NP Monday, April 26, 2021

Announcements

• HW10 due Tues 4/27 11:59pm EST

• Due Tues 5/4 11:59pm EST

- Not "your own words": Submitting answers from the internet
- Not "your own words": Changing variables / rearranging sentences
- Suggestion: Looking into "clean room" design

<u>Last Time</u>: Polynomial Time (**P**)

DEFINITION 7.12

P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine. In other words,

$$P = \bigcup_{k} TIME(n^k)$$

- Roughly corresponds to solvable vs unsolvable problems:
 - Problems in P = "solvable"
 - Problems outside P = "unsolvable"

Today: Search vs Verification

- Search problems are often unsolvable
- But, verification of search results is usually solvable

EXAMPLES

- Factoring
 - Unsolvable: Find factors of 8633
 - Solvable: Verify 89 and 97 are factors of 8633
- Passwords
 - Unsolvable: Find my umb.edu password
 - Solvable: Verify whether my umb.edu password is ...
 - "correct horse battery staple"

THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

Last Time: The PATH Problem

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t\}$

- The **search** problem:
 - Exponential time (brute force) algorithm (n^n) :
 - Check all possible paths and see if any connects s and t
 - Polynomial time algorithm:
 - Do a breadth-first search (roughly), marking "seen" nodes as we go

PROOF A polynomial time algorithm M for PATH operates as follows.

M = "On input $\langle G, s, t \rangle$, where G is a directed graph with nodes s and t:

- 1. Place a mark on node s.
- 2. Repeat the following until no additional nodes are marked:
- 3. Scan all the edges of G. If an edge (a, b) is found going from a marked node a to an unmarked node b, mark node b.
- **4.** If t is marked, accept. Otherwise, reject."

Verifying a *PATH*

 $PATH = \{ \langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

- The verification problem:
 - Given some path p in G, check that it is a path from s to t
 - Let *m* = longest possible path = # edges in *G*

NOTE: extra argument *p*

- <u>Verifier</u> V = On input < G, s, t, p >, where p is some set of edges:
 - 1. Check some edge in p has "from" node s; mark and set it as "current" edge
 - Max steps = O(m)
 - 2. Loop: While there remains unmarked edges in p:
 - a) Find the "next" edge in p, whose "from" node is the "to" node of "current" edge
 - b) If found, then mark that edge and set it as "current", else reject
 - Each loop: Max steps O(m)
 - # loops: at most *m* times
 - Total looping time = $O(m^2)$
 - 3. Check "current" edge has "to" node t; if yes accept, else reject
- Total time = $O(m) + O(m^2) = O(m^2)$ = polynomial in m

Verifiers, Formally

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t\}$

DEFINITION 7.18

A **verifier** for a language A is an algorithm V, where

 $A = \{w | V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}$

extra argument: can be any string that helps to find a result in poly time (is often just a result itself)

certificate, or proof

We measure the time of a verifier only in terms of the length of w, so a **polynomial time verifier** runs in polynomial time in the length of w. A language A is **polynomially verifiable** if it has a polynomial time verifier.

- NOTE: a cert c must be at most length n^k , where n = length of w
 - Why?
- So *PATH* is polynomially verifiable

The HAMPATH Problem

 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

A Hamiltonian path goes through every node in the graph

- The **Search** problem:
 - Exponential time (brute force) algorithm:
 - Check all possible paths and see if any connect s and t using all nodes
 - Polynomial time algorithm:
 - We don't know if there is one!!!
- The Verification problem:
 - Still $O(m^2)$!
 - HAMPATH is polynomially verifiable, but not polynomially decidable 87

The class NP

DEFINITION 7.19

NP is the class of languages that have polynomial time verifiers.

- PATH is in NP, and P
- HAMPATH is in NP, but not P

NP = <u>Nondeterministic</u> polynomial time

DEFINITION 7.19

NP is the class of languages that have polynomial time verifiers.

THEOREM 7.20

A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine.

- => If a lang L is in **NP**, then we know it has a poly time verifier V
- Need to: Create NTM deciding L: on input w =
 - Nondeterministically run ${\it V}$ with ${\it w}$ and all possible certificates ${\it c}$
- <= If L has NTM decider N,
- Need to: show L is in NP, ie it has polytime verifier V: on input $\langle w, c \rangle =$
 - Convert N to deterministic TM, and run it on w, but take only one computation path,
 - Let certificate c dictate which computation path to follow

P vs NP

DEFINITION 7.7

Let $t: \mathcal{N} \longrightarrow \mathcal{R}^+$ be a function. Define the *time complexity class*, $\mathbf{TIME}(t(n))$, to be the collection of all languages that are decidable by an O(t(n)) time Turing machine.

DEFINITION 7.12

P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine. In other words,

$$P = \bigcup_{k} TIME(n^k).$$

DEFINITION 7.21

NTIME $(t(n)) = \{L \mid L \text{ is a language decided by an } O(t(n)) \text{ time nondeterministic Turing machine} \}.$

COROLLARY **7.22**

$$NP = \bigcup_k NTIME(n^k).$$

More **NP** Problems

- $CLIQUE = \{ \langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique} \}$
 - · A clique is a subgraph where every two nodes are connected
 - A *k*-clique contains *k* nodes

• $SUBSET ext{-}SUM=\{\langle S,t\rangle|\ S=\{x_1,\ldots,x_k\},\ ext{and for some}$ $\{y_1,\ldots,y_l\}\subseteq\{x_1,\ldots,x_k\},\ ext{we have}\ \Sigma y_i=t\}$

 $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$

PROOF IDEA The clique is the certificate.

PROOF The following is a verifier V for CLIQUE.

V = "On input $\langle \langle G, k \rangle, c \rangle$:

- 1. Test whether c is a subgraph with k nodes in G. O(k)
- 2. Test whether G contains all edges connecting nodes in c.
- 3. If both pass, accept; otherwise, reject."

 $O(k^2)$

DEFINITION 7.18

A *verifier* for a language A is an algorithm V, where

 $A = \{w | V \text{ accepts } \langle w, c \rangle \text{ for some string } c\}.$

We measure the time of a verifier only in terms of the length of w, so a **polynomial time verifier** runs in polynomial time in the length of w. A language A is **polynomially verifiable** if it has a polynomial time verifier.

DEFINITION 7.19

NP is the class of languages that have polynomial time verifiers.

Proof 2: *CLIQUE* is in NP

 $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$

N = "On input $\langle G, k \rangle$, where G is a graph:

"try all subgraphs"

- 1. Nondeterministically select a subset c of k nodes of G.
- 2. Test whether G contains all edges connecting nodes in c.
- **3.** If yes, accept; otherwise, reject."

To prove a lang *L* is in **NP**, create <u>either</u> a:

- Deterministic poly time verifier
- Nondeterministic poly time decider

THEOREM 7.20 -----

A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine.

More **NP** Problems

- $CLIQUE = \{ \langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique} \}$
 - A clique is a subgraph where every two nodes are connected
 - A *k*-clique contains *k* nodes

- SUBSET-SUM = $\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$
 - Some subset of a set of numbers S must sum to some total t
 - e.g., $\{\{4,11,16,21,27\},25\} \in SUBSET-SUM$

Theorem: SUBSET-SUM is in NP

SUBSET-SUM =
$$\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$$
, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$

PROOF IDEA The subset is the certificate.

To prove a lang is in **NP**, create <u>either</u>:

- **Deterministic** poly time **verifier**
- Nondeterministic poly time decider

PROOF The following is a verifier V for SUBSET-SUM.

$$V =$$
 "On input $\langle \langle S, t \rangle, c \rangle$:

- 1. Test whether c is a collection of numbers that sum to t.
- **2.** Test whether S contains all the numbers in c.
- **3.** If both pass, accept; otherwise, reject."

ALTERNATIVE PROOF We can also prove this theorem by giving a nondeterministic polynomial time Turing machine for *SUBSET-SUM* as follows.

$$N =$$
 "On input $\langle S, t \rangle$:

- 1. Nondeterministically select a subset c of the numbers in S.
- 2. Test whether c is a collection of numbers that sum to t.
- **3.** If the test passes, accept; otherwise, reject."

$COMPOSITES = \{x | x = pq, \text{ for integers } p, q > 1\}$

- A composite number is <u>not</u> prime
- COMPOSITES is polynomially verifiable
 - i.e., it's in NP
 - i.e., factorability is in NP
- A certificate could be:
 - Some factor that is not 1

- Checking existence of factors (or not, i.e., testing primality) ...
 - ... is also poly time
 - But only discovered recently (2002)

Question: Does P = NP?

Squaring both sides,

Which leaves

P=0 Thus, P=NP

PAWFORD, DOFTHE PARTMENT FOR A WHILEP PARTMENT, DEPARTMENT, DEPARTMENT FOR A WHILEP PARTMENT, DEPARTMENT FOR A WHILEP PARTMENT FOR A WHILEP PARTMENT FOR A WHILEP PARTMENT FOR A WHILEP PARTMENT, DEPARTMENT FOR A WHILEP PARTMENT FOR A WHILEP PA

How do you prove an algorithm <u>doesn't</u> have a poly time algorithm? (in general it's hard to prove that something <u>doesn't</u> exist)

HAMPATH

COMPOSITES

Implications if P = NP

- Every problem with a "brute force" solution also has an efficient solution
- I.e., "unsolvable" problems are "solvable"
- <u>BAD</u>:
 - Cryptography needs unsolvable problems
 - Near perfect AI learning, recognition
- GOOD: Optimization problems are solved
 - Overcrowding or world hunger solved?
 - Abundant energy resources?

Who doesn't like niche NP jokes?

Progress on whether P = NP?

Some, but still not close

By Lance Fortnow

Communications of the ACM, September 2009, Vol. 52 No. 9, Pages 78-86
10.1145/1562164.1562186

- One important concept discovered:
 - NP-Completeness (next time)

Next time: NP-Completeness

Must look at langs in general, can't just look at any single lang

DEFINITION 7.34

A language B is **NP-complete** if it satisfies two conditions:

- **1.** B is in NP, and easy
- 2. every A in NP is polynomial time reducible to B.

hard????

How does this help the P = NP problem?

THEOREM **7.35** -

If B is NP-complete and $B \in P$, then P = NP

Check-in Quiz 4/26

On gradescope