More Induction &
Non-Regular Languages

Monday, February 22, 2021

Turing-recognizable

decidable

context-free

?
0

Logistics

 New TA: Welcome Nick!
e See course site for additional office hours

e HW3 In

* HW 4 out
e Due Sunday 2/28 11:59pm
« Create a regexp matcher! Practically interesting!

» HW4 is the last one with coding (based on your feedback)
« And HW4 coding part is only a fraction of the points
 Early assignments weighted less

Last Time: Regular Language < Regular Expression

« => |If a language Is regular, it is described by a regular expression
- We know a regular lang has an NFA recognizing it (Thm 1.40)
« Use GNFA->Regexp function to convert NFA to equiv regular expression

« <= If a language Is described by a regular expression, it is regular
» Convert the regular expression to an NFA (Thm 1.55)

So a regular language has these
equivalent representations:

- DFA

- NFA

- Regular Expression

Last time: GNFA->Regexp “Rip/Repair” Step

Before: two paths from g; to g;:
1. Not through q,,
2 Through q,;,

Q (Ry) (Ry)* (Ry)|U (Ry)

R After: two regexp “paths” from g; to g;
2 1. Not through q,;,
2. Through g,

before

Question: What if q,;, is an accept state?
Answer: g, cannot be a start or accept state

Update: GNFA->Regexpr

* First modifies input machine to have:

* New start state
« With no incoming transitions
« And epsilon transition to old start state

« New, single accept state
« With epsilon transitions from old accept states

Last time: GNFA->Regexp function

« On GNFA Input G:
« If G has 2 states, return the regular expression transition, e.g.:

Base case

Equivalent Regular expression

@ (R)) (R)* (Ry) U (R) GNFA
Inductive case

* Else:
« “Rip out” one state and “repair” to get G’ (has one less state than G)

 Recursively call GNFA->Regexp(G) [Recursive call
Is “smaller”

This is a recursive (inductive) definition!

Last time: Kinds of Mathematical Proof

 Proof by construction

* Proof by contradiction

* Proof by induction {z=m=

» Use to prove properties of recursive (inductive) defs or functions
* Proof steps follow the inductive definition

Last time: Proof by Induction —

LANGOF (G)

To prove that a property P is true for a thing x: LANGOF (GNFA->Regexp (G))

1. Prove that P is true for the base case of x (usually easy) | G has two states

2. Prove the induction step: LANGOF (G’)
* Assume the induction hypothe5|s.(IH): >| LANGOF (GNFA->Regexp (G'))
* P(x)Is true, for some x,.;. that is smaller than x (Where G smaller than G)

« and use it to prove P(x) | Show that “rip/repair” step converts G to smaller, equiv G’

(Ry) (Ry)* (R3) U (Ry)
|:> di 4
after

Regular Expressions, Formal Definition

DEFINITION 1.52

Say that R is a regular expression if R is

1. a for some a in the alphabet X, This is weird?

£, Regular expressions defined
0 using regular expressions?

)

2.
3.
4. (R, U Ry), where R; and Ry are regular expressions,
5. (R1 o R2), where R; and R» are regular expressions, or
6. (R}), where R; is a regular expression.

It's a Recursive Definition!

DEFINITION 1.52 /

Say that R is a regular expression it R is

1. a for some a in the alphabet X,

3 base cases

“smaller”

. €,
.0, / self-references

2
3
Sinductve 14- (R1 U Ry), where Ry and R are regular expressions,
cases |5. (Ry1 o R2), where R; and R» are regular expressions, or
6. (R}), where R; is a regular expression.

How to prove a theorem about Reg Eea%?

 Proof by construction

 Proof by contradiction

- Proof by induction <¢===

« On Regular Expressions!

How to prove a theorem about Reg Eea%?

| tan guagesl
We now have 2 proof techniques! You choose

* Proof by construction (can still prove things this way)
» Construct DFA or NFA <mmm

 Proof by contradiction

 Proof by induction
« On Regular Expressions!

Homomorphism: Closed under Reg Langs

A bomomorphism is a function f: X—— 1 from one alphabet to another.

« Assume fcan be used on both strings and characters

* E.g., like a secret decoder!
* f(X7) >
 f(Py") ->"a"
° f(“Z") -S> llt"
° f'(“xyzﬂ) -S> “Cat"

« Prove: homomorphisms are closed under regular languages
« E.g., if lang A is regular, then f{A) is regular

How to prove a theorem about Reg Eea%?

| tan guagesl
We now have 2 proof techniques! You choose

» Proof by construction ===
* Construct DFA or NFA

 Proof by contradiction

* Proof by induction{=mm

« On Regular Expressions!

Thm: Homomorphism Closed for Reg Langs

 Proof by construction
 If a lang A is regular, then we know DFA M recognizes it.
« So modify M such that transitions use the new alphabet
e (Details left to you to work out)

 Proof by induction:
 If a lang A is regular, then some reg expression R describes it.

A bomomorphism is a function f: X—— T from one alphabet to another.

Homomorphism Closure: Inductive proof

DEFINITION l '52 Inductive proof must handle all cases, e.g.,
- If: regexpr “a” describes a reg lang,

Say that R is a rvegular expression if } - then:“a’) is describes a reg lang
- because: it's still a single-char regexpr,

- so: homomorphism closed under reg langs

1. a for some a in the alphabet X, | (or this case)

3 base
cases

9 IH: assume applying homomorphism fto

=
smaller R, (and R,) produces a regular lang,
. Q): %m f(Rl)andf(Rz) are regular langs
(Rl U R2) To ﬂnlsh Droof need to showf(Rl) U f(R,) Is a reg lang

(hc only union operation were closed for reg langs ©)
RY), where Ry 1s a regular expression.

A bomomorphism is a function f: X—— T from one alphabet to another.

Non-Regular Languages

Turing-recognizable

decidable

context-free

?
0

Non-Regular Languages

« We now have many ways to prove that a language is regular:
« Construct a DFA or NFA (or GNFA)
« Come up with a regular expression describing the language

« But how to show that a language is not regular?

RegEx match open tags except XHTML self-contained tags

Asked 11 years, 3 months ago Active 3 months ago Viewed 3.1m times

* E. 8 HTML / XML is not a I’egular [anguage in ‘dtm:h a o hese opeing tags
« But how can we prove it

But not these:

You can't p [X]HTML with regex. Because HTML can't be parsed by regex. Regex is not a
. . 4413 too Hh t can be used to 1Iy par: HTML As | have answered in HTML-and-regex questions
([J PreVIeW. The Pu m pl ng Lem ma' heresoma ytme bf th f g II ot a H y uto nsumeHTML. Regular
O > expressic=~~ =~ b i dmm it e b Ammabninta mmslaind
by HTML HTML is not a regular language d hen not be parsed by regular expressions

Flashback: Designing DFAs or NFAS

« States = the machine’s memory!
« Each state “stores” some information
* Finite states = finite amount of memory
* And must be allocated in advance

« This means DFAs can’t keep track of an arbitrary count!
« would require infinite states

A Non-Regular Language
+L={0""|n>=0}
» A DFA recognizing L would require infinite states! (impossible)

 This language iIs the essence of XML!

« To better see this replace:
o llo" _> “<tag>“
. “1" - ll</tag>"

Still, how do we prove

» The problem is tracking the nestedness non-regularness?

« Regular languages cannot count arbitrary nesting depths
« So most programming languages are also not regular!

The Pumping Lemma

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = xyz, satistying the tollowing conditions:

1. for each i > 0, xy'z € A,

2. |y| > 0, and Pumping lemma specifies
3. |zy| < p.e three conditions that a
o regular language must satisfy

Specifically, strings in the language
longer than some length p
must satisfy the conditions

But it doesn’t tell you an exact p!
You have to find it.

The Pumping Lemma

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

1. for each i > 0, xy'z € A,

2. |y| > 0, and Because a finite lang is regular, then
3. |zy| < poe these conditions must be true for all
B strings in the lang “of length at least p”

« Example: a finite-sized language, e.g., {“ab”, “cd”}
« All finite langs are regular bc we can easily construct DFA/NFA recognizing them
« One possible p = length of longest string in the language, plus 1

* In a finite lang, # strings “of length at least p” = 0
« Therefore “all” strings “of length at least p” satisfy the pumping lemma criteria!

The Pumping Lemma

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

1. for each i > 0, xy'z € A,

2. |y| > 0, and In an infinite regular lang, these
3. |zy| < poe conditions must be true for all strings
B in the lang “of length at least p”

« Example: a infinite language, e.g., {“00”, “010”,“0110”,“01110”, ...}
« This language is regular bc it's described by regular expression 01*0
« E.g,, “010” is in the lang, and we can split into three parts: x=0,y=1,z=0
- And any pumping (ie, repeating) of y creates a string that is still in the language
- E.g, i=1->“010" 1=2->“0110" i=3 ->“01110”
e This is what the pumping lemma requires

The Pumping Lemma

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

1. for each i > 0, xy'z € A,

2. |y| > 0, and In an infinite regular lang, these
3. |zy| < poe conditions must be true for all strings
B in the lang “of length at least p”

« Example: a infinite language, e.g., {“00”, “010”,“0110”,“01110”, ...}

« This language is regular bc it's described by regular expression 01*0
.« p=777?

The Pumping Lemma, a Closer Look

\
Pumping lemma If A is a regular lang ey nber p (the
pumping length) where if s is any string in| (&) -~ pn s may be
divided into three pieces, s = zyz, satisfyin ,; . S:
1. for each i > 0, zy'z € A, L (20)

2. |y| > 0, and \ Pumping lemma says that for “long enough” strings,
3. |zy| < p. you should be able to repeat a part of it,
— and that “pumped” string will still be in the language

« Strings that have a repeatable part can be split into:

» X = the part before any repeating This makes sense because DFAs have a
. y = the repeated part finite number of states, so for “long

: enough” inputs, some state must repeat
« z = the part after any repeating

The Pigeonhole Principle!

The Pigeonhole Principle

The Pumping Lemma

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

1. for each i > 0, xy'z € A,

2. |ly| > 0, and

3. |lzy| <p.

« Example: a infinite language, e.g., {“00”, “010”,“0110”, “01110”, ...}

 This language is regular bc it's described by regular expression 0*
.« p=777?

The Pumping Lemma

4 . N
Pumping lemma If A is a regular lang S nber p (the
pumping length) where if s is any string in| [« -~ pn s may be
divided into three pieces, s = xyz, satistyin| ,; " [s:
1. for each i > 0, xy'z € A, L (2 y
2. |y| > 0, and \ “pumpable” part of string
3. |lzy| <p. :
But how does this
- Example: a infinite language, e.g., {“00”,“010”, “01 prove that a
+ This language is regular bc it's described by regular ex| l@nguage is NOT
« p = number of states, plus 1 regular??

« When running an input longer than p, one state is guaranteed to be visited twice
« That state represents the “pumpable” part of the string

Poll: Conditional Statements

204

Equivalence of Conditional Statements

* Yes or No? “If X then Y” is equivalent to:

« “If Y then X" (converse)
e No!

« “If not X then not Y” (inverse)
* No!

* “If not Y then not X” (contrapositive)

* Yes!
« Proof by contradiction relies on this equivalence

Kinds of Mathematical Proof

 Proof by construction
 Construct the object in question

» Proof by contradiction <=

 Proving the contrapositive

 Proof by induction
« Use to prove properties of recursive definitions or functions

Pumping Lemma: Proving Non-Regularitv

... then the language is not regular

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length aplecctn than oo ba

divided into three pieces, s = xyz, satisfying the followir |MPORTA.NT NOTE:
The pumping lemma

cannot prove that a

2. |y| > 0, and language is regular
3. |zy| < p.

1. for each i > 0, xy'z € A,

If any of these are not true ...

Contrapositive:
“If X then Y” is equivalent to “If not Y then not X

Pumping Lemma: Non-Regularity Example

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistfying the following conditions:

1. for each i > 0, xy'z € A,

2. |y| > 0, and

3. |zy| < p.

Let B be the language {0"1"|n > 0}. We use the pumping lemma to prove that
B is not regular. The proof is by contradiction.

Check-in Quiz 2/22

On gradescope

Theorem

The language B = {0"1" | n > 0} is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)
1. State the kind of proof: The proof is by contradiction.

Theorem

The language B = {0"1" | n > 0} is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)
1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that B is a regular language.
Then it must satisfy the pumping lemma where p is the pumping length.

Theorem

The language B = {0"1" | n > 0} is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)
1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that B is a regular language.
Then it must satisfy the pumping lemma where p is the pumping length.

3. Present counterexample: Choose s to be the string 0P1P.

Theorem

The language B = {0"1" | n > 0} is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)
1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that B is a regular language.

Then it must satisfy the pumping lemma where p is the pumping length.
3. Present counterexample: Choose s to be the string 0P1P.
4. Show contradiction of assumption: Because s € B and has length > p, the

pumping lemma guarantees that s can be split into three pieces s = xyz where
xy'z € B for i > 0. But we show this is impossible:

Theorem

The language B = {0"1" | n > 0} is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)
1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that B is a regular language.
Then it must satisfy the pumping lemma where p is the pumping length.

3. Present counterexample: Choose s to be the string 0P1P.

4. Show contradiction of assumption: Because s € B and has length > p, the
pumping lemma guarantees that s can be split into three pieces s = xyz where
xy'z € B for i > 0. But we show this is impossible:

5. The contradiction step typically requires detailed case analysis of scenarios.
There are three possible cases:

Theorem
The language B = {0"1" | n > 0} is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1.
2.

State the kind of proof: The proof is by contradiction.

State assumptions: Assume that B is a regular language.
Then it must satisfy the pumping lemma where p is the pumping length.

Present counterexample: Choose s to be the string 0P1P.

4. Show contradiction of assumption: Because s € B and has length > p, the

pumping lemma guarantees that s can be split into three pieces s = xyz where
xy'z € B for i > 0. But we show this is impossible:

The contradiction step typically requires detailed case analysis of scenarios.
There are three possible cases:

5.1 yis all Os: Pumped strings, e.g., xyyz, are not in B because they have more Os than
1s, breaking condition 1 of the pumping lemma. So we have a contradiction.

Theorem
The language B = {0"1" | n > 0} is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1.
2.

State the kind of proof: The proof is by contradiction.

State assumptions: Assume that B is a regular language.
Then it must satisfy the pumping lemma where p is the pumping length.

Present counterexample: Choose s to be the string 0P1P.

4. Show contradiction of assumption: Because s € B and has length > p, the

pumping lemma guarantees that s can be split into three pieces s = xyz where
xy'z € B for i > 0. But we show this is impossible:

The contradiction step typically requires detailed case analysis of scenarios.
There are three possible cases:

5.1 yis all Os: Pumped strings, e.g., xyyz, are not in B because they have more Os than
1s, breaking condition 1 of the pumping lemma. So we have a contradiction.
5.2 yis all 1s: Same as above.

Theorem
The language B = {0"1" | n > 0} is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)
1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that B is a regular language.
Then it must satisfy the pumping lemma where p is the pumping length.

3. Present counterexample: Choose s to be the string 0P1P.

4. Show contradiction of assumption: Because s € B and has length > p, the
pumping lemma guarantees that s can be split into three pieces s = xyz where
xy'z € B for i > 0. But we show this is impossible:

5. The contradiction step typically requires detailed case analysis of scenarios.
There are three possible cases:

5.1 yis all Os: Pumped strings, e.g., xyyz, are not in B because they have more Os than
1s, breaking condition 1 of the pumping lemma. So we have a contradiction.

5.2 yis all 1s: Same as above.

5.3 y has both Os and 1s: Pumped strings preserve equal counts, but is out of order and
therefore not in B, breaking condition 1.

Theorem
The language B = {0"1" | n > 0} is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)
1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that B is a regular language.
Then it must satisfy the pumping lemma where p is the pumping length.

3. Present counterexample: Choose s to be the string 0P1P.

4. Show contradiction of assumption: Because s € B and has length > p, the
pumping lemma guarantees that s can be split into three pieces s = xyz where
xy'z € B for i > 0. But we show this is impossible:

5. The contradiction step typically requires detailed case analysis of scenarios.
There are three possible cases:

5.1 yis all Os: Pumped strings, e.g., xyyz, are not in B because they have more Os than
1s, breaking condition 1 of the pumping lemma. So we have a contradiction.

5.2 yis all 1s: Same as above.

5.3 y has both Os and 1s: Pumped strings preserve equal counts, but is out of order and
therefore not in B, breaking condition 1.

6. Conclusion: Since all cases result in contradiction, B must not be regular.

Theorem
The language B = {0"1" | n > 0} is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)
1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that B is a regular language.
Then it must satisfy the pumping lemma where p is the pumping length.

3. Present counterexample: Choose s to be the string 0P1P.

4. Show contradiction of assumption: Because s € B and has length > p, the
pumping lemma guarantees that s can be split into three pieces s = xyz where
xy'z € B for i > 0. But we show this is impossible:

5. The contradiction step typically requires detailed case analysis of scenarios.
There are three possible cases:

5.1 yis all Os: Pumped strings, e.g., xyyz, are not in B because they have more Os than
1s, breaking condition 1 of the pumping lemma. So we have a contradiction.

5.2 yis all 1s: Same as above.

5.3 y has both Os and 1s: Pumped strings preserve equal counts, but is out of order and
therefore not in B, breaking condition 1.

6. Alternate Proof: Last 2 cases not needed; see pumping lemma, condition 3.

Using Condition 3 of the Pumping Lemma

Theorem
The language F = {ww | w € {0,1}*} is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)
1. State the kind of proof: The proof is by contradiction.

Using Condition 3 of the Pumping Lemma

Theorem
The language F = {ww | w € {0,1}*} is not regular.

Proof.
This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)
1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that F is regular. Then it must satisfy the pumping
lemma where p is the pumping length.

Using Condition 3 of the Pumping Lemma

Theorem
The language F = {ww | w € {0,1}*} is not regular.

Proof.
This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)
1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that F is regular. Then it must satisfy the pumping
lemma where p is the pumping length.

3. Present counterexample: Choose s to be the string 0P10°1.

Using Condition 3 of the Pumping Lemma

Theorem

The language F = {ww | w € {0,1}*} is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)
1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that F is regular. Then it must satisfy the pumping
lemma where p is the pumping length.

3. Present counterexample: Choose s to be the string 0P10°1.

4. Show contradiction of assumption: Because s € F and has length > p, the
pumping lemma guarantees that s can be split into three pieces s = xyz where
xy'z € F for i > 0. But this is impossible.

Using Condition 3 of the Pumping Lemma

Theorem
The language F = {ww | w € {0,1}*} is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)
1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that F is regular. Then it must satisfy the pumping
lemma where p is the pumping length.

3. Present counterexample: Choose s to be the string 0P10°1.

4. Show contradiction of assumption: Because s € F and has length > p, the
pumping lemma guarantees that s can be split into three pieces s = xyz where
xy'z € F for i > 0. But this is impossible.

5. This time there is only one possible case, but we must explain why. According to

condition 3 of the pumping lemma |xy| < p. So p is all 0s. But then xyyz ¢ F,
breaking condition 1 of the pumping lemma. So we have a contradiction.

Using Condition 3 of the Pumping Lemma

Theorem
The language F = {ww | w € {0,1}*} is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1.
2.

State the kind of proof: The proof is by contradiction.

State assumptions: Assume that F is regular. Then it must satisfy the pumping
lemma where p is the pumping length.

Present counterexample: Choose s to be the string 0P10°1.

4. Show contradiction of assumption: Because s € F and has length > p, the

pumping lemma guarantees that s can be split into three pieces s = xyz where
xy'z € F for i > 0. But this is impossible.

This time there is only one possible case, but we must explain why. According to
condition 3 of the pumping lemma |xy| < p. So p is all 0s. But then xyyz ¢ F,
breaking condition 1 of the pumping lemma. So we have a contradiction.

Conclusion: Since all cases result in contradiction, F must not be regular.

Pumping Down

Theorem
The language E = {0’V | i > j} is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)
1. State the kind of proof: The proof is by contradiction.

Pumping Down

Theorem
The language E = {0’V | i > j} is not regular.

Proof.
This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)
1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that E is regular. Then it must satisfy the pumping
lemma where p is the pumping length.

Pumping Down

Theorem
The language E = {0’V | i > j} is not regular.

Proof.
This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)
1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that E is regular. Then it must satisfy the pumping
lemma where p is the pumping length.

3. Present counterexample: Choose s to be the string 0P+117.

Pumping Down

Theorem

The language E = {0’V | i > j} is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)
1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that E is regular. Then it must satisfy the pumping
lemma where p is the pumping length.

3. Present counterexample: Choose s to be the string 0P+117.

4. Show contradiction of assumption: Because s € E and has length > p, the
pumping lemma guarantees that s can be split into three pieces s = xyz where
xy'z € E for i > 0. But this is impossible.

Pumping Down

Theorem
The language E = {0’V | i > j} is not regular.

Proof.
This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)
1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that E is regular. Then it must satisfy the pumping
lemma where p is the pumping length.

3. Present counterexample: Choose s to be the string 0P+117.

4. Show contradiction of assumption: Because s € E and has length > p, the
pumping lemma guarantees that s can be split into three pieces s = xyz where
xy'z € E for i > 0. But this is impossible.

5. Again, one possible case. According to condition 3 of the pumping lemma

Ixy| < p. So pis all Os. But then xz ¢ E (i = 0), breaking condition 1 of the
pumping lemma. So we have a contradiction.

Pumping Down

Theorem
The language E = {0’V | i > j} is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1.
2.

State the kind of proof: The proof is by contradiction.

State assumptions: Assume that E is regular. Then it must satisfy the pumping
lemma where p is the pumping length.

Present counterexample: Choose s to be the string 0P+11P,

4. Show contradiction of assumption: Because s € E and has length > p, the

pumping lemma guarantees that s can be split into three pieces s = xyz where
xy'z € E for i > 0. But this is impossible.

Again, one possible case. According to condition 3 of the pumping lemma
Ixy| < p. So pis all Os. But then xz ¢ E (i = 0), breaking condition 1 of the
pumping lemma. So we have a contradiction.

Conclusion: Since all cases result in contradiction, E must not be regular.

