CS420
Chapter 4: Decidability

Wed March 24, 2021

Turing-recognizable

decidable

context-free

Announcements

« HW 6 due Sun 3/28 11:59pm EST

« HW 7 due Sun 4/4 11:59pm EST
» Covers Ch 4 material (starting today)

Turing-recognizable

decidable

context-free

Turing Machines and Algorithms

« Turing Machines can express any “computation”
* l.e., a Turing Machine is just a (Python, Java, Racket, ...) program!

» 2 classes of Turing Machines Remember:
 Recognizers may loop forever TMs = programs

« Deciders always halt

ALGORITHMS

 Algorithms are an important class of programs T
* In this class, an algorithm is any program that always halts b

« So deciders model algorithms! O\

Algorithms (i.e., Decidable Problems)
about Regular Languages

Flashback: HW2, Problem 1: The “run” tn

< C & cs.umb.edu/~stchang/cs420/s21/hw2.html

1 Simulating Computation for DFAs
Recall the formal definition of computation from page 40 of the textbook:

A finite automata M = (Q, X, 0, qq, F') accepts a string w = w1, . . ., Wy,
where each character w; € X, if there exists a sequence of states 7, . . ., T,
where r; €), and:

L7 =qo
2.0(ry,wi1) =g, fori =0,...,n—1

3.1, € F

This problem asks you to demonstrate, with code, that you understand this

concept.

Your Tasks

1. Write a "run" predicate (a function or method that returns true or false) that
takes two arguments, an instance of your DFA representation (as defined in A
Data Representation for DFAs) and a string, and "runs” the string on the DFA.

ol

The “run” algorithm as a Turing Machine

« HW2's “run” function is a Turing Machine.
- Remember: (Python) programs = Turing Machines

« What Is the language recognized by this Turing Machine?
* |.e., what are the inputs?

Flashback: HW2, Problem 1: The “run” tn

< C & cs.umb.edu/~stchang/cs420/s21/hw2.html

1 Simulating Computation for DFAs
Recall the formal definition of computation from page 40 of the textbook:

A finite automata M = (Q, X, 0, qq, F') accepts a string w = w1, . . ., Wy,
where each character w; € X, if there exists a sequence of states 7, . . ., T,
where r; €), and:

L7 =qo
2.0(ry,wi1) =g, fori =0,...,n—1

3.1, € F

This problem asks you to demonstrate, with code, that you understand this

concept.

Your Tasks

1. Write a "run" predicate (a function or method that returns true or false) that
takes two arguments, an instance of your DFA representation [as defined in A
Data Representation for DFAs) and a string, and "runs” the string on the DFA.

The language of the “run” function

Apea = {(B,w)| B is a DFA that accepts input string w }

Interlude: Encoding Things into Strings

« ATuring machine’s input Is always a string

« So anything we want to give to TM must be encoded as string

- Notation: <Something> = encoding for Something, as a string

 E.g., Something might be a DFA

« Can you think of a string “encoding” for DFAs????
e Used in HW1, HW?2, ...

« Use a tuple to combine multiple encodings, e.g., <B,W> (from prev slide)

Interlude: Informal TMs and Encodings

« An informal TM description:
« Doesn’t need to describe exactly how input string is encoded

« Assumes input is a “valid” encoding
 Invalid encodings are automatically rejected

The language of the “run” function

Apea = {(B,w)| B is a DFA that accepts input string w }

Turing-recognizable

* “run” program Is a Turing machine

« But Is it a decider or recognizer?
* l.e., Is It an algorithm?

« To show it's an algo, need to prove:

Apra 1s a decidable language

decidable

® o o
context-free

How to prove that a language I1s decidable?

 Create a Turing machine that decides that language!

Remember:

« A decider iIs Turing Machine that always halts,
and, for any input, either accepts or rejects it.

How to Design Deciders

 If TMs = Programs ...
e ... then Creating a TM = Programming

 E.g., If HW asks “Show that lang L is decidable” ...

* .. you must create a TM that decides L; to do this ...
» ... think of how to write a (halting) program that does what you want

Thm: Apga is a decidable language

Apea = {(B,w)| B is a DFA that accepts input string w }

Decider forADFA:

M = “On input (B, w), where B is a DFA and w is a string:
1. Simulate B on input w.
2. [If the simulation ends in an accept state, accept. If it ends in a
nonaccepting state, reject.”

Where “Simulate” =
- Start in the starting state “q0” ... Remember:

« For each input charx ... TMs = programs
 Call delta fn with current state and x to compute “next state” Creating TM = programming

» This is a decider (i.e., it always halts) because the input is always finite

? {4

« This is just the answer to HW2's “run” function!
* |.e., you already “proved” this!

Thm: Anga is a decidable language

Anea = {(B, w)| B 1s an NFA that accepts input string w}

Decider for AnEga :

N = “On input (B, w), where B is an NFA and w is a string:
1. Convert NFA B to an equivalent DFA (', using the procedure for
this conversion given in Theorem 1.39.

2. Run TM M on input (C,w). (from prev slide)

3. If M accepts, accept; otherwise, reject.” Remember:

TMs = programs
Creating TM = programming
Previous theorems = library

This is a decider (i.e., it always halts) because:
- Step 1 always halts bc there's a finite number of states in an NFA
- Step 2 always halts because M is a decider

How to Design Deciders, Part 2

* |If TMs = Programs ...
e ...then Creating a TM = Programming

« E.g., If HW asks “Show that lang L is decidable” ...
 ..you must create a TM that decides L; to do this ...
e ...think of how to write a (halting) program that does what you want

Hint:
* Previous (constructive) theorems are a “library” of reusable TMs

« When creating a TM, try to use these theorems to help you
« Just like you use libraries when programming!

 E.g., “Library” for DFAs:
- NFA->DFA, Regexp->NFA,
* union, intersect, star, homomorphism, FLIP,
* Aprar Anrar Arexs -

18

Thm: Agrex is a decidable language

Arex = {(R, w)| R is a regular expression that generates string w }

Decider:

P = “On input (R, w), where R is a regular expression and w is a string:
1. Convert regular expression R to an equivalent NFA A by using
the procedure for this conversion given in Theorem 1.54.
2. Run TM N on input (A4, w).

3. If N accepts, accept; it N rejects, reject.”

This is a decider because;

- Step 1 always halts because converting reg expr to NFA is done recursively,
where the reg expr gets smaller at each step, eventually reaching the base case

- Step 2 always halts because N is a decider

Remember:
TMs = programs

DFA TMs Recap (So Far) Creating TM = programming

Previous theorems = library

e Apra = {(B,w)| B is a DFA that accepts input string w }
« Deciding TM = program = HW2 “run” function

o Anra = {(B,w)| B is an NFA that accepts input string w}
« Deciding TM = program = HW3 NFA->DFA + DFA “run”

o Arex = {(R,w)| R is a regular expression that generates string w }
« Deciding TM = program = HW4 Regexp->NFA + NFA->DFA + DFA “run”

Thm: Epra is a decidable language
EDFA — {<A>‘ A 1s a DFA El]fld L(A) — @}

Decider:

T = “On input (A), where A is a DFA:
1. Mark the start state of A.
2. Repeat until no new states get marked:

3. Mark any state that has a transition coming into it from any
state that is already marked.

l.e., this is a “reachability” algorithm
we check if accept states are “reachable” from start state

ThMm: EQpga is a decidable language
EQpea = {(A, B)| Aand B are DFAs and L(A) = L(B)}

Trick: Use Symmetric Difference

Bonus Pts:
. . prove negation,
Symmetric Difference e, set complement,
Is closed for regular
languages
L(A) L(B)

L(C) = (L(A) mﬁ) U (L A)

(A) N L(B))
L(C) = 0 iff L(A) = L(B)

ThMm: EQpga is a decidable language
EQpea = {(A, B)| Aand B are DFAs and L(A) = L(B)}

Construct decider using 2 ingredients:

» Symmetric Difference algo: L(C) = (L(A) N L(B)) U (L(A) N L(B))
« Construct C = Union, intersection, negation of machines A and B

» decider (from “library”) for: Epra = {(A)| Aisa DFA and L(A) = 0}
* Because L(C) = 0 iff L(A) = L(B)

F = “On input (A, B), where A and B are DFAs:
1. Construct DFA C as described.
2. Run TM T deciding Epra on input (C).
3. It T accepts, accept. It T rejects, reject.”

Summary: Decidable DFA Langs (e, atgorithms)

e Apra = {(B,w)| B is a DFA that accepts input string w }

o Anra = {(B,w)| B is an NFA that accepts input string w}

o Arex = {(R,w)| R is a regular expression that generates string w }

e Epra = {(A)| AisaDFAand L(A) = 0} Remember:
TMs = programs

Creating TM = programming
e EQpra = {(A,B)| Aand B are DFAs and L(A) = L(B)} Previous theorems = library

Next time:

Decidable Problems (i.e., Algorithms)
about Context-Free Languages (CFLs)

Next time : Acrg is a decidable language
Acrc = {(G,w)| G is a CFG that generates string w }

 This a is very practically important problem ...

e ... equivalent to:
* |s there an algorithm to parse programming lang with grammar G?

A Decider for this problem could ... ? |
« Try all possible derivations of G? SO\

« But this might never halt

« e.g,ifthereisarule like:S->0SorS->S °°° o

« This TM would be a recognizer but not a decider

 ldea: can the TM stop checking after some length?
* i.e,, Is there upper bound on the number of derivation steps?

Check-in Quiz 3/24

On gradescope

