CS420

Regular Languages
Mon Feb 1, 2021

grammars (generators) and automata
languages (acceptors)

Turing
¢ machine

context- linear-bounded
€ automaton

regular finite-state
language automaton

Logistics

Piazza
 Also, Discord

TA: Welcome Anh!
« Office hours Tues 2:30-4pm, Thurs 3-4:30pm

Welcome new students
« Watch old lectures, take old quizzes, do hw0

HWO deadline extended to Wed Feb 3 11:59pm EST

Next HW gets ~1.5 weeks, BUT due in 2 parts:
« HW1 (out) due: Sun Feb 7 11:59pm EST
« HW2 (out later) due: Sun Feb 14 11:59pm EST

HWO, So Far: A Makefile

Grader Preinstalled langs:
comment Python, Java, C, C++, JS, Racket

rackef hello. rkt

Targets
(see hw for
names) | Commands to run

(these files better exist)

racket aiphabet.rkt

racket pﬁwerset.rkt

racket xml. rkt

HWO, So Far

* Read from stdin, write to stdout:

* Python: sys.stdin, print

e C++:cin, cout

e Java: System.in, System.out

e Scanner scanner = new Scanner(System.in).readline drops newlines!

* Power set of the empty set?

« The power set of a set S is the set of all possible subsets of S

* This includes empty set, and S itself!

« 2({3) =}
« XML parsing:
e Java: javax.xml.parsers
* Python: xml.etree.ElementTree: parse and findall
e C++: pugixml

HW1 Pre-game

 In CS 420 we primarily learn about abstract mathematical objects
« But we may use code as a way to explore these math objects
 So it's Important to understand the distinction: math vs code

« E.g., a set Is an abstract mathematical object
« contains other math objects like: strings, nums, characters, and other sets!

» A set’s (data) representation in code can take many forms:
. e.g, a list, an array, a space-separated string (hwO)

Math vs Representation, Examples

Abstract Math Concept

Numbers
Set
Tuple (i.e., a small finite set)
Function, I.e., a set of pairs
Finite automata

37

Math vs Representation, Examples

Abstract Math Concept

Numbers Int, Bigint, float, double
Set
Tuple (i.e., a small finite set)
Function, I.e., a set of pairs
Finite automata

38

Math vs Representation, Examples

Abstract Math Concept

Numbers Int, Bigint, float, double
Set List, array, tree
Tuple (i.e., a small finite set)
Function, I.e., a set of pairs
Finite automata

39

Math vs Representation, Examples

Abstract Math Concept

Numbers Int, Bigint, float, double
Set List, array, tree
Tuple (i.e., a small finite set) Struct, object, list

Function, I.e., a set of pairs
Finite automata

40

Math vs Representation, Examples

Abstract Math Concept

Numbers Int, Bigint, float, double
Set List, array, tree
Tuple (i.e., a small finite set) Struct, object, list

Function, I.e., a set of pairs Function, dict, map, hash, tree
Finite automata

41

Math vs Representation, Examples

Abstract Math Concept

Numbers Int, Bigint, float, double
Set List, array, tree
Tuple (i.e., a small finite set) Struct, object, list

Function, I.e., a set of pairs Function, dict, map, hash, tree
Finite automata XML str, <your choice here>

42

Example: as formal description

Last Time: M; = (Q,%,6,q1, F), where
1. Q) =
DEFINITION 1.5 Q {Qh 42, Q3}:
A finite automaton is a 5-tuple (Q, X, 6, qo, F'), where 2. 2 = {O’ 1}’
1. Q is a finite set called the states, 3. 0 is described as
2. X is a finite set called the alphabet, 0 1
3. 0: Q X ¥—Q is the transition function,
4. qo € Q is the start state, and g1 [91§42
5. F C Q is the set of accept states. d2 | 43 d2
0 43 | 92 {42,
4. ¢ 1s the start state, and
1
q1 5. F = {QQ}.

Example: as state diagram 0

INn-class exercise 1

« Come up with a formal description of the following machine:

DEFINITION 1.5
A finite automaton is a 5-tuple (Q), X, 6, qo, F'), where

1.) is a finite set called the states,

2. Y is a finite set called the alpbabet,

3. 0: Q X X—Q is the transition function,
4. qo € Q is the start state, and

5. F' C Q is the set of accept states.

* 0=1{ql,92,q3}
« X={a, b}
e Delta
* d(ql,a) =q2
* 6(ql,b) =ql
* 6(q2,a) =q3
* 6(q2,b)=q3
* 5(g3,a) =q2
 8(q3,b) =q1

*qo=q1l
* F={q2}

Last Time: Computation, Formally

* Afinite automata M = (Q, X, 9,qo, F') is a computer
* We “run” on M an input string w = wyws--- w,, e.g. “1101”

« M accepts w If there Is sequence of states ry,...r, In Q where:
* o = ¢o (startin “start” state)
«0(7i, Wiy1) = rip1, fori =0,...,n — 1 (“next” states follow transition table)
* r, € F (last state is an “accept” state)

A language is a set of strings.

Terminology

* M accepts w

- M recognizes language A
it A = {w| M accepts w}

“the set of all ...” || “such that...”

A language is a set of strings.

Terminology

* M accepts w

- M recognizes language A
it A = {w| M accepts w}

A language is called a regular language

if some finite automaton recognizes it.

A language is a set of strings.

M recognizes language A

A language, regular or not? A ol M accente]

e If given: Finite Automata M
« We know: the language recognized by M is a regular language

« If given: some Language A

* Is A Is a regular language?
« Not necessarily

« How do we determine, i.e., prove, that A is a regular language?

A language is called a regular language

if some finite automaton recognizes it.

Kinds of Mathematical Proof

 Proof by construction
« Construct the mathematical object in question

 Proof by contradiction

 Proof by induction

Designing Finite Automata: Tips
 Input may only be read once

« Must decide accept/reject after that

- States = the machine’s memory!
* Finite amount of memory: must be allocated in advance
* Think about what information must be remembered.

* (For DFAs) Every state/symbol pair must have a transition

« Example: machine accepts strings with odd number of 0s

Design a DFA: accepts strs with odd

e States:

e 2 states:
e seen even 0s so far

* seen odds 0s so far

* Alphabet: 0 and 1
0 0
o
. Transitions: @.@
0
1 A A)

e Start / Accept states? @.

1

0S

In-class exercise 2

 Prove that this language is a regular language:

« {w | w has exactly three 1’s}
* l.e., design a finite automata that recognizes it!

« Where 3= {0, 1},

DEFINITION 1.5
A finite automaton is a 5-tuple (Q, X, 4, qo, F'), where

* Remember: 1. @ is a finite set called the states,
2. Y is a finite set called the alphabet,
3. 0: Q x ¥—Q is the transition function,
4. qo € Q is the start state, and
5. F C Q is the set of accept states.

Check-in Quiz 2/1

See Gradescope

