NFA -> DFA
and

Intro to Regular Expressions
Wed, February 10, 2021

{META-REGEX GOLF}— [META-HMETA-REGEX GOLF]) {....AND BEYOND: |——
YOU TRY T MATCH ONE | [50 T LJROTE A PROGRAM | | ...BUT I (OSTMY CODE, || ReALLY, THIS 15 ALL
GROUP BUI NoT THE OTHER. | | THAT PIAYS REGEXGOLF | | 50 TM GREPPING FOR | | /(META-J*REGEX GOLE.,
M IITD-‘]IBJFHWES WITH ARBITRARY LISTS... | | FILES THAT LOOK LIKE NOW YOU HAVE

S7AR WARS SUBTITLES < UHOH... REGEX GOLF SOLVERS.

BUT NOT S7AR TREK.

5132

Logistics

e Reminder: no class next Monday 2/15/2021

« Welcome new TA: Benjamin Kwapong
e See website for additional office hour times

HW1: solutions posted (to piazza)
« May use ideas, but not copy (obvi)

HW2: due Sunday 2/14 11:59pm EST

HW3: posted, due Sunday 2/2111:59pm EST
* Includes a non-coding question

Questions>

Last time: Is Concat Closed for Reg Langs?

D FA Construct cognize A o Ay D FA

- Concatentation of DFAs produces an NFA {J{O ; %@ O O@ﬂ
o oo ©

 But, regular lang defined using only DFA:

NFA
A language is called a regular language

if some DFA recognizes it.

» To show: Concatenation is closed for regular languages,
we must prove that NFAs also recognize regular languages.

« Specifically:
« Theorem (1.40): NFAs <> regular languages

Last time: How to Prove a Theorem: X &Y

« X&Y = “XifandonlyifY" = XiffyY = X<=>Y
* Proof at minimum has 2 parts:
1. =>ifX thenY

* l.e., assume X, then use it to prove Y
« “forward” direction

2. <=1ifY, thenX
* i.e., assume Y, then use it to prove X
e “reverse” direction

Proving that NFAs Recognize Reg Langs

» Theorem:
A language A is regular if and only if some NFA N recognizes it.

* Must prove:

« => |f A Is regular, then some NFA N recognizes it

* Easy

« We know: if A is regular, then a DFA recognizes it

- To complete this part of proof: convert DFA to an NFA! (how?)
« <= |f an NFA N recognizes 4, then A is regular

* Hard

« We know: if a DFA recognizes a lang, then it is regular

 |dea: Convert NFA to DFA

How to convert NFA -> DFA?

A finite automaton is a S-tuple (Q, X, 6, qo, F'), where

1. @ is a finite set called the szates, <
2. Y is a finite set called the alphabet, :]

3. 0: Q x ¥— Q) is the transition function,
4. qo € () 1s the start state, and

5. F C Q is the set of accept states. A nondeterministic finite automaton
is a S-tuple (Q, %, 9, qo, F'), where

1. Q is a finite set of states,

Proof idea: . :

Each “state” of the 2. Y is a finite alphabetz N |
DFA must be a set 3. 0: Q x ¥.—>P(Q) is the transition function,
of states in the NFA 4. qo € @ 1s the start state, and

5. F C @ is the set of accept states.

Symbol read @ Start

T
In a DFA, all these
{ e @ states at each
' N step must be
only one state
O _____________
{ e (o (& So design a state in
the DFA to be a
@ @ @ @ set of NFA states!
T
This Is a generalization of the
O e @ @ @ @ @ proof strategy from

Thm 1.25 (closure of union),

@ @ where a state = pair of “states”

Convert NFA -> DFA, Formally
.LetNFAN= (@, 2, 0, qo, F')

 An equivalent DFA M has states Q' = P(Q) (power set of Q)

. [V
b

FIGURE 1.43
A DFA D that is equivalent to the NFA N,

FIGURE 1.42
The NFA N4

NFA -> DFA (ignore empty transitions)

e Have: N = (Q:Ea(sa QO'JF)
- Want to: constructa DFA M = (Q', X, ¢, qo’, ')
1. Q’ = P(Q) A state for M Is a set of states in N

2. For R Q" and a € X, R = a state in M = a set of states in N

0 (R,a) = L o(r, a)

rcR To compute next state for R,
. compute next states of each NFA state rin R,
3. qgo — {qo} then union results into one set

4. F' = {R € ()| R contains an accept state of [V}

NFA -> DFA (with empty transitions)

« Have: N = (Q, X, 4,

QO:'F)

E(R) = {q| g can be reached from R by traveling

along 0 or more € arrows}

- Want to: constructa DFA M = (Q', X, ¢, qo", F)

L Q =P(Q).
2. For R € ' and

§'(R,a) = |

reR

a < X,

'6"("7" .

E(0(r,a))

3. g0 =441 E({q0})

For each r, do its transition in N,
then add states reachable from
empty transitions,
then union results into one set

4. F' = {R € ()| R contains an accept state of [V}

Proving that NFAs Recognize Reg Langs

» Theorem:
A language A is regular if and only if some NFA N recognizes it.

* Must prove:

« => |f A Is regular, then some NFA N recognizes it
* Easy
« We know: if A is regular, then a DFA recognizes it
* Convert DFAto an NFA
« <= |f an NFA N recognizes 4, then A is regular
« Hard
« We know: if a DFA recognizes a lang, then it is regular
mm) - Idea: Convert NFA to DFA

« Using NFA -> DFA algorithm we just created!
B (Q.E.D.)

So Concatenation is Closed for Reg Langs!

« Concatentation of DFAs produces an NFA

Construction of N to recognize A; o Ay

YT DFA,

recognizes ~_ recognizes

reg lang J[Q .
L o O

&

® reg lang
S0 oo o J
O O

NFA,
recognizes
reg lang

“Regular” Operations

« Regular languages are closed under these operations:
« Union (already proved with DFAs)
« Concatenation
 Kleene Star (repetition, zero or more times)

» Easier to prove closure (by construction) using NFAs

Union

006
518"
» |,

New start state,
e-transitions to old
start states

O

Let N; recognize A;, and N3 recognize A,.

O

O

<
©
©,

Concat

Construction of N to recognize A; o As

N
4)
4 N\ 4 N
5 O—e_ ©
—O O30 o
O O <:>f,fékf @
N) © © Y,
\ J

Kleene Star

N
4 e
s | O1=C% ©
© ©
\ O Y,
New start (and accept) state,
e-transitions to old start state
\ Old accept states

e-transition to old
start state

Why do we care?

« Union, concat, and kleene star represent all regular languages

* |.e., they define regular expressions
DEFINITION 1.52

Say that R is a vegular expression if R is

1. a for some a in the alphabet ¥,

2. ¢,
. 3. 0,
UNION == 4. (R, U Ry), where R; and R, are regular expressions,
concat —> 5. (R; o R2), where Ry and R» are regular expressions, or
star 6. (R}), where R, is a regular expression.

Poll: Regexes

Ways to Recognize a Regular Language

- Instead of: ° 0 1

1' Q — {qlaQ2sQ3}a
2. ¥ = {o0,1},
3. 4 is described as
e Or: 0 1 These all define a computer
) @i |91 92
I (program) that accepts all
o - strings containing 001

4. g1 is the start state, and
5. F ={q2}-

. Which would you
« We can write a regexp: Y*001 Y%

rather write?

Regular Expressions are Super Useful

e Intelli)

123

Regular Expressions are Super Useful

e Visual Studio

Find and Replace
_%A Quick Find ~ | A,B Quick Replace ~

Find what:

Replace with:
Z:\l,‘

Look in:

[Current Project

(=] Find gptions
[~ Match case
[Match whole word
|| Search up

(V] Use:

[Regular EXpressions

)

[Find Next

| | Replace |

[Replace All ’

124

Regular Expressions are Super Useful

* Grep (Linux)

REP(1)

AME

General Commands Manual GREP(1)

grep, egrep, fgrep, rgrep - print lines matching a pattern

SYNOPSIS

grep [OPTIONS) PATTERN [FILH...]
grep [OPTIONS] [-e PATTERN || -f FILE] [FILE...]

DESCRIPTION

grep searches the named input FILEs (or standard input if no files are
named, or if a single hyphen-minus (-) is given as file name) for lines
containing a match to the given PATTERN. By default, grep prints the
matching lines.

In addition, three variant programs egrep, fgrep and rgrep are
available. egrep is the same as grep -E. fgrep 1is the same as
grep -F. rgrep is the same as grep -r. Direct 1invocatlion as either
egrep or fgrep is deprecated, but 1is provided to allow historical
applications that rely on them to run unmodified.

125

Regexps supported In every language

Perl
Python
Java

Every lang!

NAME

perlre - Perl regular expressions

@ Python » | English v|[3.8.6rc1 v |Documentation » The Python Standard Library » Text Processing Services » Qui
Table of Contents re — Regular expression operations
re — Regular expression
operations
= Regular Expression Source code: Lib/re.py
Syntax

= [odule Contents

= Regular Expression This module provides regular expression matching operations similar to those found in Perl.

java.util.regex

Class Pattern

java.lang.Object
java.util.regex.Pattern

126

Caveat: Regexps are useful, If used correctly

OH NO! THE KILIER | [BUT TD FIND THEM WED HAVE T0 SEARCH
\WHENEVER T LEARN A | | MUST HAVE ROLLOWED| | THROUGH 200 MB OF EMAILS LOOKING FOR
NEw SKILL 1 CoNCOCT | |HER ON VACATION | || SOMETHING FORMATTED LIKE AN ADDRESS!
ELABORATE. FANTASY I A) y :
15 v S v AL f% > HoPRLESS FYOUREHAVNPERL || TGOT 99 || SOTuser || Now T HAVE
- ' ﬁ' PROBLEMS T FEEL PROBLEMS, REGULAR 100 PROBLEMS.
BAD FOR You, SON— EXPRESSIONS,
))))
EXPRESSIONS.
™ <i ... only If used correctly
L]
I /1
' Where “used correctly” =
P i% ﬁ /ﬁy only use it to recognize
regular languages
(To do this, you must know what is,

Regexps: potentially useful ... and is not, a regular language!)

Someone Who Did Not T

n regex summons tainted souls into the realm of the living. HTML and regex go

RegEx match open tags except XHTML self-co

Asked 10 years, 10 months ago Active 1 month ago Viewed 2.9m times

| need to match all of these opening tags:

1553 oy

But not these:

HTML is a language of sufficient complexity that it cannot be parsed by regular
expressions. Even Jon Skeet cannot parse HTML using regular expressions. Every
time you attempt to parse HTML with regular expressions, the unholy child weeps
the blood of virgins, and Russian hackers pwn your webapp. Parsing HTML with

together like love, marriage, and ritual infanticide. The <center> cannot hold it is too
late. The force of regex and HTML together in the same conceptual space will
destroy your mind like so much watery putty. If you parse HTML with regex you are
giving in to Them and their blasphemous ways which doom us all to inhuman toil for
the One whose Name cannot be expressed in the Basic Multilingual Plane, he
comes. HTML-plus-regexp will liquify the nerves of the sentient whilst you observe,
your psyche withering in the onslaught of horror. Reg?x-based HTML parsers are
the cancer that is killing StackOverflow it is too late it is too late we cannot be saved
the trangession of a child ensures regex will consume all living tissue (except for
HTML which it cannot, as previously prophesied) dear lord help us how can anyone
survive this scourge using regex to parse HTML has doomed humanity to an eternity
of dread torture and security holes using regex as a tool to process HTML
establishes a breach between this world and the dread realm of corrupt entities (like

You can't parse [X]HTML with regex. Because HTML can't be parse(SGML entities, but more corrupt) a mere glimpse of the world of regex parsers for

Regex is not a tool that can be used to correctly parse HTML. As |

h HTML will instantly transport a programmer’'s consciousness into a world of

ceaseless screaming, he comesthe-pestilentslithy regex-infection will devour your

HTML-and- -Tegex queStIUns here so many times before, the use of r{HTI‘rrIL parser, application and existence for all time like Visual Basic only worse he
allow you to consume HTML. Regular expressions are a tool that is comes he comes do not fight he comgs, his unholy radiaricé destroying all
sophisticated to understand the constructs employed by HTML. HTN\ enlightenment, HTML tags leaking fegm.your eyes/like liquid pain, the song of

V regular language and hence cannot be parsed by regular expressior

regular expressien—parsmg—will extinguish the voices of mortal man from the sphere
I can see it can you see_jt rt it is beautiful the f inal snuf fing of the lies of Man ALL IS

queries are not equipped to break down HTML into its meaningful pe LOSTALL IS LOST the' pony he comes he comes-he-comes thﬁchor permeajes
times but it is not getting to me. Even enhanced irregular regular exgal k MY FACE MY FACE °h god-ﬂpWOMOOO NO stop the 6!?@"8 gre not real

used by Perl are not up to the task of parsing HTML. You will never 1

v & dx

ZALGO IS TOJ\I-y THE F’ONY HE-LCOME§

Have you tried using an XML parser instead?

Big Picture Road Map

« We ultimately want to prove:
« Regular Languages < Regular Expressions <

* First, we need to show these operations are closed for reglangs:
 Union (done!)
 Concatentation (done!)
 Kleene star (done!)

Thm: A lang I1s regular iff some regexp describes it

« => |f a language is regular, it is described by a regexp

« <= |f a language is described by a regexp, it is regular
e Easy!
« Construct the NFA!
 See Lemma 1.55

Regexp -> NFA

DEFINITION 1.52

Say that R is a rvegular expression it R is

1. a for some a in the alphabet ¥, —>©—a>©

)

)
0, -~

1 U Rs), where Ry and R; are regular expressions,

(

R1 0 Ry), where K el : ' ' r
(1 0 J2), where B ot ctions from before!
(RT), where Rl IS d 1cguLar capireod1ULL.

2.
3.
4.
5.
6.

Thm: A lang I1s regular iff some regexp describes it

« => |f a language is regular, it is described by a regexp
« Hard!
* Need something new: a GNFA

« <= |f a language Is described by a regexp, it Is regular
e Easy!
» Construct the NFA! (Done)

GNFA = NFA with regexp transitions

« To convert to regexp, keep “ripping out” states until only 2 are left

Check-in Quiz 2/10

On gradescope

