YOU REDESIGNED
THE STRUCTURE OF
PO CRIEE A YA
AND EVER AFTER
Y e e SHALL IT BE REALLY
AN APPLE > HARD TO PLAN A LONG
DELIVERY ROUTE/

SMbC -comics.com

NP

Monday, April 26, 2021

Announcements

YOU REDESIGNED
THE STRUCTURE OF
ATHEMATI ITSEL
siovady ff ge e,
- HW10 due Tues 4/27 11:59pm EST A
u e u eS ° N APPLE 2 HARD TO PLAN A LONG

DELIVERY ROUTE/ “

* HW11 out soon
e Due Tues 5/4 11:59pm EST

« Reminder: Submitted HW must be in your own words
« Not “your own words”: Submitting answers from the internet

* Not “your own words”: Changing variables / rearranging sentences
« Suggestion: Looking into “clean room” design

79

GREAT NEWS, EVERYONE/
T TURNS OQUT THE PROBLEM
WE SPENT OUR CAREERS
WORKING ON CAN'T
BE SOLVED/

Last Time: Polynomial Time (P)

DEFINITION 7.12

P is the class of languages that are decidable in polynomial time on
a deterministic single-tape Turing machine. In other words,

P = | TIME(n").
k

* Roughly corresponds to solvable vs unsolvable problems:
* Problems in P = “solvable”
* Problems outside P = “unsolvable”

82

Today: Search vs Verification

« Search problems are often unsolvable
« But, verification of search results is usually solvable

EXAMPLES
 Factoring

« Unsolvable: Find factors of 8633
 Solvable: Verify 89 and 97 are factors of 8633

e Passwords

« Unsolvable: Find my umb. edu password

 Solvable : Verify whether my umb.edu password is ...
 “correct horse battery staple”

— WHAT?
T'M FACTORING B
THE TME. /I

T HAVE NOTHING TO DO, 50 TM TRYING
TO CALCULATE THE PRIME FACTORS OF THE
TIME EM’-{ MINUTE BEFORE IT CHANGES.

ITTWASEASYWHIN I N
STARTED AT 00, BUT
WITH EACH HOUR THE
NUMBER GETS BIGGER

|
T WONDER HOW

|

LONG T CAN KEEP UR

ala[alalalaln(/efsizlalalulala R ~28 BITS OF ENTROPY WAS IT TROMBONE? NG,
UNCOMMON ORDER ol TROUBADOR, AND ONE OF
(N&-gamm) UNKNOWN o THE Os WAS A ZERO?
WORD I ~ - \ N
N ZRs Hee . AND THERE WAS
Troubddorls || Zoamsr || #5R
I Gl
J LI: v -—EJ Qr [mﬁwﬁiﬁﬁcﬁﬁm
cArs? comn | e
5 GURGTTUTONS | L | | e BT 5
ooog TUAT DIFFICOLTY T0 GUESS: IFFICULTY TO REMEMBER:
(YOU CaN AOD A TEW MORE BTs To POV - _‘ON
R ey 00 EASY i

~ Y4 BITS OF ENTROPY

Oooooooooooo

correct horse battery staple B——
i_._.:],_]‘) _,_I._.IKJ_,.,J__t_..-.l..-ﬂ_, _I—T_—_j ot _;;.i\L_)gooooon
als :nu.\ :.'.:‘u:lli'.' L | st (ElRpel 2" =550 YEARS AT
TS 1600 GUESSES/sec
COMMON WORDS DIFFCOLTY TO GUESS:
HARD

DIFFICULTY To REMEMBER:

YOUVE ALREADY
MEMORIZED T

THROUGH 20 YEARS CF EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS To GUESS.

Last Time: The PATH Problem

PATH = {(G, s,t)| G 1s a directed graph that has a directed path from s to ¢}

* The search problem:
- Exponential time (brute force) algorithm (n"):
« Check all possible paths and see if any connectssand t

« Polynomial time algorithm:
* Do a breadth-first search (roughly), marking “seen” nodes as we go

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

Verifying a PATH

PATH = {(G, s,t)| G 1s a directed graph that has a directed path from s to ¢}

 The verification problem:
« Given some path p in G, check that it is a path from sto ¢

* Let m = longest possible path = # edges in G
NOTE: extra argument p

« Verifier V= On input <G, s, t, p5, where p is some set of edges:

1. Check some edge in p has “from” node s; mark and set it as “current” edge
* Max steps = O(m)

2. Loop: While there remains unmarked edges in p:
a) Find the “next” edge in p, whose “from” node is the “to” node of “current” edge
b) If found, then mark that edge and set it as “current”, else reject
» Each loop: Max steps O(m)
 #t loops: at most m times
« Total looping time = O(m?)

3. Check “current” edge has “to” node t; if yes accept, else reject

e Total time = O(m) + O(m?) = O(m?) = polynomial in m RATH can be.ver!fied
In polynomial time

Verifiers, Formally

PATH = {(G:‘S, t)| G is a directed graph that has a directed path from s to ¢}

extra argument:

DEFINITION 7.18 can be any string that helps
. , _ to find a result in poly time
A verifier tor a language A is an \Lalgorlthm V, where (is often just a result itself)

A = {w| V accepts (w, ¢) for some string cje certificate, or proof

We measure the time of a verifier only in terms of the length of w,
so a polynomial time verifier runs in polynomial time in the length
of w. A language A is polynomially verifiable it it has a polynomial
time verifier.

* NOTE: a cert c must be at most length n%, where n = length of w
« Why?
« SO PATH is polynomially verifiable

The HAMPATH Problem

HAMPATH = {(G, s,t)| G 1s a directed graph
with a Hamiltonian path from s to ¢}

« A Hamiltonian path goes through every node in the graph

* The Search problem: o= ; : :

- Exponential time (brute force) algorithm:
« Check all possible paths and see if any connect s and ¢ using all nodes
« Polynomial time algorithm:

« We don't know if there is one!!!
 The Verification problem:
. Still O(m?)!
« HAMPATH is polynomially verifiable, but not polynomially decidable

The class NP

DEFINITION 7.19

NP is the class of languages that have polynomial time verifiers.

 PATH 1s In NP,and P
« HAMPATH is in NP, but not P

NP = Nondeterministic polynomial time

DEFINITION 7.19
NP is the class of languages that have polynomial time verifiers.
TH EOREM 7'20 ---

A language is in NP iff it 1s decided by some nondeterministic polynomial time
Turing machine.

=> |f a lang L is in NP, then we know it has a poly time verifier V

« Need to: Create NTM deciding L: on input w =
« Nondeterministically run V with w and all possible certificates c

<= |If L has NTM decider N,
« Need to: show L is in NP, ie it has polytime verifier V: on input <w, ¢> = ﬂ?‘

« Convert N to deterministic TM, and run it on w, but take only one computation path
« Let certificate ¢ dictate which computation path to follow

DEFINITION 7.7

Let t: N—R™ be a function. Define the time complexity class,
P VS N P TIME(t(n)), to be the collection of all languages that are decid-
able by an O(¢(n)) time Turing machine.

DEFINITION 7.12

P is the class of languages that are decidable in polynomial time on
a deterministic single-tape Turing machine. In other words,

P = | TIME(n*).
k

DEFINITION 7.21

NTIME((n)) = {L| L is a language decided by an O(t(n)) time
nondeterministic Turing machine}.

COROLLARY 7,22 e
NP = |J, NTIME(n*).

More NP Problems

e CLIQUE = {(G, k)| G is an undirected graph with a k-clique}
« A clique is a subgraph where every two nodes are connected

()

« A k-clique contains k nodes ¢

O

()

@)

o SUBSET-SUM = {(S,t)| S ={x1,...,zr}, and for some
{y1,...,ui} C{x1,..., 21}, we have Xy; =t}

Theorem: CLIQUE 1s in NP :

CLIQUE = {(G, k)| G is an undirected graph with a k-clique}

PROOF IDEA The clique is the certificate.

PROOF The following is a verifier V' for CLIQUE.

V' = “On input ((G, k), ¢):
1. 'Test whether c is a subgraph with £ nodes in G.
2. Test whether G contains all edges connecting nodes in ¢. | 0(k?)
3. Ifboth pass, accept; otherwise, reject.”

o(k)

DEFINITION 7.18
A verifier for a language A is an algorithm V, where
A = {w| V accepts (w, c¢) for some string c}.

We measure the time of a verifier only in terms of the length of w,
so a polynomial time verifier runs in polynomial time in the length HepinITION 7.19
of w. A language A is polynomially verifiable if it has a polynomial
time verifier.

NP is the class of languages that have polynomial time verifiers.

Proof 22 CLIQUE is in NP <X

CLIQUE = {(G, k)| G is an undirected graph with a k-clique}

4O 3 . |
N = “On input (G, k),' u:rht'ere G is a graph: “try all subgraphs”
1. Nondeterministically select a subset ¢ of £ nodes of G. |
2. 'lest whether GG contains all edges connecting nodes in c. | O(k?)

3. Ifyes, accept; otherwise, reject.”

To prove a lang L is in NP, create either a:
- Deterministic poly time verifier
- Nondeterministic poly time decider

THEOREM 7.20

A language is in NP iff it is decided by some nondeterministic polynomial time
‘Turing machine.

More NP Problems

e CLIQUE = {(G, k)| G 1s an undirected graph with a k-clique}
* A clique is a subgraph where every two nodes are connected

* A k-clique contains k nodes <t T

/////
O @,

o SUBSET-SUM = {(S,t)| S = {z1, ..., 2k}, and for some

{y1,---,y} C{x1,..., 2K}, we have Xy; =t}

« Some subset of a set of numbers S must sum to some total ¢

 e.g., (

4,

11, 16,

21

.27}, 25) € SUBSET-SUM

94

Theorem: SUBSET-SUM isin NP

SUBSET-SUM = {<S= t>| S = {3'313 sy -'I»'k}, and for some
{yl" e "*yi} g {Ilz ... ;va.;}: we h‘clVE Eyt — f}

PROOF IDEA 'The subsetis the certificate.

To prove a lang is in NP, create either: PROOF The following is a verifier V' for SUBSET-SUM.

- Deterministic poly time verifier V = “On input (S,), ¢):

- Nondeterministic poly time decider 1. Test whether ¢ is a collection of numbers that sum to ¢.

2. Test whether S contains all the numbers in c.
3. If both pass, accept; otherwise, reject.”

ALTERNATIVE PROOF We can also prove this theorem by giving a nonde-
terministic polynomial time Turing machine for SUBSET-SUM as follows.

N = “On input (5, t):
1. Nondeterministically select a subset ¢ of the numbers in S.
2. ’Test whether c is a collection of numbers that sum to ¢.
3. If the test passes, accept; otherwise, reject.”

COMPOSITES = {z| x = pq, for integers p,q > 1}

« A composite number IS not prime L e
TO CALCULATE THE PRIME FACTORS OF THE
m TIME EACH MINUTE BEFORE IT CHANGES.

= : TTWASERSYVWHN I N

STARTED AT 100, BUT
WITH EACH HOUR THE

« COMPOSITES is polynomially verifiable %% e F | e
e i.e., it'sin NP | LON”f“N_jW

* I.e., factorability is in NP @
= 1 /j
) T

e A certificate could be:

« Some factor that is not 1

» Checking existence of factors (or not, i.e., testing primality) ...

* ...1s also poly time
» But only discovered recently (2002)

Question: Does P = NP?

PATH

——

1
And,
Pi< P-i

PROOE

So,

eP--1
Gquacing both sides,
eP-1

Which leaves
P=0

“Thus,
P-NP
QED

One of the greatest unsolved
mysteries in science

T

SO, T WENT MASSIVELY IN DEBT TO
BUILD A MACHINE THAT GENERATES
HOLOGRAPHIC NUMBERS AND
EQUATIONS WHENEVER T WISH

TO APPEAR THOUGHTFUL.

... and one of the greatest sources of webcomic material

INF

?2VS? P=NP

WAS THAT A GOOD
USE OF MONEY?

VES.
o * o
C - 3
) JAav - y
+E ¢ %
- g iy
7 % |
/ /
/

A TH AND
TIM €sS.

OUS
ES Y

?? CLIQUE
HAMPATH
COMPOSITES

How do you prove an algorithm doesn’t have a poly time algorithm?

(in general it's hard to prove that something doesn't exist)

98

Implications if P = NP

» Every problem with a “brute force”
solution also has an efficient solution

* |.e,, “unsolvable” problems are “solvable”

 BAD:

 Cryptography needs unsolvable problems
« Near perfect Al learning, recognition

« GOOD: Optimization problems are solved
« Overcrowding or world hunger solved?
« Abundant energy resources?

Who doesn't like niche NP jokes?

AN ENGINEER, A PUYSICIST,
AND A MATHEMATICIAN ARE
ROOMMATES AND ARE
MQVING TO A NEW PLACE.

AS THE MOVER PULLS UP, THE
MATHEMATICIAN WORRIES
THERE I1SN'T ENOQUGH ROOM.

THE MOVER REASSURES THEM.

THE ENGINEER SAYS...

I BEEN AT THIS 30 YEARS.

I CAN LOOK AT ANY AMOUNT
OF STUFE AND INSTANTLY
TELL YA IF 1T CAN FIT IN THE
MOVING BING.

f 0 THE;ROO':/T

IT'S OBVIOUS |T CAN FIT.
ANYTHING THAT DOESN'T GO
IN THE BINS CAN BE TAPED

g

THE PUYSICIST GAYS..

THE MATHEMATICIAN SAYS..

IT'S OBVIOLS IT CAN FIT. IF
T WERE THE DENSITY OF A
NEUTRON STAR, QUR STUFF
WOQULD BE THE <IZE OF A
BASEBALL

Progress on whether P=NP 7

* Some, but still not close

b 2 NP The Status of the P Versus NP Problem

By Lance Fortnow
Scott Aaronson® Communications of the ACM, September 2009, Vol. 52 No. 9, Pages 78-86
10.1145/1562164.1562186

« One important concept discovered:
« NP-Completeness (next time)

Next time: NP-Completeness

Must look at | DEFINITION 7.34

langs in A language B is NP-complete if it satisfies two conditions:

eneral, can’t
S ' 1. Bisin NP, and | easy

just look at any —— — . har
i sle lang 2. every A in NP is polynomial time reducible to B.

« How does this help the P = NP problem?

4?2227

THEOREM 7.35 ...

If B is NP-complete and B € P, then P = NP

Check-in Quiz 4/26

On gradescope

