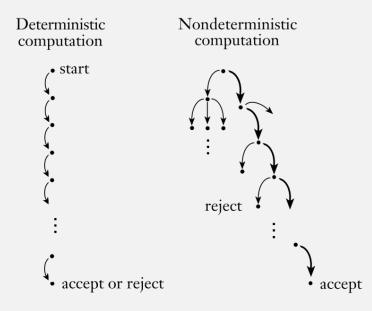
Nondeterminism

Monday Feb 8, 2021



Logistics

- HW 0, HW 1 done
- HW 2 due Sunday 2/14 11:59pm EST
- No class next Monday 2/15
- (Some) HW 0 solutions posted
- Questions?

A Brief Intro to XML

- What is it?
 - It's a widely-used "data interchange format"
 - I.e., A standard, language-agnostic way for programs to send/recv data
 - (JSON is another popular interchange format)

- Example, when querying web apis:
 - https://api.etrade.com/v1/market/quote/G00G


```
<?xml version="1.0" encoding="UTF-8"?>
<QuoteResponse>
               <QuoteData>
                             <dateTime>15:17:00 EDT 06-20-2018</dateTime>
                             <dateTimeUTC>1529522220</dateTimeUTC>
                             <quoteStatus>DELAYED</quoteStatus>
                             <ahFlag>false</ahFlag>
                             <hasMiniOptions>false</hasMiniOptions>
                             <A11>
                                            <adjustedFlag>false</adjustedFlag>
                                            <annualDividend>0.0</annualDividend>
                                            <ask>1175.79</ask>
                                            <askExchange />
                                            <askSize>100</askSize>
                                            <askTime>15:17:00 EDT 06-20-2018</askTime>
                                           <bid>1175.29</bid>
                                            <br/>

                                            <bidSize>100</bidSize>
                                              453 JT3 -- 5 45 47 400 FDT 06 00 0040 4 /53 JT3 -- 5
```

XML in this class: 2 purposes

1. Grader uses it to send/get state machines to/from HW

• E.g.

Open tags may contain attributes

attribute <u>name</u>

element =
 open/close tag +
everything in between

```
<automaton>
  <!--The list of states.-->
  <state id="0" name="q1"><initial/></state>
  <state id="1" name="q2"><final/></state>
  <state_id="2" name="q3"></state>
                                    attribute <u>value</u>
  <!--The list of transitions.-->
  <transition> <
                               Elements nest, i.e.,
    <from>0</from>
                                they may contain
    <to>0</to>
                                 other elements
    <read>0</read>
  </transition>
  <transition>
   ≰from>1</from≥
```

XML in this class: 2 purposes

A *language* is a set of strings.

M recognizes language A if $A = \{w | M \text{ accepts } w\}$

2. Running example of a "language", to compare/contrast computation models

• E.g.,

"Language" of all possible open tag strings is regular

```
<automaton>
 <!--The list of states.-->
 <state id="0" name="q1"><initial/></state>
  <state id="1" name="q2"><final/></state>
  ≤state id="2" name="q3"></state>
 <!--The list of transitions.-->
  ≽transition>
    <from>0</from>
   <to>0</to>
    <read>0</read>
  </transition>
  <transition>
    <from>1</from>
```

"Language" of all XML strings is <u>not</u> regular, because a DFA cannot do open/close tag matching

Last time: "Closed" Operations

A set is **closed** under an operation if applying the operation to members of the set returns an element still in the set

- E.g., Natural numbers = {0, 1, 2, ...}
 - closed under addition,
 - not closed under subtraction

Last time: Union is Closed for Reg. Langs

THEOREM 1.25

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Proof (implement this algorithm for HW2)

- Given: $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, recognize A_1 , $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2 ,
- Construct a <u>new</u> machine $M=(Q,\Sigma,\delta,q_0,F)$ using M_1 and M_2

M simulates running its input on both M_1 and M_2 in "parallel"; accept if either accepts

DFA Union Example

•
$$A_1 = \{\text{``a''}\}, \quad A_2 = \{\text{``b''}\}, \quad A_1 \cup A_2 = \{\text{``a''}, \text{``b''}\}$$

•
$$M_1 = (Q_1, \Sigma, \delta_1, \text{start}_1, F_1)$$
 $M_2 = (Q_2, \Sigma, \delta_2, \text{start}_2, F_2)$
 $M_3 = (Q_3, \Sigma, \delta_3, \text{start}_3, F_3)$
 $M_4 = (Q_4, \Sigma, \delta_3, \text{start}_4, F_3)$
 $M_4 = (Q_4, \Sigma, \delta_3, \text{start}_4, F_3)$
 $M_4 = (Q_4, \Sigma, \delta_3, \text{start}_4, F_3)$

- M recognizing {"a", "b"} = $(Q, \Sigma, \delta, \text{start}, F)$
 - $Q = Q_1 \times Q_2 = \{(q0, q3), (q0, q4), (q0, q5), ...\}$
 - $\Sigma = \{a, b\}$
 - $\delta((q0, q3), a) = (\delta_1(q0), \delta_2(q3)) = (q1, q5)$
 - ...
 - start = (q0, q3)
 - $F = \{(q1, q3), (q1, q4), (q1, q5), (q4, q0), ...\}$

Last time: Is Concatenation Closed?

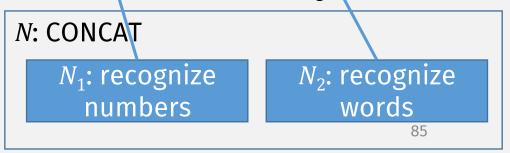
THEOREM **1.26**

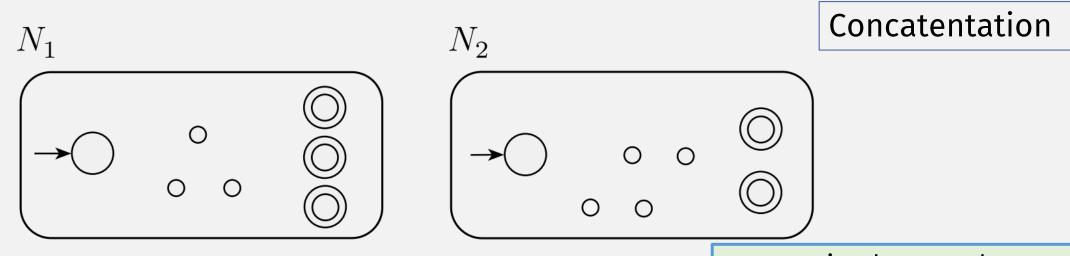
The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Proof: Construct a <u>new</u> machine? (like union)
- How does N know when to switch from N_1 to N_2 ?
 - Can only read input once

100 Morrissey Blvd



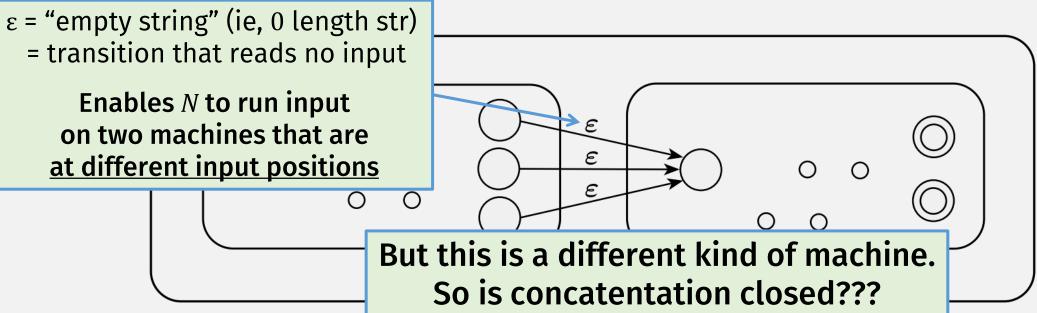


Let N_1 recognize A_1 , and N_2 recognize A_2 .

N must <u>simultaneously</u>:

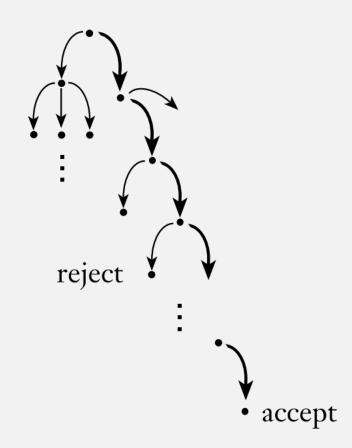
- Keep checking with N_1 and
- Move to N_2 to check 2^{nd} part

<u>Want</u>: Construction of N to recognize $A_1 \circ A_2$

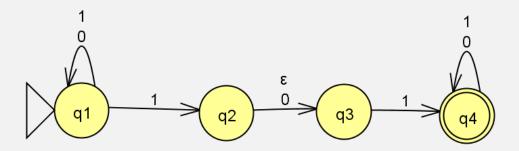


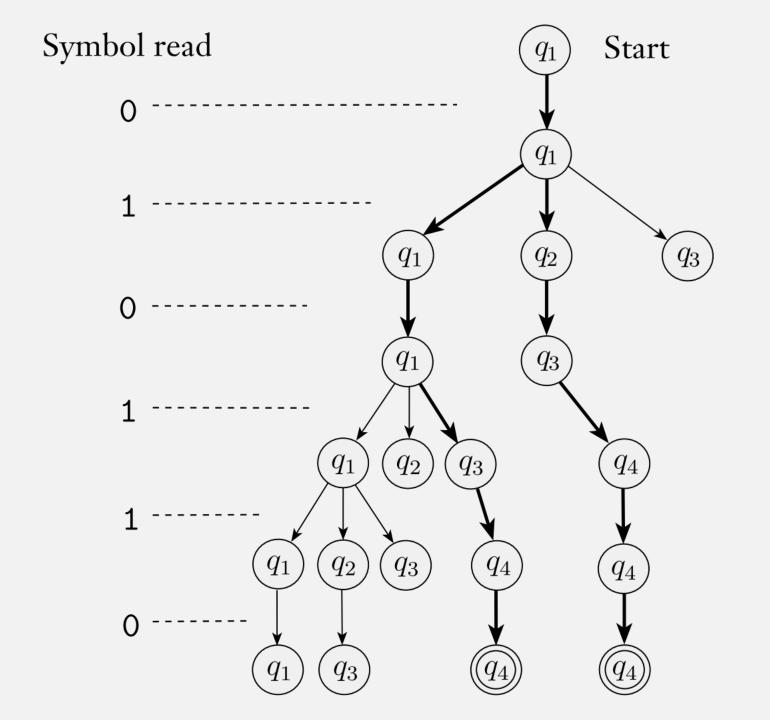
Nondeterminism

Deterministic computation • start states accept or reject Nondeterministic computation



Example Fig 1.27 (JFLAP demo): 010110





Nondeterministic machine can be in multiple states at once

DEFINITION 1.37

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- 2. Σ is a finite alphabet, Power set

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- **2.** Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

Power Sets

• A power set is the set of all subsets of a set

```
• Example: S = \{a,b,c\}
```

- Power set of S =
 - {{},{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}

Formal Definition of "Computation"

• DFA (from before): Let $w=w_1w_2\cdots w_n$

M accepts w if a sequence of states r_0, r_1, \ldots, r_n in Q exists with three conditions:

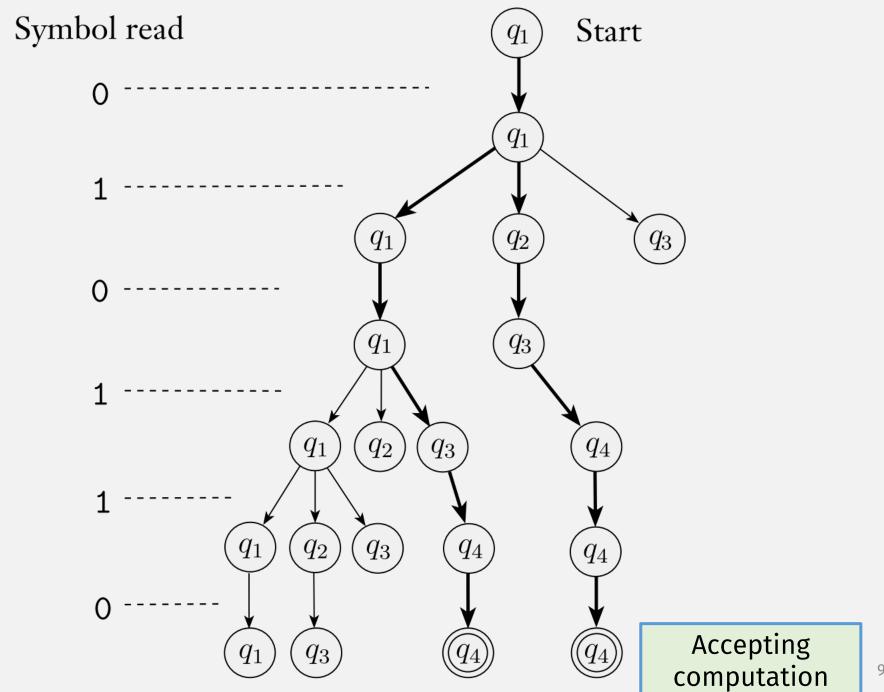
- 1. $r_0 = q_0$,
- **2.** $\delta(r_i, w_{i+1}) = r_{i+1}$, for i = 0, ..., n-1, and
- **3.** $r_n \in F$.
- NFA: Let $w = y_1 y_2 \cdots y_m$

N accepts w if a sequence of states r_0, r_1, \ldots, r_m exists in Q with three conditions:

- 1. $r_0 = q_0$,
- 2. $r_{i+1} \in \delta(r_i, y_{i+1})$, for i = 0, ..., m-1, and
- 3. $r_m \in F$.

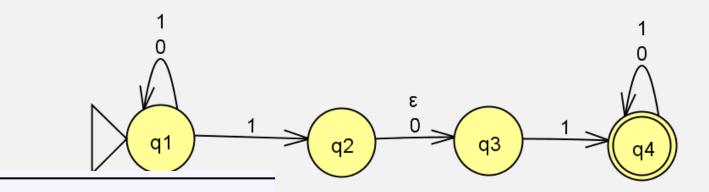
This is now a set

Nondeterministic computation requires **only one path to accept state** in the computation tree



In-class exercise

• Come up with a formal description of the following NFA:



DEFINITION 1.37

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

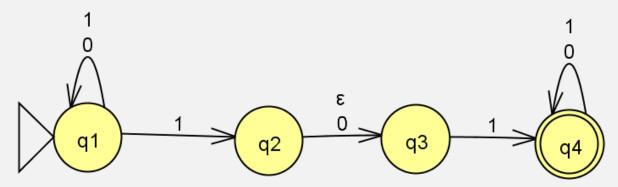
- **1.** Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- **3.** $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where

1.
$$Q = \{q_1, q_2, q_3, q_4\},\$$

- 2. $\Sigma = \{0,1\},\$
- 3. δ is given as

- **4.** q_1 is the start state, and
- 5. $F = \{q_4\}.$



So is Concatenation Closed for Reg Langs?

Concatenation of DFAs produces an NFA

But: A language is called a *regular language* if some DFA recognizes it.

• To show that concatenation is closed for regular languages, we must <u>prove</u> that NFAs *also* recognize regular languages.

- Specifically, we must <u>prove</u>:
 - NFAs ⇔ regular languages

How to Prove a Theorem: $X \Leftrightarrow Y$

- $X \Leftrightarrow Y = "X \text{ if and only if } Y" = X \text{ iff } Y = X <=> Y$
- Proof <u>at minimum</u> has 2 parts:
- **1.** => if *X*, then *Y*
 - i.e., assume *X*, then use it to prove *Y*
 - "forward" direction
- **2.** <= if *Y*, then *X*
 - i.e., assume *Y*, then use it to prove *X*
 - "reverse" direction

Proving NFAs recognize regular langs

• Theorem:

• A language A is regular **if and only if** some NFA N recognizes it.

Must prove:

- => If A is regular, then some NFA N recognizes it
 - Easy
 - We know: if A is regular, then a **DFA** recognizes it.
 - Easy to convert DFA to an NFA! (how?)
- <= If an NFA N recognizes A, then A is regular.
 - Hard
 - Idea: Convert NFA to DFA

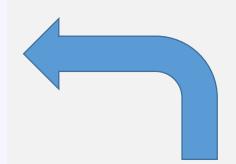
Need a way to convert NFA -> DFA

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the *set of accept states*.

Proof idea:

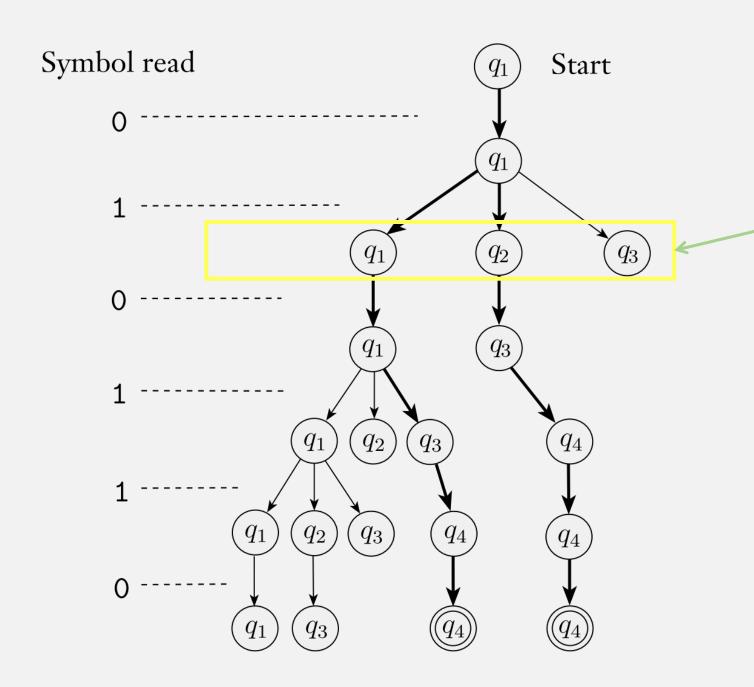
Each "state" of the DFA must be a set of states in the NFA



A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

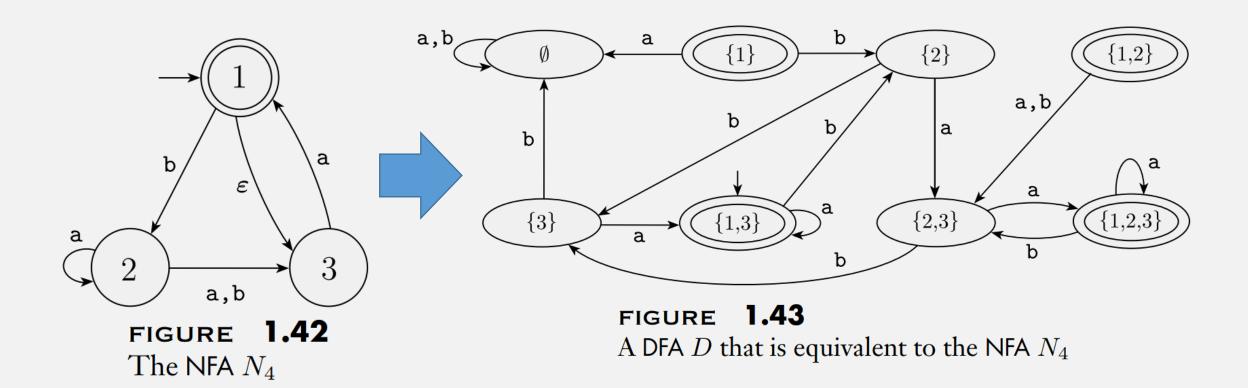
- **1.** Q is a finite set of states,
- **2.** Σ is a finite alphabet.
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.



In a DFA, all these states at each step must be only **one** state

So design a state in the converted DFA to be a set of NFA states!

Example:



Next time: Convert NFA -> DFA, Formally

- Let NFA N = $(Q, \Sigma, \delta, q_0, F)$
- Then equivalent DFA M has states $Q' = \mathcal{P}(Q)$ (power set of Q)
- (implement this algorithm for HW3)

Check-in Quiz 2/8

On gradescope

In-Class Survey

See course website

▼ CS420: Intro to Theory of Computation

Course Info

Logistics

Course Policies

Lecture Extra

Homework 0