CS420
Chapter 5: Reducibility

Monday, April 5, 2021

DEFINE DOES ITHALT ( PROGRAM):

{
3

RETURN TRUE;

THE BIG PICTURE SOLUTION
To THE HALTING PROBLEM




Announcements

« HW 7 due date past
« HW 8 due Sun 4/11 11:59pm EST

* HW9 out soon
e Due Sun 4/18 11:59pm EST

« Ch5-6 material (starting Wed)

DEFINE DOES ITHALT (PROSRAM):
i

RETORN TRUE;
§

THE BIG PICTURE ‘SOLUTION
To THE HALTING PROBLEM



Last time: Diagonalization of TMs

Diagonal: Result of giving a TM itself as input

All TM Encodings

(My)  (Mp)  (M3) (My) --- (D)
M, | accept reject accept reject accept
Mo | adcept accept accept accept accept
Ms | reject reject reject  reject reject
AlLTMs (M4 | adcept accept reject  reject accept Contradiction:
. ) _ Needs to both
Opposite : . reject and accept
D reject  reject accept accept P

“Opposite” ; :
machine : . TM D cant exist!




Last time: Aty is undecidable
Atm = {(M,w)| M i1sa TM and M accepts w}

Proof, by contradiction.
« Assume A, Is decidable. Then there exists a decider:

H((M, w)) accept it M accepts w
b w — . .
reject it M does not accept w

* |f H exists, then we can create D:
D = “On input (M), where M is a TM:
“Opposite” 1. Run H on input (M, (M)).<— Result of giving a TM itself as input

machine
2. Output the opposite of what H outputs. That is, it H accepts,
reject; and if H rejects, accept.”



Last time: Aty is undecidable
Atm = {(M,w)| M i1sa TM and M accepts w}

Proof, by contradiction.
« Assume A, Is decidable. Then there exists a decider:

H((M, w)) accept it M accepts w
b w — . .
reject it M does not accept w

o |f H exists, then we can create D:

. That 1s, if H accepts,

2. Output the opposite of what
reject; and if H rejects, accept.”

e But D does not exist! Therefore we have a contradiction!



Last time: Unrecognizability

« We've proved:

At is Turing-recognizable

A+m 1s undecidable

 And:

THEOREM 4.22

A language is decidable iff it is Turing-recognizable and co-"Turing-recognizable.

e So:

Atwm is not Turing-recognizable



Today: Easier Undecidability Proofs!

« We proved At = {(M,w)| MisaTMand M accepts w} yndecidable by ...

. ... showing that its decider could be used
to implement an impossible “D” decider.

* In other words, we reduced Atm to the “D” problem.

(M) (M) (Ms) (My) --- (D)

 That was hard (needed to invent diagonalization) s eaar e amsr e

My | accept accept accept accept . accepl
Ms | reject reject  reject  reject reject
My | accept accept reject reject accept

D reject  reject accept accept ?

 But now we can reduce problems to ATm: much easier!




The Halting Problem

HALT vy = {(M,w)| M isa TM and M halts on input w}
Thm: HA LT\ 1s undecidable
Proof, by contradiction:

« Assume HALTtm has decider R; use it to create decider for At :

S = “On input (M, w), an encoding of a TM M and a string w:
1. Run TM R on input (M, w).
2. If R rejects, reject. This means M loops on input w
3. If R accepts, simulate M on w until it halts.«<{ This step always halts
4. It M has accepted, accept; it M has rejected, reject.”



The Halting Problem

HALT vy = {(M,w)| M isa TM and M halts on input w}

Thm: HA LT\ is undecidable
Proof, by contradiction:

« Assume HALTtm has decider R; use it to create decider for At :

“On input (M, w), an encoding of a TM M and a string w:
on input (M, w).

2. If R rejects, reject:
3. If R accepts, simulate M on w

* But 4., Is undecidable!
* |.e., this decider that we just created cannot exist! So HALT 1\ is undecidable



Fasier Undecidability Proofs

In general, to prove the undecidability of a language:
« Use proof by contradiction:

« Assume the language is decidable,
« Show that its decider can be used to create a decider for ...
e ... a known undecidable language ...

e ... which doesn’t have a decider!



today

today

Summary: Languages About Machines

Apra = {(B,w)| B is a DFA that accepts input string w }
Acec = {(G,w)| G is a CFG that generates string w}
Atm = {(M,w)| M is a TM and M accepts w}

Epra = {(A)| Aisa DFA and L(A) = 0}

Ecrc = {(G)| Gis aCFG and L(G) = 0}

Erv = {(M)| MisaTM and L(M) = ()}
EQpea = {(A, B)| Aand B are DFAsand L(A) = L(B)}
EQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)}

EQ+y = {(My, My)| My and My are TMs and L(M;) = L(M>,)}

Decidable
Decidable
Undecidable
Decidable
Decidable
Undecidable
Decidable
Undecidable
Undecidable



Reducibility: Moditying the TM

Thm: Etm 1s undecidable

Proof, by contradiction:
« Assume Et1m has decider R; use to create Aty decider:

S — “On i1nm

First, construct M,

. Run R on mput (M

. If R accepts, reject (because it means (M) doesn't accept [_w
- 1t R I'EjﬁCtS, then|accept

Erm = {(M)| M isaTM and L(M) = 0}

t (M, w), an encoding of a TM M and a string w:

Note: M is only an arg; we never actually run M!

——d

((M) accepts W )

A —d

e Idea: Wrap (M) in a new TM that can only accept w:

M; = “On input x:
1. Ifz # w, reject.
2. Ifx = w, run M on input w and accept if M does.”




Reducibility: Moditying the TM

Thm: E7m 1s undecidable

Erm = {(M)| M isaTM and L(M) = 0}

Proof, by contradiction:

e Assume ETM

First, construct M,

has decider R; use to create Aty decider:
t (M, w), an encoding of a TM M and a string w:

. kun /v on mput

(M
. It R accepts, reject (because it means taccept _w _

- if R rejects, thenlaccepd ((M) accepts W —

A —d

e I[dea: Wrap (M) in a new TM that can only accept w:

M; = “On input x:
1. Ifz # w, reject.
2. Ifx = w, run M on input w and accept if M does.”




One more, modify M: REGULARTy is undecidable

REGULARtm = {(M)| M isaTM and L(M) is a regular language}
Proof, by contradiction:
e Assume REGULAR+twm has decider R; use to create Aty decider:

S = “On input (M, w), an encoding of a TM M and a string w:
o| First, construct M, (??)
e Run R on input (M
o [t R accepts, accept; it R rejects, reject

Want: L(M,) =
« regular, if M accepts w
« nonregular, if M does not accept w




Thm: REGULARTy is undecidable (continued)
REGULARtyw = {(M)| M isaTM and L(M) is a regular language}

: Always accept strings 0n1»
Mg = “On mput Ji L(M,) = nonregular, so far

1. If x has the form 01", accept.
2. If x does not have this form, run M on input w|and

accept 1t M accepts w.” | IfMacceptsw,
accept everything else,

so L(M,) = £* = regular

/

Want: L(M,) = y/
« regular, if M accepts w

« nonregular, if M does not accept w




Reduce to something else: EQty is undecidable

EQ+y = {(M;, M3)| My and M5 are TMs and L(M;) = L(Ms)}
Proof, by contradiction: Erp = {0M)] Miis a TMand L(M) = 0}
« Assume EQ+, has decider R; use to create Zsy decider:

S = “On input (M), where M is a TM:
1. Run R on input (M, M;), where M; is a TM that rejects all
inputs.
2. It R accepts, accept; it R rejects, reject.”



Reduce to something else: EQ+y is undecidable

EQ+y = {(M;, M3)| My and M5 are TMs and L(M;) = L(Ms)}
Proof, by contradiction: FErp = (0] MisaTMand L(M) = 0}
« Assume EQ+, has decider R; use to create Zsy decider:

ut (M), where M is a TM:
1. Run Roni M), where M; is a TM that rejects all

inputs.
2. If R accepts, accept; it R rejects, reject.”

e But F1\ Is undecidable!



today

today

summary

Apra = {(B,w)| B is a DFA that accepts input string w }
Acec = {(G,w)| G is a CFG that generates string w}
Atm = {(M,w)| M is a TM and M accepts w}

EDFA — {<A>‘ A iS a DFA and L(A) = @}
We can’t compute

Ecrg = {(G)| Gis aCFG and L(G) = 0} anything about
Turing Machines,

Etm = {(M)| M isaTMand L(M) =@} | -e,about programs!

EQpea = {(A, B)| Aand B are DFAsand L(A) = L(B)}

EQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)}

EQ+y = {(My, My)| My and My are TMs and L(M;) = L(M>,)}

Decidable
Decidable
Undecidable
Decidable
Decidable
Undecidable
Decidable
Undecidable
Undecidable



Also Undecidable ...

today | * REGULARy,, = {<M>| M isa TM and L(M) is a regular language}

Hwo | * CONTEXTFREE;y, = {<M> | MisaTM and L(M) is a CFL}
* DECIDABLE, = {<M> | M is a TM and L(M) is a decidable language}
* FINITE;,, = {<M>| MisaTM and L(M) is a finite language}

Rice’s Theorem

HWo | « ANYTHING ), = {<M> | M is a TM and “something something” about L(M)}



Formalizing Reducibility,
i.e., Mapping Reducibility

f

— T
o L ]




Flashback: Anga is a decidable language

Anea = {(B, w)| B 1s an NFA that accepts input string w}

Decider (i.e., “run” function) for AnFa :

N = “On input (B, w), where B is an NFA and w is a string:

1. Convert NFA B to an equivalent DFA (', using the procedure for
this conversion given in Theorem 1.39. ST
We said this NFA -> DFA

S 3 ') A4 G syt (O ) , o, algorithm is a TM, but it
3. If M accepts, accept; otherwise, reject. doesn't accept/reject?



Computable Functions

« A TM that, instead of accept/reject, “outputs” final tape contents

DEFINITION 5.17

A function f: ¥*—¥* is a computable function it some Turing
machine M, on every input w, halts with just f(w) on its tape.

« Example 1: All arithmetic operations

« Example 2: Machine conversion algorithms, like DFA -> NFA
 E.g., adding states, changing transitions, wrapping TM in TM, etc.




Mapping Reducibility

DEFINITION 5.20

Language A is mapping reducible to language B, written A <,,, B,
if there is a computable function f: ¥*— ¥* where for every w,

we A<= f(w) € B.

The function f is called the reduction from A to B.

Arm = {{M,w)| M isa TM and M acce o HALTtv = {(M,w)| M isa TM and M halts on input w}

DEFINITION 5.17

A function f: ¥*—— X" is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.




Thm: A+m1s mapping reducible to HALT twm

¢ TO ShOW: ATM <m HALTtm

« Want: computable fn f : arw) 2 (' .w') where:
<]\/L TL’) e Atm if and OIlIy if Uwf.} TU’) € HALTtm

The following machine F' computes a reduction f.

F = “On input (M, w):

M accepts w
&

M’ halts on w

1.

Arm = {(M,w)| M isa TM and M accepts w}
¥

HALTtv = {{(M,w)| M isa TM and M halts on input w}

Construct the following machine M'e—_

Converts M to M’

M’ = “On input a:

1. Run M on z.

2. It M accepts, accept.

3. If M rejects, enter a loop.”
Output (M', w).”

\

Output new M’

DEFINITION 5.20

Language A is mapping reducible to language B, written A <,,, B,
if there is a computable function f: ¥*— ¥*, where for every w,

we A< f(w) € B.

The function f is called the reduction from A to B.
DEFINITION 3.17

A function f: ¥*—— X" is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.



How Is mapping reducibility useful?



Thm: If A <., B and B is decidable, then A is decidable.

PROOF We let M be the decider for B and f be the reduction from A to B.
We describe a decider NV for A as follows.

N = “On input w:

\ 1. Compute f(w).
SRS 2. Run M on input f(w) and output whatever M outputs.”

\ decides
f
DEFINITION 5.20
Language A is mapping reducible to language B, written A <, B,
if there is a computable function f: ¥*— ¥*, where for every w,
/—L—\ we A< f(w) € B.
’ i The function f is called the reduction from A to B.




COro: If A <., B and A is undecidable, then B is undecidable.

 Proof by contradiction.
« Assume B Is decidable.
 Then A is decidable (by the previous thm).

SO we have a contradiction.

If A <,, B and B is decidable, then A is decidable.



Summary: Mapping Reducibility Theorems

- If A <,, B and B is decidable, then A is decidable.

Known Unknown

g

« If A <., B and A is undecidable, then\B is undecidable.




Alternate Proof: The Halting Problem

HA LT+ 1s undecidable

« If A<, B and A is undecidable, then B is undecidable.

¢ ATM <m HALTTM



Check-in Quiz 4/5

On gradescope



