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Theorem
The language B = {0n1n | n ≥ 0} is not regular.

Proof.
This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that B is a regular language.
Then it must satisfy the pumping lemma where p is the pumping length.

3. Present counterexample: Choose s to be the string 0p1p.

4. Show contradiction of assumption: Because s ∈ B and has length > p, the
pumping lemma guarantees that s can be split into three pieces s = xyz where
xy iz ∈ B for i ≥ 0. But we show this is impossible:

5. The contradiction step typically requires detailed case analysis of scenarios.
There are three possible cases:

5.1 y is all 0s: Pumped strings, e.g., xyyz , are not in B because they have more 0s than
1s, breaking condition 1 of the pumping lemma. So we have a contradiction.

5.2 y is all 1s: Same as above.
5.3 y has both 0s and 1s: Pumped strings preserve equal counts, but is out of order and

therefore not in B, breaking condition 1.

6. Conclusion: Since all cases result in contradiction, B must not be regular.
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Using Condition 3 of the Pumping Lemma

Theorem
The language F = {ww | w ∈ {0, 1}∗} is not regular.

Proof.
This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that F is regular. Then it must satisfy the pumping
lemma where p is the pumping length.

3. Present counterexample: Choose s to be the string 0p10p1.

4. Show contradiction of assumption: Because s ∈ F and has length > p, the
pumping lemma guarantees that s can be split into three pieces s = xyz where
xy iz ∈ F for i ≥ 0. But this is impossible.

5. This time there is only one possible case, but we must explain why. According to
condition 3 of the pumping lemma |xy | ≤ p. So p is all 0s. But then xyyz /∈ F ,
breaking condition 1 of the pumping lemma. So we have a contradiction.

6. Conclusion: Since all cases result in contradiction, F must not be regular.
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Pumping Down

Theorem
The language E = {0i1j | i > j} is not regular.

Proof.
This proof is annotated with commentary in blue. (Commentary not needed for hw proofs.)

1. State the kind of proof: The proof is by contradiction.

2. State assumptions: Assume that E is regular. Then it must satisfy the pumping
lemma where p is the pumping length.

3. Present counterexample: Choose s to be the string 0p+11p.

4. Show contradiction of assumption: Because s ∈ E and has length > p, the
pumping lemma guarantees that s can be split into three pieces s = xyz where
xy iz ∈ E for i ≥ 0. But this is impossible.

5. Again, one possible case. According to condition 3 of the pumping lemma
|xy | ≤ p. So p is all 0s. But then xz /∈ E (i = 0), breaking condition 1 of the
pumping lemma. So we have a contradiction.

6. Conclusion: Since all cases result in contradiction, E must not be regular.
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