More Induction & Non-Regular Languages

Monday, February 22, 2021

Turing-recognizable

context-free

regular

Logistics

- New TA: Welcome Nick!
 - See course site for additional office hours
- HW3 in
- HW 4 out
 - Due Sunday 2/28 11:59pm
 - Create a regexp matcher! Practically interesting!
- HW4 is the last one with coding (based on your feedback)
 - And HW4 coding part is only a fraction of the points
 - Early assignments weighted less

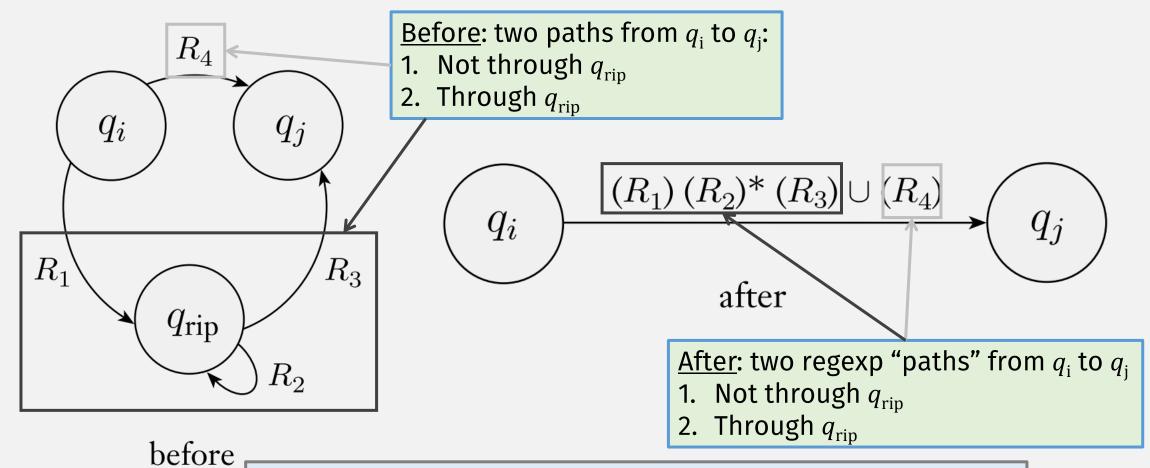
<u>Last Time</u>: Regular Language ⇔ Regular Expression

- => If a language is regular, it is described by a regular expression
 - We know a regular lang has an NFA recognizing it (Thm 1.40)
 - Use GNFA->Regexp function to convert NFA to equiv regular expression
- <= If a language is described by a regular expression, it is regular
 - Convert the regular expression to an NFA (Thm 1.55)

So a regular language has these equivalent representations:

- DFA
- NFA
- Regular Expression

Last time: GNFA->Regexp "Rip/Repair" Step



Question: What if q_{rip} is an accept state?

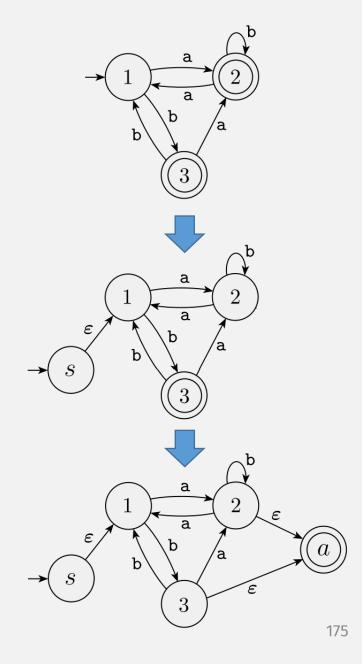
Answer: q_{rip} cannot be a start or accept state

<u>Update</u>: GNFA->Regexpr

• First modifies input machine to have:

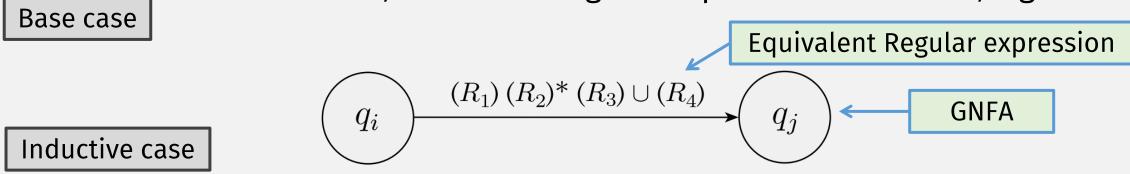
- New start state
 - With no incoming transitions
 - And epsilon transition to old start state

- New, single accept state
 - With epsilon transitions from old accept states



Last time: GNFA->Regexp function

- On GNFA input G:
 - If G has 2 states, return the regular expression transition, e.g.:



- Else:
 - "Rip out" one state and "repair" to get G' (has one less state than G)
 - Recursively call GNFA->Regexp(G') Recursive call is "smaller"

This is a recursive (inductive) definition!

Last time: Kinds of Mathematical Proof

- Proof by construction
- Proof by contradiction
- Proof by induction
 - Use to prove properties of recursive (inductive) defs or functions
 - Proof steps follow the inductive definition

Last time: Proof by Induction

EXAMPLE OF A "P":

LANGOF (G)

=

LANGOF (GNFA->Regexp (G))

To prove that a **property** P is true for a **thing** x:

- 1. Prove that P is true for the base case of x (usually easy) G has two states
- Prove the induction step:

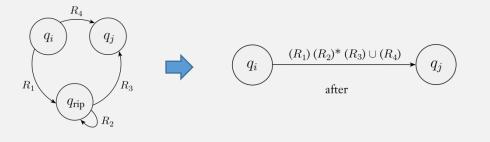
 Assume the induction hypothesis (IH):
 P(x) is true, for some x_{smaller} that is smaller than x

 LANGOF (G')

 LANGOF (GNFA->Regexp (G'))
 (Where G' smaller than G)

before

• and use it to prove P(x) Show that "rip/repair" step converts G to smaller, equiv G'



Regular Expressions, Formal Definition

DEFINITION 1.52

Say that R is a **regular expression** if R is

- 1. a for some a in the alphabet Σ ,
- $2. \ \varepsilon,$
- **3.** ∅,
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- 5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

This is weird?
Regular expressions defined using regular expressions?

It's a Recursive Definition!

DEFINITION 1.52

Say that R is a **regular expression** if R is

- 1. a for some a in the alphabet Σ ,
- **2.** ε , 3 base cases
- **3.** ∅,

3 inductive

cases

"smaller" self-references

- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

How to prove a theorem about Reg Exprs? Languages!

Proof by construction

- Proof by contradiction
- Proof by induction
 - On Regular Expressions!

How to prove a theorem about Reg Exprs? Languages!

We now have 2 proof techniques! You choose

- Proof by construction (can still prove things this way)
 - Construct DFA or NFA

- Proof by contradiction
- Proof by induction
 - On Regular Expressions!

Homomorphism: Closed under Reg Langs

A **homomorphism** is a function $f: \Sigma \longrightarrow \Gamma$ from one alphabet to another.

- Assume f can be used on both strings and characters
- E.g., like a secret decoder!
 - f("x") -> "c"
 - f("y") -> "a"
 - f("z") -> "t"
 - f("xyz") -> "cat"
- Prove: homomorphisms are <u>closed</u> under regular languages
 - E.g., if lang A is regular, then f(A) is regular

How to prove a theorem about Reg Exprs? Languages!

We now have 2 proof techniques! You choose

- Proof by construction
 - Construct DFA or NFA

- Proof by contradiction
- Proof by induction
 - On Regular Expressions!

Thm: Homomorphism Closed for Reg Langs

- Proof by construction
 - If a lang A is regular, then we know DFA M recognizes it.
 - So modify M such that transitions use the new alphabet
 - (Details left to you to work out)
- Proof by induction:
 - If a lang A is regular, then some reg expression R describes it.

Homomorphism Closure: Inductive proof

DEFINITION 1.52

Say that R is a **regular expression** if R

1. a for some a in the alphabet Σ ,

Inductive proof must handle all cases, e.g.,

- If: regexpr "a" describes a reg lang,
- then: f("a") is describes a reg lang
- because: it's still a single-char regexpr,
- so: homomorphism closed under reg langs (for this case)

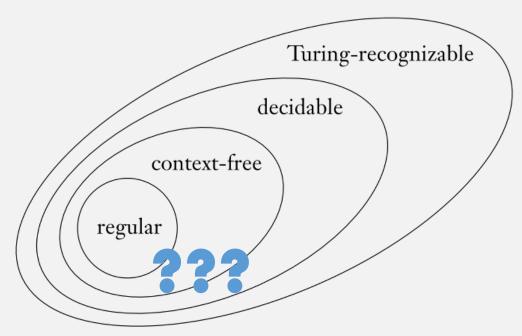
3 base cases

2. ε , 3. \emptyset , $\frac{\text{IH}}{\text{IH}}$: assume applying homomorphism f to smaller R_1 (and R_2) produces a regular lang, i.e., $f(R_1)$ and $f(R_2)$ are regular langs

- **4.** $(R_1 \cup R_2)$
- To finish proof: need to show $f(R_1) \cup f(R_2)$ is a reg lang
- 5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions or (If only union operation were closed for reg langs \odot)
- **6.** (R_1^*) , where $\overline{R_1}$ is a regular expression.

A **homomorphism** is a function $f: \Sigma \longrightarrow \Gamma$ from one alphabet to another.

Non-Regular Languages



Non-Regular Languages

- We now have many ways to prove that a language is regular:
 - Construct a <u>DFA</u> or <u>NFA</u> (or GNFA)
 - Come up with a regular expression describing the language
- But how to show that a language is not regular?
- E.g., HTML / XML is not a regular language
 - But how can we prove it
- Preview: The Pumping Lemma!

Flashback: Designing DFAs or NFAs

- States = the machine's memory!
 - Each state "stores" some information
 - Finite states = finite amount of memory
 - And must be allocated in advance

- This means DFAs can't keep track of an arbitrary count!
 - would require infinite states

A Non-Regular Language

•
$$L = \{ 0^n 1^n \mid n >= 0 \}$$

- A DFA recognizing L would require infinite states! (impossible)
- This language is the essence of XML!
 - To better see this replace:
 - "0" -> "<tag>"
 - "1" -> "</tag>"

• The problem is tracking the **nestedness**

Still, how do we prove non-regularness?

- Regular languages cannot count arbitrary nesting depths
- So most programming languages are also not regular!

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- **1.** for each $i \geq 0$, $xy^iz \in A$,
- 2. |y| > 0, and 3. $|xy| \le p$.

Pumping lemma specifies three conditions that a regular language must satisfy

> Specifically, strings in the language longer than some length p must satisfy the conditions

> > But it doesn't tell you an exact p! You have to find it.

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- **1.** for each $i \geq 0$, $xy^iz \in A$,
- 2. |y| > 0, and 3. $|xy| \le p$.

Because a finite lang is regular, then these conditions must be true for all strings in the lang "of length at least p"

- Example: a finite-sized language, e.g., {"ab", "cd"}
 - All finite langs are regular bc we can easily construct DFA/NFA recognizing them
 - One possible p = length of longest string in the language, plus 1
 - In a finite lang, # strings "of length at least p" = 0
 - Therefore "all" strings "of length at least p" satisfy the pumping lemma criteria!

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- **1.** for each $i \geq 0$, $xy^iz \in A$,
- 2. |y| > 0, and 3. $|xy| \le p$.

In an *infinite* regular lang, these conditions must be true for all strings in the lang "of length at least p"

- Example: a infinite language, e.g., {"00", "010", "0110", "01110", ...}
 - This language is regular bc it's described by regular expression 01*0
 - E.g., "010" is in the lang, and we can split into three parts: x = 0, y = 1, z = 0
 - And any pumping (ie, repeating) of y creates a string that is still in the language
 - E.g., i = 1 -> "010", I = 2 -> "0110", i = 3 -> "01110"
 - This is what the pumping lemma requires

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

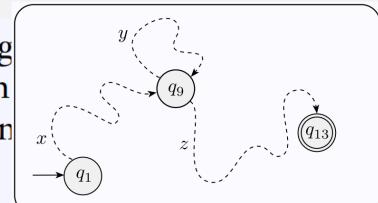
- **1.** for each $i \geq 0$, $xy^iz \in A$,
- 2. |y| > 0, and 3. $|xy| \le p$.

In an infinite regular lang, these conditions must be true for all strings in the lang "of length at least p"

- Example: a infinite language, e.g., {"00", "010", "0110", "01110", ...}
 - This language is regular bc it's described by regular expression 01*0
 - p = ????

The Pumping Lemma, a Closer Look

Pumping lemma If A is a regular lang pumping length) where if s is any string in divided into three pieces, s = xyz, satisfyin



nber p (the en s may be s:

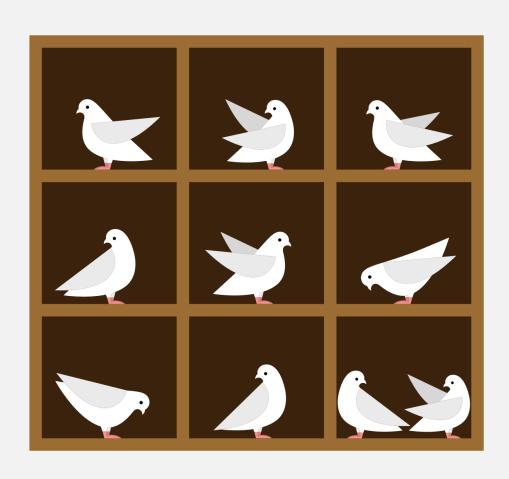
- **1.** for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \le p$.

Pumping lemma says that for "long enough" strings, you should be able to <u>repeat</u> a part of it, and that "pumped" string will still be in the language

- Strings that have a <u>repeatable</u> part can <u>be split into:</u>
 - x = the part <u>before</u> any repeating
 - y = the repeated part
 - z = the part <u>after</u> any repeating

This makes sense because DFAs have a finite number of states, so for "long enough" inputs, some state must repeat

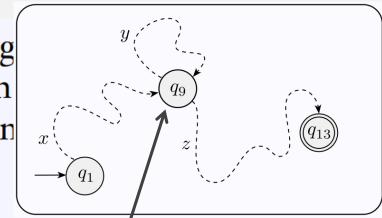
The Pigeonhole Principle



Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- **1.** for each $i \geq 0$, $xy^iz \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \le p$.
- Example: a infinite language, e.g., {"00", "010", "0110", "01110", ...}
 - This language is regular bc it's described by regular expression 0*
 - *p* = ????

Pumping lemma If A is a regular lang pumping length) where if s is any string in divided into three pieces, s = xyz, satisfyin



nber p (the en s may be s:

- 1. for each $i \geq 0$, $xy_{\underline{z}}^i z \in A$,
- **2.** |y| > 0, and

3. $|xy| \leq p$.

"pumpable" part of string

- Example: a infinite language, e.g., {"00", "010", "01
 - This language is regular bc it's described by regular ex
 - p = number of states, plus 1
 - When running an input longer than p, one state is guaranteed to be visited twice
 - · That state represents the "pumpable" part of the string

But how does this prove that a language is **NOT** regular??

Poll: Conditional Statements

Equivalence of Conditional Statements

- Yes or No? "If X then Y" is equivalent to:
 - "If Y then X" (converse)
 - No!
 - "If not X then not Y" (inverse)
 - No!
 - "If not Y then not X" (contrapositive)
 - Yes!
 - Proof by contradiction relies on this equivalence

Kinds of Mathematical Proof

- Proof by construction
 - Construct the object in question
- Proof by contradiction
 - Proving the contrapositive
- Proof by induction
 - Use to prove properties of recursive definitions or functions

Pumping Lemma: Proving Non-Regularity

... then the language is **not** regular

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following

- **1.** for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \leq p$.

IMPORTANT NOTE:
The pumping lemma
cannot prove that a
language is regular

If any of these are **not** true ...

Contrapositive:

"If X then Y" is <u>equivalent</u> to "If **not** Y then **not** X

Pumping Lemma: Non-Regularity Example

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- **1.** for each $i \geq 0$, $xy^iz \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \le p$.

Let B be the language $\{0^n 1^n | n \ge 0\}$. We use the pumping lemma to prove that B is not regular. The proof is by contradiction.

Check-in Quiz 2/22

On gradescope

Theorem

The language $B = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.

Theorem

The language $B = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

- 1. State the kind of proof: The proof is by contradiction.
- 2. State assumptions: Assume that B is a regular language. Then it must satisfy the pumping lemma where p is the pumping length.

The language $B = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof.

- 1. State the kind of proof: The proof is by contradiction.
- 2. State assumptions: Assume that B is a regular language. Then it must satisfy the pumping lemma where p is the pumping length.
- 3. Present counterexample: Choose s to be the string 0^p1^p .

The language $B = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof.

- 1. State the kind of proof: The proof is by contradiction.
- 2. State assumptions: Assume that B is a regular language. Then it must satisfy the pumping lemma where p is the pumping length.
- 3. Present counterexample: Choose s to be the string 0^p1^p .
- 4. Show contradiction of assumption: Because $s \in B$ and has length > p, the pumping lemma guarantees that s can be split into three pieces s = xyz where $xy^iz \in B$ for $i \ge 0$. But we show this is impossible:

The language $B = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof.

- 1. State the kind of proof: The proof is by contradiction.
- 2. State assumptions: Assume that B is a regular language. Then it must satisfy the pumping lemma where p is the pumping length.
- 3. Present counterexample: Choose s to be the string 0^p1^p .
- 4. Show contradiction of assumption: Because $s \in B$ and has length > p, the pumping lemma guarantees that s can be split into three pieces s = xyz where $xy^iz \in B$ for $i \ge 0$. But we show this is impossible:
- 5. The contradiction step typically requires detailed case analysis of scenarios. There are three possible cases:

The language $B = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof.

- 1. State the kind of proof: The proof is by contradiction.
- 2. State assumptions: Assume that B is a regular language. Then it must satisfy the pumping lemma where p is the pumping length.
- 3. Present counterexample: Choose s to be the string 0^p1^p .
- 4. Show contradiction of assumption: Because $s \in B$ and has length > p, the pumping lemma guarantees that s can be split into three pieces s = xyz where $xy^iz \in B$ for $i \ge 0$. But we show this is impossible:
- 5. The contradiction step typically requires detailed case analysis of scenarios. There are three possible cases:
 - 5.1 *y* is all 0s: Pumped strings, e.g., *xyyz*, are not in *B* because they have more 0s than 1s, breaking condition 1 of the pumping lemma. So we have a contradiction.

The language $B = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof.

- 1. State the kind of proof: The proof is by contradiction.
- 2. State assumptions: Assume that B is a regular language. Then it must satisfy the pumping lemma where p is the pumping length.
- 3. Present counterexample: Choose s to be the string 0^p1^p .
- 4. Show contradiction of assumption: Because $s \in B$ and has length > p, the pumping lemma guarantees that s can be split into three pieces s = xyz where $xy^iz \in B$ for $i \ge 0$. But we show this is impossible:
- 5. The contradiction step typically requires detailed case analysis of scenarios. There are three possible cases:
 - 5.1 *y* is all 0s: Pumped strings, e.g., *xyyz*, are not in *B* because they have more 0s than 1s, breaking condition 1 of the pumping lemma. So we have a contradiction.
 - 5.2 y is all 1s: Same as above.

The language $B = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof.

- 1. State the kind of proof: The proof is by contradiction.
- 2. State assumptions: Assume that B is a regular language. Then it must satisfy the pumping lemma where p is the pumping length.
- 3. Present counterexample: Choose s to be the string 0^p1^p .
- 4. Show contradiction of assumption: Because $s \in B$ and has length > p, the pumping lemma guarantees that s can be split into three pieces s = xyz where $xy^iz \in B$ for $i \ge 0$. But we show this is impossible:
- 5. The contradiction step typically requires detailed case analysis of scenarios. There are three possible cases:
 - 5.1 *y* is all 0s: Pumped strings, e.g., *xyyz*, are not in *B* because they have more 0s than 1s, breaking condition 1 of the pumping lemma. So we have a contradiction.
 - 5.2 y is all 1s: Same as above.
 - 5.3 y has both 0s and 1s: Pumped strings preserve equal counts, but is out of order and therefore not in B, breaking condition 1.

The language $B = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof.

- 1. State the kind of proof: The proof is by contradiction.
- 2. State assumptions: Assume that B is a regular language. Then it must satisfy the pumping lemma where p is the pumping length.
- 3. Present counterexample: Choose s to be the string 0^p1^p .
- 4. Show contradiction of assumption: Because $s \in B$ and has length > p, the pumping lemma guarantees that s can be split into three pieces s = xyz where $xy^iz \in B$ for $i \ge 0$. But we show this is impossible:
- 5. The contradiction step typically requires detailed case analysis of scenarios. There are three possible cases:
 - 5.1 *y* is all 0s: Pumped strings, e.g., *xyyz*, are not in *B* because they have more 0s than 1s, breaking condition 1 of the pumping lemma. So we have a contradiction.
 - 5.2 y is all 1s: Same as above.
 - 5.3 y has both 0s and 1s: Pumped strings preserve equal counts, but is out of order and therefore not in B, breaking condition 1.
- 6. Conclusion: Since all cases result in contradiction, B must not be regular.

The language $B = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof.

- 1. State the kind of proof: The proof is by contradiction.
- 2. State assumptions: Assume that B is a regular language. Then it must satisfy the pumping lemma where p is the pumping length.
- 3. Present counterexample: Choose s to be the string 0^p1^p .
- 4. Show contradiction of assumption: Because $s \in B$ and has length > p, the pumping lemma guarantees that s can be split into three pieces s = xyz where $xy^iz \in B$ for $i \ge 0$. But we show this is impossible:
- 5. The contradiction step typically requires detailed case analysis of scenarios. There are three possible cases:
 - 5.1 y is all 0s: Pumped strings, e.g., xyyz, are not in B because they have more 0s than 1s, breaking condition 1 of the pumping lemma. So we have a contradiction.
 - 5.2 y is all 1s: Same as above.
 - 5.3 y has both 0s and 1s: Pumped strings preserve equal counts, but is out of order and therefore not in B, breaking condition 1.
- 6. Alternate Proof: Last 2 cases not needed; see pumping lemma, condition 3.

Theorem

The language $F = \{ww \mid w \in \{0,1\}^*\}$ is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.

Theorem

The language $F = \{ww \mid w \in \{0,1\}^*\}$ is not regular.

Proof.

- 1. State the kind of proof: The proof is by contradiction.
- 2. State assumptions: Assume that F is regular. Then it must satisfy the pumping lemma where p is the pumping length.

Theorem

The language $F = \{ww \mid w \in \{0,1\}^*\}$ is not regular.

Proof.

- 1. State the kind of proof: The proof is by contradiction.
- 2. State assumptions: Assume that F is regular. Then it must satisfy the pumping lemma where p is the pumping length.
- 3. Present counterexample: Choose s to be the string 0^p10^p1 .

Theorem

The language $F = \{ww \mid w \in \{0,1\}^*\}$ is not regular.

Proof.

- 1. State the kind of proof: The proof is by contradiction.
- 2. State assumptions: Assume that F is regular. Then it must satisfy the pumping lemma where p is the pumping length.
- 3. Present counterexample: Choose s to be the string 0^p10^p1 .
- 4. Show contradiction of assumption: Because $s \in F$ and has length > p, the pumping lemma guarantees that s can be split into three pieces s = xyz where $xy^iz \in F$ for $i \ge 0$. But this is impossible.

Theorem

The language $F = \{ww \mid w \in \{0,1\}^*\}$ is not regular.

Proof.

- 1. State the kind of proof: The proof is by contradiction.
- 2. State assumptions: Assume that F is regular. Then it must satisfy the pumping lemma where p is the pumping length.
- 3. Present counterexample: Choose s to be the string $0^p 10^p 1$.
- 4. Show contradiction of assumption: Because $s \in F$ and has length > p, the pumping lemma guarantees that s can be split into three pieces s = xyz where $xy^iz \in F$ for $i \ge 0$. But this is impossible.
- 5. This time there is only one possible case, but we must explain why. According to condition 3 of the pumping lemma $|xy| \le p$. So p is all 0s. But then $xyyz \notin F$, breaking condition 1 of the pumping lemma. So we have a contradiction.

Theorem

The language $F = \{ww \mid w \in \{0,1\}^*\}$ is not regular.

Proof.

- 1. State the kind of proof: The proof is by contradiction.
- 2. State assumptions: Assume that F is regular. Then it must satisfy the pumping lemma where p is the pumping length.
- 3. Present counterexample: Choose s to be the string $0^p 10^p 1$.
- 4. Show contradiction of assumption: Because $s \in F$ and has length > p, the pumping lemma guarantees that s can be split into three pieces s = xyz where $xy^iz \in F$ for $i \ge 0$. But this is impossible.
- 5. This time there is only one possible case, but we must explain why. According to condition 3 of the pumping lemma $|xy| \le p$. So p is all 0s. But then $xyyz \notin F$, breaking condition 1 of the pumping lemma. So we have a contradiction.
- 6. Conclusion: Since all cases result in contradiction, F must not be regular.

Theorem

The language $E = \{0^i 1^j \mid i > j\}$ is not regular.

Proof.

This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.

Theorem

The language $E = \{0^i 1^j \mid i > j\}$ is not regular.

Proof.

- 1. State the kind of proof: The proof is by contradiction.
- 2. State assumptions: Assume that E is regular. Then it must satisfy the pumping lemma where p is the pumping length.

Theorem

The language $E = \{0^i 1^j \mid i > j\}$ is not regular.

Proof.

- 1. State the kind of proof: The proof is by contradiction.
- 2. State assumptions: Assume that E is regular. Then it must satisfy the pumping lemma where p is the pumping length.
- 3. Present counterexample: Choose s to be the string $0^{p+1}1^p$.

Theorem

The language $E = \{0^i 1^j \mid i > j\}$ is not regular.

Proof.

- 1. State the kind of proof: The proof is by contradiction.
- 2. State assumptions: Assume that E is regular. Then it must satisfy the pumping lemma where p is the pumping length.
- 3. Present counterexample: Choose s to be the string $0^{p+1}1^p$.
- 4. Show contradiction of assumption: Because $s \in E$ and has length > p, the pumping lemma guarantees that s can be split into three pieces s = xyz where $xy^iz \in E$ for $i \ge 0$. But this is impossible.

Theorem

The language $E = \{0^i 1^j \mid i > j\}$ is not regular.

Proof.

- 1. State the kind of proof: The proof is by contradiction.
- 2. State assumptions: Assume that E is regular. Then it must satisfy the pumping lemma where p is the pumping length.
- 3. Present counterexample: Choose s to be the string $0^{p+1}1^p$.
- 4. Show contradiction of assumption: Because $s \in E$ and has length > p, the pumping lemma guarantees that s can be split into three pieces s = xyz where $xy^iz \in E$ for $i \ge 0$. But this is impossible.
- 5. Again, one possible case. According to condition 3 of the pumping lemma $|xy| \le p$. So p is all 0s. But then $xz \notin E$ (i = 0), breaking condition 1 of the pumping lemma. So we have a contradiction.

Theorem

The language $E = \{0^i 1^j \mid i > j\}$ is not regular.

Proof.

- 1. State the kind of proof: The proof is by contradiction.
- 2. State assumptions: Assume that E is regular. Then it must satisfy the pumping lemma where p is the pumping length.
- 3. Present counterexample: Choose s to be the string $0^{p+1}1^p$.
- 4. Show contradiction of assumption: Because $s \in E$ and has length > p, the pumping lemma guarantees that s can be split into three pieces s = xyz where $xy^iz \in E$ for $i \ge 0$. But this is impossible.
- 5. Again, one possible case. According to condition 3 of the pumping lemma $|xy| \le p$. So p is all 0s. But then $xz \notin E$ (i = 0), breaking condition 1 of the pumping lemma. So we have a contradiction.
- 6. Conclusion: Since all cases result in contradiction, E must not be regular.

