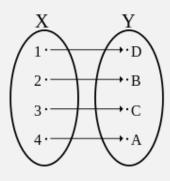
- Injective, a.k.a., "one-to-one"
 - Every element in Domain has a unique mapping
 - How to remember:
 - Entire Domain is mapped "in" to the Range



- Surjective, a.k.a., "onto"
 - Every element in RANGE is mapped to
 - How to remember:
 - "Sur" = "over" (eg, survey); Domain is mapped "over" the Range



- Bijective, a.k.a., "correspondence" or "one-to-one correspondence"
 - Is both injective and surjective
 - Unique pairing of every element in Domain and Range



Countability

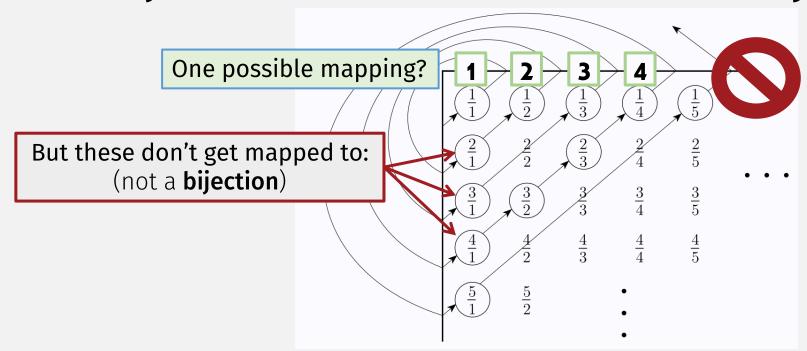
- A set is "countable" if it is:
 - Finite
 - Or, there exists a bijection between the set and the natural numbers
 - In this case, the set has the same size as the set of natural numbers
 - This is called "countably infinite"

- The set of:
 - Natural numbers, or
 - Even numbers?
- They are the <u>same size!</u> Both are **countably infinite**
 - Proof: Bijection:

n	f(n) = 2n
1	2
2	4
3	6
:	:

Every natural number maps to a unique even number, and vice versa

- The set of:
 - Natural numbers ${\cal N}$, or
 - Positive rational numbers? $\mathcal{Q} = \{\frac{m}{n} | m, n \in \mathcal{N}\}$
- They are the same size! Both are countably infinite



- The set of:
 - Natural numbers ${\cal N}$, or
 - Positive rational numbers? $\mathcal{Q} = \{\frac{m}{n} | m, n \in \mathcal{N}\}$
- They are the same size! Both are countably infinite

- The set of:
 - Natural numbers ${\cal N}$, or
 - Real numbers? $\,\mathcal{R}\,$
- There are more real numbers. It is uncountably infinite.

This proof technique is called diagonalization

Proof, by contradiction:

• Assume a bijection between natural and real numbers exists.

• So: every nat num maps to a unique real, and vice versa

But we show that in any given mapping,

• Some real number is not mapped to ...

• E.g., a number that has different digits at each position:

>	\boldsymbol{x}	=	0.	4	6	4	1		

- This number cannot be in the mapping ...
- ... So we have a contradiction!

n f(n)1 3 14159...

2 55.5555...

3 0.12345...

4 0.50000...

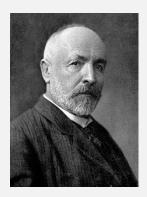
: :

e.g.:

different

A hypothetical mapping

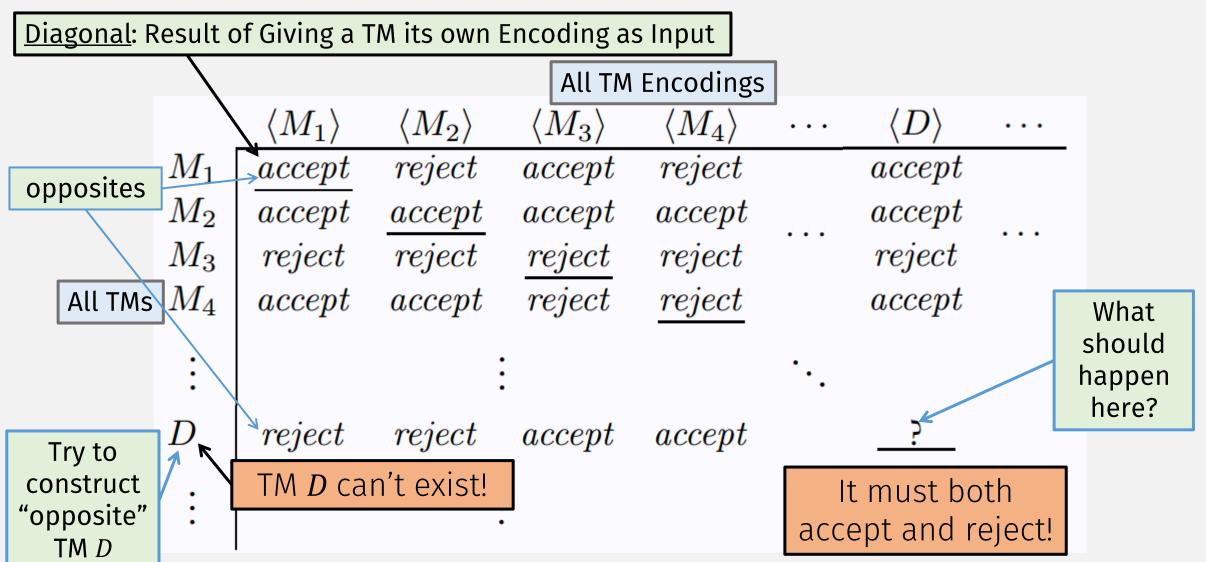
Georg Cantor



- Invented set theory
- Came up with countable infinity (1873)
- And uncountability:
 - Also: how to show uncountability with "diagonalization" technique

A formative day for Georg Cantor.

Diagonalization with Turing Machines



3 Easy Steps!

Thm: A_{TM} is undecidable

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$

<u>Proof</u> by contradiction:

From the

previous

slide

1. Assume A_{TM} is decidable. So there exists a decider H for it:

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

2. Use *H* in another TM ... the impossible "opposite" machine:

D = "On input $\langle M \rangle$, where M is a TM:

- - **1.** Run H on input $\langle M, \langle M \rangle \rangle$. Result of giving a TM itself as input
 - 2. Output the opposite of what H outputs. That is, if H accepts, reject; and if H rejects, accept." \leftarrow Do the opposite

Thm: A_{TM} is undecidable

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$

Proof by contradiction: This cannot be true

1. Assume A_{TM} is decidable. So there exists a decider H for it:

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

2. Use *H* in another TM ... the impossible "opposite" machine:

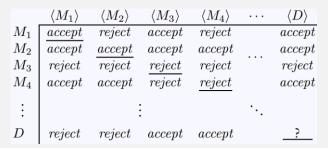
D = "On input $\langle M \rangle$, where M is a TM:

- **1.** Run H on input $\langle M, \langle M \rangle \rangle$.
- 2. Output the opposite of what *H* outputs. That is, if *H* accepts, reject; and if *H* rejects, accept."
- 3. But D does not exist! **Contradiction**! So the assumption is false.

From the previous slide

Easier Undecidability Proofs

- We proved $A_{\mathsf{TM}} = \{\langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w\}$ undecidable ... by contradiction:
- By showing its decider can help create impossible decider "D"!
- Hard: Coming up with "D" (needed to invent diagonalization)
- But then we more easily reduced A_{TM} to "D"
- Easier: reduce problems to A_{TM} !



I.e., "Algorithm to determine if a TM is an decider"?

The Halting Problem

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ halts on input } w \}$

contradiction

Thm: $HALT_{TM}$ is undecidable

Proof, by contradiction:

• Assume $HALT_{TM}$ has decider R; use it to create decider for A_{TM} :

•

• But A_{TM} is undecidable and has no decider!

What if Alan Turing had been an engineer?

The Halting Problem

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ halts on input } w \}$

Thm: *HALT*_{TM} is undecidable

Proof, by contradiction: Using our hypothetical decider R

- Assume $HALT_{TM}$ has decider R; use it to create decider for A_{TM} :
 - S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:
 - **1.** Run TM R on input $\langle M, w \rangle$.
 - 2. If R rejects, reject. \leftarrow This means M loops on input w
 - 3. If R accepts, simulate M on w until it halts. This step always halts
 - **4.** If M has accepted, accept; if M has rejected, reject."

Termination argument:

Step 1: *R* is a decider so always halts

Step 3: M always halts bc R said so

The Halting Problem

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ halts on input } w \}$

Thm: *HALT*_{TM} is undecidable

<u>Proof</u>, by contradiction:

- Assume $HALT_{TM}$ has decider R; use it to create decider for A_{TM} :
 - S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:
 - **1.** Run TM R on input $\langle M, w \rangle$.
 - 2. If R rejects, reject.
 - 3. If R accepts, simulate M on w until it halts.
 - **4.** If M has accepted, accept; if M has rejected, reject."
- But A_{TM} is undecidable!
 - I.e., the decider we just created does not exist! So $HALT_{TM}$ is undecidable

Easier Undecidability Proofs

In general, to prove the undecidability of a language, use **proof by contradiction**:

- 1. Assume the language is decidable (and thus has a decider)
- 2. Show that its decider can be used to create another decider ...
 - ... for a known undecidable language ...
- 3. ... which cannot have a decider! That's a **Contradiction**!

Summary: The Limits of Algorithms

- $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \}$ Decidable
- $A_{CFG} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$ Decidable
- $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$
- $E_{\mathsf{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$
- $E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$

next • $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Undecidable

Decidable

Decidable

Undecidable

Check-in Quiz 11/10

On gradescope