UMB CS420

NP

Tuesday, December 6, 2022

Who doesn't like niche NP jokes?

AN ENGINEER, A PUYSICIST,
AND A MATHEMATICIAN ARE
ROOMMEATES AND ARE
MOVING TO A NEW PLACE.

AS THE MOVER PULLS UP, THE
MATHEMATICIAN WORRIES
THERE ISN'T ENOUGH ROOM.

THE MOVER REASSURES THEM.

THE ENGINEER SAYS...

I BEEN AT THIS 20 YEARS.

I CAN LOOK AT ANY AMOUNT
QOF STUFF AND INSTANTLY
TELL YA IF 1T CAN FIT IN THE
MOVING BINS.

IT'S OBVIOUS IT CAN FIT.
ANYTHING THAT DOESN'T GO
IN THE BINS CAN BE TAPED
TO THE ROOF.

e

THE PUYSICIST SAYS..

IT'S OBVIOUS |T CAN FIT. IF

IT WERE THE DENSITY OF A
NEUTRON STAR, QUR STUFF
WOULD BE THE SIZE OF A
BASEBALL.

THE MATHEMATICIAN SAYS...

PLEASE DON'T
HACK My EMAILY

Smbc -comics.com

%/{/{0«/{0@#{@/{&?

« HW 10 In
+ Pue-Moenday-12/5-1H:5%9pm

* HW 11 out
* Due Monday 12/12 11:59pm

* HW 12

« Out Tuesday 12/13
« Due Monday 12/20 11:59pm

last Tire: POLly Time Complexity Class (P)

P is the class of languages that are decidable in polynomial time on
a deterministic single-tape 'Turing machine. In other words,

P = | TIME(n").
k

 Corresponds to “realistically” solvable problems:
* Problems in P
« =“solvable” or “tractable”

* Problems outside P
« =“unsolvable” or “intractable”

Last Tive: 3 Problems in P

“search” problem
* A Graph Problem: _—
PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

* ANumber Problem:
RELPRIME = {{x,y)| = and y are relatively prime}

e A CFL Problem:

Every context-free language is a member of P

Search vs Verification

» Search problems are often unsolvable
« But, verification of a search result is usually solvable

~28 BITS OF ENTROPY | [\WAS IT TROMBONE? NG,

EXAMPLES @g% m R o || T
* FACTORING Tr@ub4dor &3 .éosé@f;? Qg‘,??ﬁ;‘jﬁi?
- Unsolvable: Find factors of 8633 oo S%M%m Twm By
* Must “try all” possibilities o PAGUATON || DT D QEs: || DFFGT) T fveresk
« Solvable: Verify 89 and 97 are factors of 8633 —
« Just do multiplication PR
correct horse ba’clter_g s’canlg S
e PASSWORDS A Fogmo; || e
- Unsolvable: Find my umb . edu password oL o s || O
* Solvable : Verify whether my umb. edu password is .- e Vo o R L SCESLY T

« “correct horse battery staple” TO REMEMBER, BUT EASY FOR COMPUTERS To GUESS.

The PATH Problem

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

* It's a search problem:
- Exponential time (brute force) algorithm (n"):
« Check all n” possible paths and see if any connectssand t

e Polynomial time algorithm:
Do a breadth-first search (roughly), marking “seen” nodes as we go (n = # nodes)

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and t:
1. Place a mark on node s. P
2. Repeat the following until no additional nodes are marked: 0(’1)

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

Verifying a PATH

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

The verification problem:

« Glven some path p in G, check that it is a path from sto ¢
NOTE: extra argument p,
“Verifying” an answer requires
having a potential answer to check!

« Let m = longest possible path = # edges in G

Verifier V= 0n input <G, s, t, p>, where pis some set of edges:
1. Check some edge in p has “from” node s; mark and set it as “current” edge

* Max steps = O(m)

2. Loop: While there remains unmarked edges in p:

1. Find the “next” edge in p, whose “from” node is the “to” node of “current” edge
2. |ffound’ then mark that edgio and ecat it ac “Fiirrant” alen roiart

« Each loop iteration: O(m)

* #loops: O(m)
- Total looping time = O(m?)

3. Check “current” edge has “to” node t; if yes accept, else reject

« Total time = O(m) + O(m?) 4 0(m?)

= polynomial in m

v |

PATH can be verified
in polynomial time

Verifiers, Formally

PATH = {(G, s,t)| G 1s a directed graph that has a|directed path|from s to ¢}
|

... With extra argument:

can be any string that helps
to find a result in poly time
(is often just a result itself)

A = {w| V accepts (w, ¢) for some string c.. certificate, or proof

Decider ...

A verifier for a language A is an ‘flgorithm V, where

We measure the time of a verifier only in terms of the length of w,
so a polynomial time verifier runs in polynomial time in the length

of w. A language A is polynomially verifiable if it has a polynomial
time verifier.

* NOTE: a cert ¢ must be at most length n%, where n = length of w
« Why?

So PATH is polynomially verifiable

The HAMPATH Problem

HAMPATH = {(G, s,t)| G is a directed graph
with a Hamiltonian path from s to ¢}

« A Hamiltonian path goes through every node in the graph

>

S t

* The Search problem: H— .

- Exponential time (brute force) algorithm:
« Check all possible paths and see if any connect s and ¢ using all nodes
e Polynomial time algorithm:

« We don't know if there is one!!!
 The Verification problem:
. Still O(m?)!
« HAMPATH is polynomially verifiable, but not polynomially decidable

The class NP

DEFINITION

NP is the class of languages that have polynomial time verifiers.

e PATH IS In NP,and P
« HAMPATH is in NP, but it's unknown whether it's in P

NP = Nondeterministic polynomial time

NP is the class of languages that have polynomial time verifiers.
TH EORE M ---

A language is in NP iff it is decided by some nondeterministic polynomial time
Turing machine.

= If a language is in NP, then it has a non-deterministic poly time decider
« We know: If a lang L is in NP, then it has a poly time verifier V

« Need to: create NTM deciding L:

On inputw =

NOTE: cert is usually a
potential answer, but does

L : . . not have to be (like here)
* Nondeterministically run Vwith w and all possible poly length certificates ¢

Certificate ¢
&< If a language has a non-deterministic poly time decider, then it is in NP specifies a path
« We know: L has NTM decider N,
« Need to: show L is in NP, i.e., create polytime verifier V:
On input <w, ¢> =
« Convert N to deterministic TM, and run it on w, but take only one computation path
 Let certificate ¢ dictate which computation path to follow ?\l

. 99

NP

NTIME(@#(n)) = {L| L is a language decided by an O(¢(n)) time

nondeterministic Turing machine}.

NP = J, NTIME(n")

NP = Nondeterministic polynomial time

NP vs P

P is the class of languages that are decidable in polynomial time on
a deterministic single-tape Turing machine. In other words,

P = JTIME(n*).
k

P = Deterministic polynomial time

NTIME(@#(n)) = {L| L is a language decided by an O(¢(n)) time

nondeterministic Turing machine}.

NP p— Uk NTIME(nk) Also, NP = Deterministic

polynomial time verification

NP = Nondeterministic polynomial time

More NP Problems

e CLIQUE = {(G, k)| G is an undirected graph with a k-clique}
« A clique is a subgraph where every two nodes are connected

()

« A k-clique contains k nodes ¢

O

()

@)

o SUBSET-SUM = {(S,t)| S = {x1,..., 7.}, and for some
{yt, ..y} Sz, ..

., Tk}, we have Yy, = t}

Q-
\

Theorem: CLIQUE is in NP Y

CLIQUE = {(G, k)| G is an undirected graph with a k-clique}

PROOF IDEA The clique is the certificate.

Let n=# nodesin G

PROOF 'The following is a verifier V' for CLIQUE. I cisatmostn
o« - _ For each: nodeincg,

V'=“On input ((G, k), C>_‘ _ _ check whether it's in G

1. Test whether c is a subgraph with & nodes in G. 0(n?)

2. 'Test whether G contains all edges connecting nodes in c. |

3. If both pass, accept; otherwise, reject.” For each: pair of nodesin c,

check whether there’s an edge in G:
0(n?)

A verifier for a language A is an algorithm V, where

How to prove a language Is in NP:
Proof technique #1: create a verifier

A = {w| V accepts (w, ¢) for some string c}.

We measure the time of a verifier only in terms of the length of w,
so a polynomial time verifier runs in polynomial time in the length

of w. A language A is polynomially verifiable if it has a polynomial
TR veriﬁe%.u 8 poy y vertf PO NP is the class of languages that have polynomial time verifiers.

Proof 2: CLIQUE is in NP JM

CLIQUE = {(G, k)| G is an undirected graph with a k-clique}

| N — €O - here (7 . T
N = “On input (G, k),' u:rht'ere G is a graph: “try all subgraphs’
1. Nondeterministically select a subset ¢ of k£ nodes of G. |
2. 'lest whether GG contains all edges connecting nodes in c. |
| 3. Ifyes, accept; otherwise, reject.” Checking whether a
— — —— — —— — - subgraph is clique:
0(n?)

To prove a lang L is in NP, create either a:
1. Deterministic poly time verifier
2. Nondeterministic poly time decider

How to prove a language Is in NP:
Proof technique #2: create an NTM

THEOREM ---

Don’t forget to count the steps
g P A language is in NP iff it is decided by some nondeterministic polynomial time

Turing machine.

More NP Problems

e CLIQUE = {(G, k)| G 1s an undirected graph with a k-clique}
* A clique is a subgraph where every two nodes are connected

* A k-clique contains k nodes <t T

/////
O @,

o SUBSET-SUM = {(S,t)| S ={x1,...,xr}, and for some

{vyi,... ui} C{z1,..., 2}, we have Xy; =t}

« Some subset of a set of numbers S must sum to some total ¢

* e.8, ({

4,

11, 16,

21

.27}, 25) € SUBSET-SUM

105

Theorem: SUBSET-SUM is in NP

SUBSET-SUM = {(S,t)| S = {z1,...,xx}, and for some

{ylﬁ' " “yl} g {I:[}' .. ;I,E.;}5 we hﬂve Eyt — f}

PROOF IDEA The subsetis the certificate.

To prove a lang is in NP, create either:
1. Deterministic poly time verifier
2. Nondeterministic poly time decider

PROOF The following is a verifier V for SUBSET-SUM.

V' = “On input ((S, 1), ¢):

1.

Test whether ¢ is a collection of numbers that sum to t.

2. Test whether S contains all the numbers in c.

3.

If both pass, accept; otherwise, reject.”

Runtime?

106

Proof 2: SUBSET-SUM is in NP

SUBSET-SUM = {(S,t)| S = {z1,...,xx}, and for some
,..., T}, we have Xy; = t}

To prove a lang is in NP, create either:
1. Deterministic poly time verifier
2. Nondeterministic poly time decider

r

1.

3.

ALTERNATIVE PROOF We can also prove this theorem by giving a nonde-
terministic polynomial time Turing machine for SUBSET-SUM as follows.

N = “On input (5, t):

Nondeterministically select a subset ¢ of the numbers in S.

Runtime?

2. ‘Test whether c is a collection of numbers that sum to ¢.
If the test passes, accept; otherwise, reject.”

. ’IOI’

COMPOSITES = {z| x = pq, for integers p,q > 1}

« A composite number is not prime

« COMPOSITES is polynomially verifiable
e i.e, it'sin NP
* |.e, factorability is in NP

A certificate could be:
« Some factor that is not 1

» Checking existence of factors (or not, i.e., testing primality) ...
* ...1s also poly time
» But only discovered recently (2002)!

One of the Greatest unsolved

B Question: Does P = NP?

PATH

/ NP
2

\

???/ CLIOUE
/ HAMPATH
COMPOSITES

How do you prove an algorithm doesn’t have a poly time algorithm?
(in general it's hard to prove that something doesn't exist)

Implications if P = NP

Every problem with a “brute force” solution
also has an efficient solution

.e., “unsolvable” problems are “solvable”

BAD:

» Cryptography needs unsolvable problems
« Near perfect Al learning, recognition

GOOD: Optimization problems are solved

« Optimal resource allocation could fix all the
world’s (food, energy, space ...) problems?

Who doesn't like niche NP jokes?

AN ENGINEER, A PUYSICIST,

AND A MATHEMATICIAN ARE
ROOMMATES AND ARE
MQVING TO A NEW PLACE.

AS THE MOVER PULLS UP, THE
MATHEMATICIAN WORRIES
THERE I1SN'T ENOQUGH ROOM.

THE MOVER REASSURES THEM.

THE ENGINEER SAYS...

I BEEN AT THIS 30 YEARS.

I CAN LOOK AT ANY AMOUNT
OF STUFE AND INSTANTLY
TELL YA IF 1T CAN FIT IN THE
MOVING BING.

\V 0 THE;ROO':/T

IT'S OBVIOUS |T CAN FIT.
ANYTHING THAT DOESN'T GO
IN THE BINS CAN BE TAPED

g

THE PUYSICIST GAYS..

THE MATHEMATICIAN SAYS..

IT'S OBVIOLS IT CAN FIT. IF
T WERE THE DENSITY OF A
NEUTRON STAR, QUR STUFF
WOQULD BE THE &GIZE OF A
BASEBALL

Progress on whether P=NP 7

* Some, but still not close

b 2 NP The Status of the P Versus NP Problem

By Lance Fortnow
Scott Aaronson® Communications of the ACM, September 2009, Vol. 52 No. 9, Pages 78-86
10.1145/1562164.1562186

« One important concept discovered:
 NP-Completeness

113

NP-Completeness

Must look at DEFINITION

all langs, can't
just look at a

single lang 1. Bisin NP, and | easy
2. every A in NP is polynomial time reduciblesto B.| hard????

A language B is NP-complete it it satisties two conditions:

* How does this help the P = NP problem? | what's this?

THEOREM = e s

It B is NP-complete and B € P, then P = NP.

tastback: Mapping Reducibility

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — ¥* where for every w,

Arm = {{M,w)| M isa TM and M acce

w e A< f(w) € B. IMPORTANT: “if and only if” ...

The function f is called the reduction from A to B| To show mapping reducibility:

1. create computable fn

... Means

2. and then show forward direction
3. and reverse direction
(or contrapositive of forward direction)

A <m

B

A function f: ¥X*— X" is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

Polynomial Time Mapping Reducibility

To show poly time mapping reducibility:
Language A is mapping reducible to language | 1. Create computable fn

if there is a computable function f: ¥*— 3% 2. show forward d.irect.ion
3. show reverse direction

we A<+ f(w) € B. (or contrapositive of forward direction)
4. then show computable fn runs in poly time

The function f is called the reduction from A 1
Language A is polynomial time mapping reducible, or simply poly-
nomial time reducible, to language B, written A <p B, if a polyno-

mial time computable function f: >*— >* exists, where for every
w’

weE A <— f(w) c B.< Don't forget: “if and only if” ...

The function f is called the polynomial time reduction of A to B.

oly time oly time
A function f: X*— X*is agcomputable function 1Psome Turlng
machine M, on every input w, halts with just f(w) on its tape

Flastback If A <., B and B is decidable, then A is decidable.

Has a decider

PROOF We let M be the decider for B and f be the reduction from A to B.
We describe a decider NV for A as follows.

N = “On input w:
1. Compute f(w).
decides| 2. Run M on input f(w) and output whatever M outputs.”

decides

This proof only works because of the if-and-only-if requirement

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — 3%, where for every w,

we A<= f(w) € B,

The function f is called the reduction from A to B.

e ¥ c¥
Thm: IfA gml_)B and B rs—deetrdable; then A 1s-deetdable-

PROOF We let M be the decider for B and f be the reduction from A to B.
We describe a decider IV for A as follows.

N = “On input w:
1. Compute f(w).
2. Run M on input f(w) and output whatever M outputs.”

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — 2*, where for every w,

we A<= f(w) € B.

The function f is called the reduction from A to B.

c? c?¥
Thm: IfA gml_)B and B rsdeetdable; then A 1is-deeidable:

oly time oly time
PROOF Welet M be tht—"-Adecider for B and f be th%educdon from A to B.
We describe &lecider N for A as follows.
poly time

“On input w:

N =
1. Compute f(w).
2. Run ﬂ/{ on input f(w) and output whatever M outputs.”

f
poly time |
Language A igynapping reducible to language B, written A <, B,
; if there is a computable function f: ¥* — 3%, where for every w,
* ° 120
The function f is called the reduction from A to B.

Newt Tine: 3SAT is polynomial time reducible to CLIQUE.

Check-in Quiz 12/6

On gradescope

