BRUTE -FORCE
SOLUTTON:

Oo(n?)

DYNAMIC
PROGRAMMING
ALGORITHMS:

O (n*2")

SELUNG ON ERAY:

0(1)

STILL WORKING
ON YOUR ROUTE?

N\
-
SHUT THE
HEW UP

Polynomial Time (P)

Wednesday, April 21, 2021

BRUTE-FORCE DYNAMIC

SOLUTI1ON: PROGRAMMING
. O (ﬂ‘lzﬂ)

Announcements

« HW9 past due

SELUNG ON ERAY:

0(1)

STILL WORKING
ON YOUR ROUTE?

oG A
-~
SHUT THE
HEW UF

e HW10 released
* Due Tues 4/27 11:59pm EST

« FAQ: How can | get better HW scores?

« To earn more partial credit: show your thought process!
« Even if you can’t figure out the exact answer, show what you do know!

« Most HW problems simply require basic understanding of class/book concepts

e But ... these kinds of answers will receive zero credit:

« “Throw everything at the wall”, i.e., “l will now use every theorem in the book...”

« Submitting an example copied from the book that is obviously for a different problem

Partial Credit, Concrete Example

Problem: Show that language L is undecidable, where L = ...

A Partial Answer (you can already write most of this without even reading the rest of the problem!):

I Rnow: | couldn’t figure out:
« To prove undecidability, use proof by contradiction

A proof by contradiction requires an assumption: herwise d
- Assume language L is decidable * otherwise do SOMETHINGELSE

A decidable language must have a decider, call it R

Use this decider to create a contradiction:
 Create a decider for a known undecidable language, Ay, Shows understanding of:

Decider for Apy on input <M,w>: - Decidability and undecidability
» We know R distinguishes SOMETHING from SOMETHINGELSE - Proper use of proof by contradiction

« So create M,, which does SOMETHING if M accepts w _ : :
Stherise d2es SOMETHIN GELSE ' Proof techniques used in class examples

« Then give M, to R:
« if Raccepts M, then M must accept w, so accept, else reject

« How to make M, do SOMETHING If M accepts w

This answer would receive almost full credit!

Last Time: Time Complexity

DEFINITION 7.1

Let M be a deterministic Turing machine that halts on all in-
puts. The running time or time complexity of M is the function
f: N— N, where f(n) is the maximum number of steps that M
uses on any input of length n. If f(n) is the running time of M,
we say that M runs in time f(n) and that M is an f(n) time Tur-
ing machine. Customarily we use n to represent the length of the
mput.
NOTE: exact units of n not specified, it's only roughly “length” of the input

But n can be #characters, #states, #nodes, etc,
whatever is more convenient, so long as it’s
correlated with length of input

It doesn’t matter because we only care about large n (so constant factors are ignored)

Last Time: Time Complexity Classes

DEFINITION 7.7

Let t: N—R™ be a function. Define the time complexity class,
TIME(t(n)), to be the collection of all languages that are decid-
able by an O(¢(n)) time Turing machine.

Remember: TMs have a time complexity (ie, running time),
languages are in a complexity class

The complexity class of a language is determined by the
time complexity (ie, running time) of their deciding TMs

Today: Polynomial Time (P) Complexity Class

 Corresponds to solvable vs unsolvable problems; roughly:

* Problems in P = “solvable”
* Problems outside P = “unsolvable” Amount of Time

“abedefg” 7 characters @ .29 milliseconds

* Problems can be “decidable” in theory,
but “unsolvable” in practice it 9 chrcs_(515 doy:

“abcdefghij” 10 characters 4 months

“abcdefghijk” 11 characters 1 decade

“abcdefghijkl” 12 characters 2 centuries

« Unsolvable problems usually only have “brute force” solutions
« “try all possible inputs” Brute-force attack

From Wikipedia, the free encyclopedia

In cryptography, a brute-force attack consists of an attacker submitting many passwords or passphrases with the hope of
eventually guessing a combination correctly. The attacker systematically checks all possible passwords and passphrases until
the correct one is found. Alternatively, the attacker can attempt to guess the key which is typically created from the password
using a key derivation function. This is known as an exhaustive key search.

Today: Polynomial Time, Formally

DEFINITION 7.12

P is the class of languages that are decidable in polynomial time on
a deterministic single-tape Turing machine. In other words,

P = JTIME(n").
k

Where Are We Now?

We are back in here now:

deterministic, single-tape deciders
(unless otherwise indicated)

Turing-recognizable

decidable

context-free

Today: 3 Problems in P

* A Graph Problem:
PATH = {(G, s,t)| G 1s a directed graph that has a directed path from s to ¢}

* ANumber Problem:
RELPRIME = {(z,y)| and y are relatively prime}

A CFL Problem:

Every context-free language is a member of P

Interlude: Graphs (see Chapter 0)

edges

(undirected) wh nodes / vertices

We assume we have some string encoding of a graph
(i.e., <G>), when they are args to TMs, e.g.:

({1,2,3,4,5}, {(1,2), (2,3), (3,4), (4,5), (5,1)})

(but we usually don't care about the actual details)

- Edge defined by two nodes (order doesn’t matter)

« Formally, a graph = a pair (V, E)
 Where V = a set of nodes, E = a set of edges

Interlude: Weighted Graphs

Edge weights

Interlude: Subgraphs

Graph H

Subgraph G

shown darker

Interlude: Paths and other Graph Things

e Path

« A sequence of nodes connected by edges

* Cycle
* A path that starts/ends at the same node

-

» Connected graph
« Every two nodes has a path

-]

ree
« A connected graph with no cycles

Interlude: Directed Graphs

O

({1.2,3.4,5.6}, {(1,2),(15), (2.1), (24). (5.4), (5.6), (6.1), (6,3)})

Possible string encoding given to TMs:

 Directed graph = (V E)
« IV =set of nodes, E = set of edges

* An edge is a pair of nodes (u,v), order now matters| Each pair of nodes
e u="“from” node, v = “to” node Included twice

» “degree” of a node: number of edges connected to the node
« Nodes in a directed graph have both indegree and outdegree

Interlude: Graph Encodings

({1123"“135}* {(1.2), (2“3) (31 4)* (“L 5)* (51)})

* For graph algorithms, “length of input” n is usually # of vertices
 (Not number of chars in the encoding)

« So given graph G = (V, E), n = |V]

« Max edges?
* =0(|V]?) =0(n?)

» So if a set of graphs (call it lang L) is decided by a TM where

* # steps of the TM = polynomial in the # of vertices
« ThenLisinP

Today: 3 Problems in P

* A Graph Problem:
PATH = {(G, s,t)| G 1s a directed graph that has a directed path from s to ¢}

* ANumber Problem:
RELPRIME = {(z,y)| and y are relatively prime}

A CFL Problem:

Every context-free language is a member of P

A Graph Theorem: PATH € P

PATH = {(G, s,t)| G 1s a directed graph that has a directed path from s to ¢}

« To prove that a language i1sin P ...

e ... we must construct a polynomial time algorithm deciding the lang

» A non-polynomial (i.e., exponential,”brute force”) algorithm:
« check all possible paths, and see if any connectsto t
 If n=# vertices, then # paths =~ n"

A Graph Theorem: PATH € P

PATH = {(G, s,t)| G 1s a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and ¢:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

of steps (worst case) (n = # nodes):
> Line 1: 1 step

A Graph Theorem: PATH € P

PATH = {(G, s,t)| G 1s a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and ¢:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

of steps (worst case) (n = # nodes):
e Line 1: 1 step

e Lines 2, 3 (loop):
> Steps per oop: max # steps = max # edges = 0(n?)

A Graph Theorem: PATH € P

PATH = {(G, s,t)| G 1s a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and ¢:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

of steps (worst case) (n = # nodes):
e Line 1: 1 step

e Lines 2, 3 (loop):
« Steps per loop: max # steps = max # edges = 0(n?)
> # loops: loop runs at most n times

A Graph Theorem: PATH € P

PATH = {(G, s,t)| G 1s a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and ¢:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

of steps (worst case) (n = # nodes):
e Line 1: 1 step

e Lines 2, 3 (loop):
« Steps per loop: max # steps = max # edges = 0(n?)
« # loops: loop runs at most n times
» Total: O(n3)

A Graph Theorem: PATH € P

PATH = {(G, s,t)| G 1s a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and ¢:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

of steps (worst case) (n = # nodes):
e Line 1: 1 step
e Lines 2, 3 (loop):
« Steps per loop: max # steps = max # edges = 0(n?)

« # loops: loop runs at most n times
« Total: O(n3)

> Line 4: 1 step

A Graph Theorem: PATH € P

PATH = {(G, s,t)| G 1s a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and ¢:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

of steps (worst case) (n = # nodes):
e Line 1: 1 step

e Lines 2, 3 (loop):
« Steps per loop: max # steps = max # edges = 0(n?)
« # loops: loop runs at most n times
« Total: O(n3) DEFINITION 7.12

° |_| ne 4: 1 ste p P is the class of languages that are decidable in polynomial time on

a deterministic single-tape Turing machine. In other words,

»Total =1+ 1+ 0(n3) =0(n? P = | JTIME(n").

Today: 3 Problems in P

* A Graph Problem:
PATH = {(G, s,t)| G 1s a directed graph that has a directed path from s to ¢}

* ANumber Problem:
RELPRIME = {(z,y)| and y are relatively prime}

A CFL Problem:

Every context-free language is a member of P

A Number Theorem: RELPRIME € P
RELPRIME = {(x,y)| x and y are relatively prime}

« Two numbers are relatively prime if their gcd = 1
« gcd(x,y) = largest number that divides both x and y
* E.g,gcd(8,12) =4

 Brute force exponential algorithm deciding RELPRIME:
» Try all of numbers (up to x or y), see if it can divide both numbers
« Why is this exponential?
« HINT: What is a typical “representation” of numbers?
« Answer: binary numbers

* Need gcd algorithm that runs in poly time
 E.g., Euclid’s algorithm

A GCD Algorithm for: RELPRIME € P

RELPRIME = {(x,y)| x and y are relatively prime}

Modulo
(i.e., remainder) The Euclidean algorithm E is as follows.
cuts x at least in E = “On input (x, y), where x and y are natural numbers in binary:
half, e.g,, 1. Repeatuntil y = 0:
- 15mod8=7 2. SAssign z < z mod y. Each number is
- 17mod8-=1 3. Exchange z and y. cut in half every
4. Output z.” other iteration

Cutting x in half
every step: requires
log x steps

Total run time (assume x> y): 2log x = 2log2™ = O(n),
where n = number of binary digits in (ie length of) x

Today: 3 Problems in P

* A Graph Problem:
PATH = {(G, s,t)| G 1s a directed graph that has a directed path from s to ¢}

* ANumber Problem:
RELPRIME = {(z,y)| and y are relatively prime}

A CFL Problem:

Every context-free language is a member of P

A CFG Theorem: Every context-free language is a member of P

 Given a CFL 4, can we decide membership in poly time?
* |l.e., given grammar G and program w is there a poly time parsing algo?

e Decider for A:

From Theorem 4.9

7

Let G be a CFG for A and design a TM M that decides A. We build
a copy of G into M. It works as follows.

M}_“Onigmlt w:
1 (G, w).

. RunTM S on input
2. If this machine accepts, accept; if it rejects, reject.”

3.

= “On input (G, w), where G is a CFG and w is a string:
1.

2.

Convert G to an equivalent grammar in Chomsky normal form.

List all derivations with 2n — 1 steps, where n is the length of w;
except if n = 0, then instead list all derivations with one step.
If any of these derivations generate w, accept; if not, reject.”

* This algorithm runs in exponential time

From Thm 4.7

?

Dynamic Programming

« Keep track of partial solutions, and re-use them

* For CFG problem, instead of re-generating entire string ...
« ... keep track of substrings generated by each variable

CFL Dynamic Programming Example

e Chomsky Grammar G:
« S> AB|BC
« A>BA]Ja
- B>CC|b
« C>AB|a
« Example string: baaba

 Store every partial string and their generating variables in a table
Substring end char

Substring
start char

QO T 9 Qv T

67

CFL Dynamic Programming Example

e Chomsky Grammar G:
« S> AB|BC
« A>BA]Ja
- B>CC|b
« C>AB|a
« Example string: baaba

 Store every partial string and their generating variables in a table
Substring end char

vars for “b” vars for “ba” vars for “baa”

“u_n

Substring vars for “a vars for “aa” vars for “aab”

start char

QO T 9 Qv T

68

CFL Dynamic Programming Example

e Chomsky Grammar G: Algo:
. S> AB|BC - For each single char c and var A:
+ ADBA|a - IfA->cisarule, add A to table
« B>CC|b
« C>AB]|a

« Example string: baaba

 Store every partial string and their generating variables in a table
Substring end char

vars for “b” vars for “ba” vars for “baa”

“u_n

Substring vars for “a vars for “aa” vars for “aab”

start char

QO T 9 Qv T

69

CFL Dynamic Programming Example

e Chomsky Grammar G: Algo:
. S> AB|BC - For each single char c and var A:

- A>BA|a - IfA->cisarule, add A to table

« B>CC|b
« C>AB|a

« Example string: baaba

 Store every partial string and their generating variables in a table
Substring end char

Substring AC

start char AC

QO T 9 Qv T

A)GO

CFL Dynamic Programming Example

« Chomsky Grammar G: Algo:
« S AB| BC - Foreach single char c and var A:
- A>BA|a - IfA%usa.rule,addAtotable
« B> CClb - For each substring s: . .
- For each split of substring s into x,y:
C ek - For each rule of shape A > BC:
« Example string: baaba - Use table to check if B
. Store every partial string and their gdre e o ooncrates xand C generates y

Substring
start char

Substring end char

O T Q9 Qv T

AC
AC

A} C71

CFL Dynamic Programming Example

e Chomsky Grammar G:

« S> AB|BC
« A>BA]Ja
« B2>CC|b
« C>AB|a

« Example string: baaba

« Store every partial string and their géreroers

Substring
start char

O O 9 Q9 T

Algo:

- For each single char c and var A:
- IfA->cisarule, add A to table
- For each substring s:

- For each split of substring s into x,y:

For each rule of shape A - BC:

- ISP 1anie 10 check IT K

A

Substring end char

AC

AC|’

For substring “ba”, split into “b” and “a”:
For rule S> AB

NO
For rule S = BC

YES
For rule A > BA

Does B generate “b” and A generate

YES
For rule B> CC

NO
For rule C > AB

Does A generate “b” and B generate

NO

Does A generate “b” and B generate

Does B generate “b” and C generate “a”?

Does C generate “b” and C generate “a”?

CFL Dynamic Programming Example

e Chomsky Grammar G:

« S> AB|BC
« A>BA]Ja
« B2>CC|b
« C>AB|a

« Example string: baaba

« Store every partial string and their géreroers

Substring
start char

O O 9 Q9 T

Algo:

- For each single char c and var A:
- IfA->cisarule, add A to table
- For each substring s:

- For each split of substring s into x,y:

For each rule of shape A - BC:

- ISP 1anie 10 check IT K

A

Substring end char

A,C

AC|’

For substring “ba”, split into “b” and “a”:
For rule S> AB

NO
For rule S = BC

YES
For rule A > BA

Does B generate “b” and A generate

YES
For rule B> CC

NO
For rule C > AB

Does A generate “b” and B generate

NO

Does A generate “b” and B generate

Does B generate “b” and C generate “a”?

Does C generate “b” and C generate “a”?

CFL Dynamic Programming Example

e Chomsky Grammar G:

S > AB | BC
A->BA]a
B> CC|b
C—>AB]|a

« Example string: baaba

« Store every partial string and their ge

Substring
start char

Algo:
- For each single char c and var A:

- IfA->cisarule, add A to table
- For each substring s:
- For each split of substring s into x,y:
- For each rule of shape A - BC:
- Use table to check if B
generates x and C generates y

ww—m‘v

Substring end char

QO T 9 Qv T

A,C

If Sis here, accept ——>S,AC

B B S,A,C
AC S,C B
B S,A

A} G4

A CFG Theorem: Every context-free language is a member of P

D =“On input w = wi - - - Wh:
1. Forw =¢,if S = £1isa rule, accept; else, reject. [w = € case]
2. Fori=1ton:| O(n) [examine each substring of length 1]
3. For each variable A: | #vars
4. Test whether A — b is a rule, where b = w;. #vars *n = 0(11)
5. If so, place A in tgble(i,).
6. Forl=2ton:|0(n) [1 is the length of the substring |
7. Fori=1ton — 1+ 1: | O(n) E start position of the substring]
8. Letj=i+1—1. [4 is the end position of the substring |
9. Fork=itoj—1: |0(n) [% is the split position]
10. For each rule A — BC:" #rules
11. If table(i, k) contains B and table(k + 1,j) contains
C, put A in table(i, 7). * * % _ 3
12. If Sisin table(1,n), accept; else, JT.#.FUIBS O(D) O(D) O(Il) _ O(H)

 Total: O(n3)
* This is also known as the Earley parsing algorithm

Summary: 3 Problems in P

* A Graph Problem:
PATH = {(G, s,t)| G 1s a directed graph that has a directed path from s to ¢}

* ANumber Problem:
RELPRIME = {(z,y)| and y are relatively prime}

A CFL Problem:

Every context-free language is a member of P

Check-in Quiz 4/21

On gradescope

