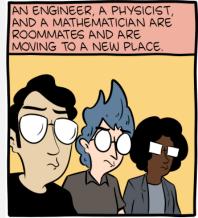
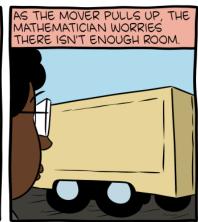
UMB CS420

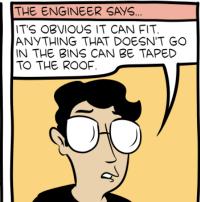
NP

Tuesday, December 6, 2022

Who doesn't like niche NP jokes?







smbc-comics.com

Announcements

- HW 10 in
 - Due Monday 12/5 11:59pm
- HW 11 out
 - Due Monday 12/12 11:59pm
- HW 12
 - Out Tuesday 12/13
 - Due Monday 12/20 11:59pm

Last Time: Poly Time Complexity Class (P)

P is the class of languages that are decidable in polynomial time on deterministic single-tape Turing machine In other words,

$$P = \bigcup_{k} TIME(n^k).$$

- Corresponds to "realistically" solvable problems:
 - Problems in P
 - = "solvable" or "tractable"
 - Problems outside P
 - = "unsolvable" or "intractable"

Last Time: 3 Problems in P

• A <u>Graph</u> Problem:

"search" problem

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

• A <u>Number</u> Problem:

 $RELPRIME = \{\langle x, y \rangle | x \text{ and } y \text{ are relatively prime} \}$

• A CFL Problem:

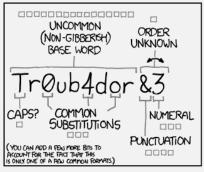
Every context-free language is a member of P

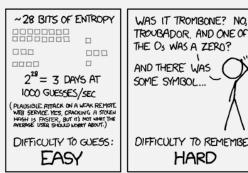
Search vs Verification

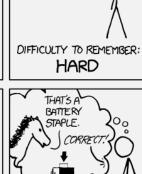
- Search problems are often unsolvable
- But, verification of a search result is usually solvable

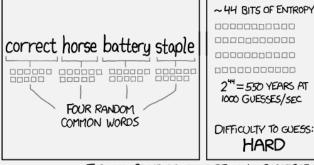
EXAMPLES

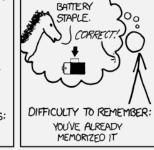
- FACTORING
 - Unsolvable: Find factors of 8633
 - Must "try all" possibilities
 - Solvable: Verify 89 and 97 are factors of 8633
 - Just do multiplication
- Passwords
 - Unsolvable: Find my umb.edu password
 - Solvable: Verify whether my umb.edu password is ...
 - "correct horse battery staple"











THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

The *PATH* Problem

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

- It's a **search** problem:
 - Exponential time (brute force) algorithm (n^n) :
 - Check all n^n possible paths and see if any connects s and t
 - Polynomial time algorithm:
 - Do a breadth-first search (roughly), marking "seen" nodes as we go (n = # nodes)

PROOF A polynomial time algorithm M for PATH operates as follows.

M = "On input $\langle G, s, t \rangle$, where G is a directed graph with nodes s and t:

- 1. Place a mark on node s.
- 2. Repeat the following until no additional nodes are marked:
- 3. Scan all the edges of G. If an edge (a, b) is found going from a marked node a to an unmarked node b, mark node b.
- **4.** If t is marked, accept. Otherwise, reject."

 $O(n^3)$

Verifying a *PATH*

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

The **verification** problem:

Given some path p in G, check that it is a path from s to t

• Let m = longest possible path = # edges in G

NOTE: extra argument *p,* "**Verifying**" an answer requires having a potential answer to check!

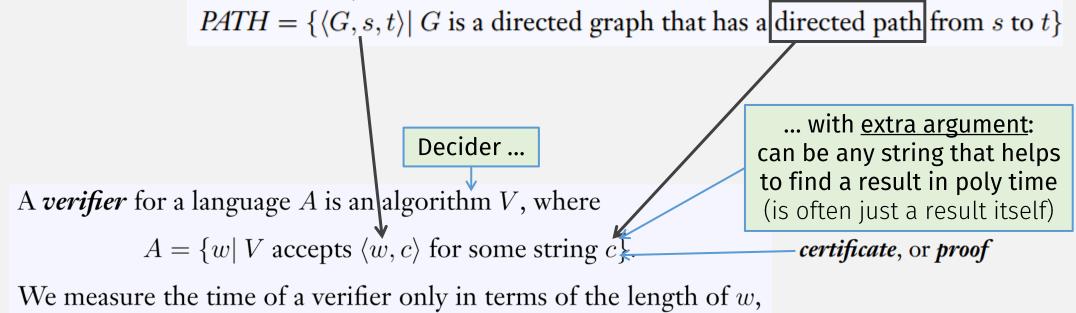
<u>Verifier</u> V = On input < G, s, t, p>, where p is some set of edges:

- 1. Check some edge in p has "from" node s; mark and set it as "current" edge
 - Max steps = O(m)
- 2. Loop: While there remains unmarked edges in p:
 - 1. Find the "next" edge in p, whose "from" node is the "to" node of "current" edge
 - 2. If found, then mark that edge and set it as "current" also reject
 - Each loop iteration: O(m)
 - # loops: *O*(*m*)
 - Total looping time = $O(m^2)$
- 3. Check "current" edge has "to" node t; if yes accept, else reject

• Total time = $O(m) + O(m^2) = O(m^2)$ = polynomial in m

PATH can be **verified** in polynomial time

Verifiers, Formally



We measure the time of a verifier only in terms of the length of w, so a **polynomial time verifier** runs in polynomial time in the length of w. A language A is **polynomially verifiable** if it has a polynomial time verifier.

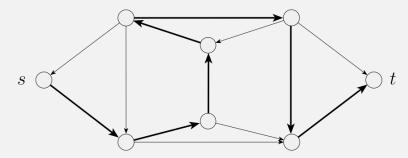
- NOTE: a cert c must be at most length n^k , where n = length of w
 - Why?

So PATH is polynomially verifiable

The *HAMPATH* Problem

 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

• A Hamiltonian path goes through every node in the graph



The Search problem:

- Exponential time (brute force) algorithm:
 - Check all possible paths and see if any connect s and t using all nodes
- Polynomial time algorithm:
 - We don't know if there is one!!!
- The Verification problem:
 - Still $O(m^2)$!
 - HAMPATH is polynomially verifiable, but <u>not</u> polynomially decidable ⁹⁷

The class **NP**

DEFINITION

NP is the class of languages that have polynomial time verifiers.

- PATH is in NP, and P
- HAMPATH is in NP, but it's unknown whether it's in P

NP = <u>Nondeterministic</u> polynomial time

NP is the class of languages that have polynomial time verifiers.

THEOREM

A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine.

- ⇒ If a language is in NP, then it has a non-deterministic poly time decider
- We know: If a lang L is in NP, then it has a poly time verifier V
- Need to: create NTM deciding L:

On input *w* =

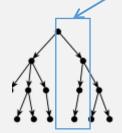
- Nondeterministically run V with w and all possible poly length certificates c
- ← If a language has a non-deterministic poly time decider, then it is in NP
- We know: L has NTM decider N,
- Need to: show L is in NP, i.e., create polytime verifier V:

On input <*w*, *c*> =

- Convert N to deterministic TM, and run it on w, but take only one computation path
- Let certificate c dictate which computation path to follow

NOTE: cert is usually a potential answer, but does not have to be (like here)

Certificate *c* specifies a path



NP

 $\mathbf{NTIME}(t(n)) = \{L \mid L \text{ is a language decided by an } O(t(n)) \text{ time nondeterministic Turing machine} \}.$

$$NP = \bigcup_k NTIME(n^k)$$

NP = <u>Nondeterministic</u> polynomial time

NP vs P

P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine. In other words,

$$P = \bigcup_{k} TIME(n^k).$$

P = <u>Deterministic</u> polynomial time

NTIME $(t(n)) = \{L | L \text{ is a language decided by an } O(t(n)) \text{ time nondeterministic Turing machine} \}.$

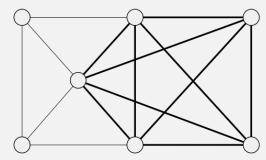
$$NP = \bigcup_k NTIME(n^k)$$

Also, **NP** = <u>Deterministic</u> polynomial time verification

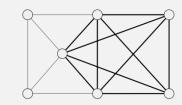
NP = <u>Nondeterministic</u> polynomial time

More **NP** Problems

- $CLIQUE = \{ \langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique} \}$
 - · A clique is a subgraph where every two nodes are connected
 - A *k*-clique contains *k* nodes



• $SUBSET ext{-}SUM = \{\langle S,t \rangle | \ S = \{x_1,\ldots,x_k\}, \ \text{and for some}$ $\{y_1,\ldots,y_l\} \subseteq \{x_1,\ldots,x_k\}, \ \text{we have} \ \Sigma y_i = t\}$



 $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$

PROOF IDEA The clique is the certificate.

Let n = # nodes in G

PROOF The following is a verifier V for CLIQUE.

c is at most n

V = "On input $\langle \langle G, k \rangle, c \rangle$:

1. Test whether c is a subgraph with k nodes in G.

For each: node in c, check whether it's in G $O(n^2)$

- 2. Test whether G contains all edges connecting nodes in c.
- 3. If both pass, accept; otherwise, reject."

For each: pair of nodes in c, check whether there's an edge in G: $O(n^2)$

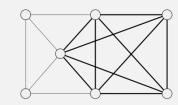
A *verifier* for a language A is an algorithm V, where

 $A = \{w | V \text{ accepts } \langle w, c \rangle \text{ for some string } c\}.$

We measure the time of a verifier only in terms of the length of w, so a **polynomial time verifier** runs in polynomial time in the length of w. A language A is **polynomially verifiable** if it has a polynomial time verifier.

How to prove a language is in **NP**: Proof technique #1: **create a verifier**

NP is the class of languages that have polynomial time verifiers.



 $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$

| N = "On input $\langle G, k \rangle$, where G is a graph:

1. Nondeterministically select a subset c of k nodes of G.

2. Test whether G contains all edges connecting nodes in c.

3. If yes, accept; otherwise, reject."

Checking whether a subgraph is clique: $O(n^2)$

"try all subgraphs"

To prove a lang L is in NP, create either a:

- 1. Deterministic poly time verifier
- 2. Nondeterministic poly time decider

How to prove a language is in **NP**: Proof technique #2: **create an NTM**

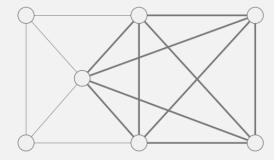
THEOREM

A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine.

Don't forget to count the steps

More **NP** Problems

- $CLIQUE = \{ \langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique} \}$
 - A clique is a subgraph where every two nodes are connected
 - A *k*-clique contains *k* nodes



- $SUBSET ext{-}SUM = \{\langle S, t \rangle | S = \{x_1, \dots, x_k\}, \text{ and for some}$ $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}, \text{ we have } \Sigma y_i = t\}$
 - Some subset of a set of numbers S must sum to some total t
 - e.g., $\langle \{4, 11, 16, 21, 27\}, 25 \rangle \in SUBSET-SUM$

Theorem: SUBSET-SUM is in NP

SUBSET-SUM =
$$\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$$
, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$

PROOF IDEA The subset is the certificate.

To prove a lang is in **NP**, create <u>either</u>:

- 1. Deterministic poly time verifier
- 2. Nondeterministic poly time decider

PROOF The following is a verifier V for SUBSET-SUM.

V = "On input $\langle \langle S, t \rangle, c \rangle$:

Runtime?

- 1. Test whether c is a collection of numbers that sum to t.
- 2. Test whether S contains all the numbers in c.
- **3.** If both pass, accept; otherwise, reject."

Proof 2: SUBSET-SUM is in NP

SUBSET-SUM =
$$\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$$
, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$

To prove a lang is in **NP**, create <u>either</u>:

- 1. Deterministic poly time verifier
- 2. Nondeterministic poly time decider

ALTERNATIVE PROOF We can also prove this theorem by giving a nondeterministic polynomial time Turing machine for *SUBSET-SUM* as follows.

N = "On input $\langle S, t \rangle$:

- 1. Nondeterministically select a subset c of the numbers in S.
- 2. Test whether c is a collection of numbers that sum to t.
- **3.** If the test passes, accept; otherwise, reject."

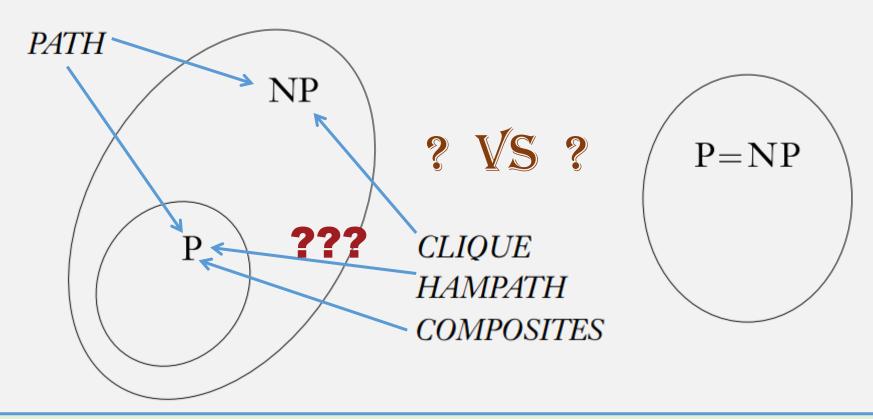
Runtime?

$$COMPOSITES = \{x | x = pq, \text{ for integers } p, q > 1\}$$

- A composite number is <u>not</u> prime
- COMPOSITES is polynomially verifiable
 - i.e., it's in NP
 - i.e., factorability is in NP
- A certificate could be:
 - Some factor that is not 1
- Checking existence of factors (or not, i.e., testing primality) ...
 - ... is also poly time
 - But only discovered <u>recently</u> (2002)!

One of the Greatest unsolved

Does P = NP?

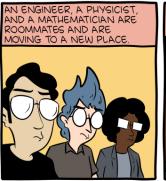


How do you prove an algorithm <u>doesn't</u> have a poly time algorithm? (in general it's hard to prove that something <u>doesn't</u> exist)

Implications if P = NP

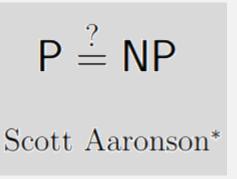
- Every problem with a "brute force" solution also has an efficient solution
- I.e., "unsolvable" problems are "solvable"
- <u>BAD</u>:
 - Cryptography needs unsolvable problems
 - Near perfect AI learning, recognition
- <u>GOOD</u>: Optimization problems are solved
 - Optimal resource allocation could fix all the world's (food, energy, space ...) problems?

Who doesn't like niche NP jokes?



Progress on whether P = NP?

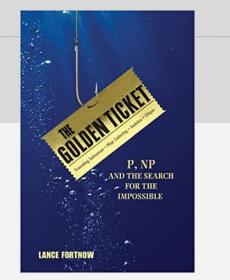
Some, but still not close



By Lance Fortnow

Communications of the ACM, September 2009, Vol. 52 No. 9, Pages 78-86
10.1145/1562164.1562186

- One important concept discovered:
 - NP-Completeness



NP-Completeness

Must look at all langs, can't just look at a single lang

DEFINITION

A language B is NP-complete if it satisfies two conditions:

- $\mathbf{1}$ B is in NP, and easy
- 2. every A in NP is polynomial time reducible to B.

• How does this help the **P** = **NP** problem?

What's this?

hard????

THEOREM

If B is NP-complete and $B \in P$, then P = NP.

Flashback: Mapping Reducibility

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$

IMPORTANT: "if and only if" ...

The function f is called the **reduction** from A to B.

To show <u>mapping reducibility</u>:

- 1. create computable fn
- 2. and then show forward direction
- 3. and reverse direction (or contrapositive of forward direction)

 $A_{\mathsf{TM}} = \{\langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w\}$ $HALT_{\mathsf{TM}} = \{\langle M, w \rangle | \ M \text{ is a TM and } M \text{ halts on input } w\}$

... means $\overline{A} \leq_{\mathrm{m}} \overline{B}$

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a **computable function** if some Turing machine M, on every input w, halts with just f(w) on its tape.

Polynomial Time Mapping Reducibility

Language A is *mapping reducible* to language if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A

To show poly time <u>mapping reducibility</u>:

- 1. create computable fn
- 2. show forward direction
- 3. show reverse direction (or contrapositive of forward direction)
- 4. then show computable fn runs in poly time

Language A is *polynomial time mapping reducible*, or simply *polynomial time reducible*, to language B, written $A \leq_P B$, if a polynomial time computable function $f: \Sigma^* \longrightarrow \Sigma^*$ exists, where for every w,

$$w \in A \iff f(w) \in B$$
.

Don't forget: "if and only if" ...

The function f is called the **polynomial time reduction** of A to B.

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

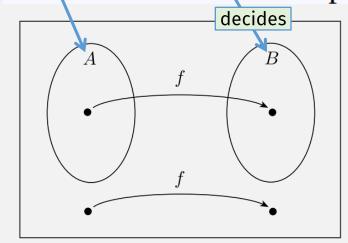
Flashback: If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

Has a decider

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

- 1. Compute f(w).
- decides 2. Run M on input f(w) and output whatever M outputs."



This proof only works because of the if-and-only-if requirement

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

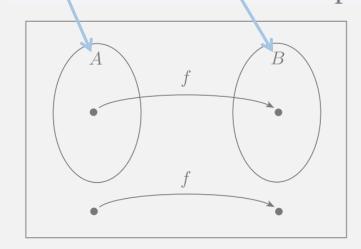
The function f is called the **reduction** from A to B.

Thm: If $A \leq_{\frac{m}{P}} B$ and $B \stackrel{\in}{\text{is decidable}}$, then $A \stackrel{\in}{\text{is decidable}}$.

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

- 1. Compute f(w).
- 2. Run M on input f(w) and output whatever M outputs."



Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

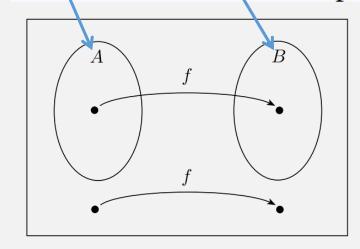
The function f is called the **reduction** from A to B.

Thm: If $A \leq_{\underline{m}} B$ and $B \stackrel{\in Y}{\text{is decidable}}$, then $A \stackrel{\in Y}{\text{is decidable}}$

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

- **1.** Compute f(w).
- 2. Run M on input f(w) and output whatever M outputs."



poly time Language A is mapping reducible to language B, written $A \leq_{\text{m}} B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

Next Time: 3SAT is polynomial time reducible to CLIQUE.

Check-in Quiz 12/6

On gradescope