More NP-Complete Problems

Wed, May 5 2021

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

Announcements

- HW11 due 11:59pm EST tonight
- HW12 out
 - Due Wed 5/12 11:59pm EST
 - Last hw

MY HOBBY:
EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

Last Time: SAT is NP-complete

Now it will be much easier to prove that other languages are NP-complete

THEOREM 7.36

unknown

<u>Key Thm</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

known

To use this theorem, C must be in **NP**

Proof:

- Need to show: C is NP-complete, i.e., (Def 7.34):
 - it's in NP (given), and
 - every lang A in NP reduces to C in poly time (must show)
- For every language A in NP, reduce $A \rightarrow C$ by:
 - First reduce $A \rightarrow B$ in poly time
 - Can do this because B is NP-Complete
 - Then reduce $B \rightarrow C$ in poly time
 - This is given
- <u>Total run time</u>: Poly time + poly time = poly time

unknown

THEOREM 7.36 Shown Unknown Unknown USING: If B is NP-complete and $B \leq_{P} C$ for C in NP, then C is NP-complete.

To use this theorem, must know C is in NP

Example: Prove 3SAT is NP-Complete using thm 7.36 ..

- ... by constructing poly time reduction from:
 - $SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$ (known to be NP-Complete)
 - $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$ (known to be in NP)

<u>USing</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

Example: Prove 3SAT is NP-Complete using thm 7.36 ...

- ... by constructing poly time reduction from:
 - $SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$ (known to be NP-Complete) to
 - $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$ (known to be in NP)
- Reduction: Given an arbitrary SAT formula:
 - 1. Convert to conjunctive normal form (CNF), ie AND of OR clauses
 - Use DeMorgan's Law to push negations onto literals O(n) $\neg (P \lor Q) \iff (\neg P) \land (\neg Q) \qquad \neg (P \land Q) \iff (\neg P) \lor (\neg Q)$
 - Distribute ORs to get ANDs outside of parens $(P \lor (Q \land R)) \Leftrightarrow ((P \lor Q) \land (P \lor R))$
 - 2. Then split clauses to 3cnf by adding new variables $(a_1 \lor a_2 \lor a_3 \lor a_4)$ $(a_1 \lor a_2 \lor z) \land (\overline{z} \lor a_3 \lor a_4)$

Remaining Step

(on your own):

show iff relation holds

NP-Complete problems, so far

- $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$ (Cook-Levin Theorem)
- $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$ (just now: reduced SAT to 3SAT)
- $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$

- *CLIQUE* is in NP (Thm 7.24)
- 3SAT is polynomial time reducible to CLIQUE. (Thm 7.32)

THEOREM 7.36

Other NP (not shown complete yet) Problems, so far

• $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

• A Hamiltonian path goes through every node in the graph

All NP-Complete! (will prove it today)

- SUBSET-SUM = $\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$
 - Some subset of a set of numbers sums to some total
 - e.g., $\langle \{4,11,16,21,27\},25 \rangle \in SUBSET\text{-}SUM$

Theorem: HAMPATH is NP-complete

 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

THEOREM 7.36

Strategy: Use If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

Proof Parts (5):

- ☑ 1. Show HAMPATH is in NP (done in prev class)
- ☑ 2. Choose NP-complete problem to reduce from: 3SAT
 - 3. Create the <u>computable function</u>:

Coming up next! $(x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6} \vee x_4)$ 4. Show it runs in poly time

DEFINITION 7.29

Language A is **polynomial time mapping reducible**, ¹or simply **polynomial time reducible**, to language B, written $A \leq_P B$, if a polynomial time computable function $f: \Sigma^* \longrightarrow \Sigma^*$ exists, where for every w,

 $w \in A \iff f(w) \in B$.

- 5. Show Def 7.29 "iff" requirement:
 - Satisfiable 3cnf formula ⇔ graph with Hamiltonian path

Computable Fn: Formula (blue) → Graph (orange)

Example input: $\phi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \cdots \land (a_k \lor b_k \lor c_k)$ k = # clauses

- Clause \rightarrow (extra) single nodes, Total = k
- Variable → diamond-shaped graph "gadget"
 - Clause → 2 "connector" nodes + separator
 - Total = 3k+1 "connector" nodes per "gadget"

<u>Computable Fn</u>: Formula (blue) → Graph (orange)

Example input: $\phi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \cdots \land (a_k \lor b_k \lor c_k)$ k = # clauses

- Clause \rightarrow (extra) single nodes, Total = k
- Variable → diamond-shaped graph "gadget"
 - Clause → 2 "connector" nodes + separator
 - Total = 3k+1 "connector" nodes per "gadget"
- Lit x_i in clause $c_j \rightarrow c_j$ node edges in gadget x_i
- Lit $\overline{x_i}$ in clause $c_i \rightarrow c_j$ edges in gadget x_i (rev)

Theorem: HAMPATH is NP-complete

 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph } \}$ with a Hamiltonian path from s to t}

Proof Parts (5):

- ✓ 1. Show HAMPATH is in NP (done in prev class)
- 2. Choose NP-complete problem to reduce from: 3SAT
- 3. Create the <u>computable function</u>:

$$(x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6} \vee x_4)$$

- 4. Show it runs in poly time
 - 5. Show Def 7.29 iff requirement:
 - Satisfiable 3cnf formula ⇔ graph with Hamiltonian path

Polynomial Time?

<u>TOTAL</u>: 0(**k**²)

Example input: $\phi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \cdots \land (a_k \lor b_k \lor c_k)$ k = # clauses = at most 3k variables

- Clause \rightarrow (extra) single nodes \bigcirc \circ_i O(k)
- Variable \rightarrow diamond-shaped graph "gadget" $O(k^2)$
 - Clause → 2 "connector" nodes + separator
 - Total = 3k+1 "connector" nodes per "gadget"

• Lit $\overline{x_i}$ in clause $c_j \rightarrow c_j$ edges in gadget x_i (rev)

Theorem: HAMPATH is NP-complete

 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

Proof Parts (5):

- ✓ 1. Show HAMPATH is in NP (done in prev class)
- ☑ 2. Choose NP-complete problem to reduce from: 3SAT
- ☑ 3. Create the <u>computable function</u>:

DEFINITION 7.29

Language A is **polynomial time mapping reducible**, ¹or simply **polynomial time reducible**, to language B, written $A \leq_P B$, if a polynomial time computable function $f: \Sigma^* \longrightarrow \Sigma^*$ exists, where for every w,

 $w \in A \iff f(w) \in B$.

- > 5. Show Def 7.29 iff requirement:
 - Satisfiable 3cnf formula ⇔ graph with Hamiltonian path

<u>Want</u>: Satisfiable 3cnf formula ⇔ graph with Hamiltonian path => If there is Satisfying assignment, then Hamiltonian path exists

These hit all nodes except extra c_j s

 $x_i = \text{TRUE} \rightarrow \text{Hampath "zig-zags" gadget } x_i$

 $x_i = \text{FALSE} \rightarrow \text{Hampath "zag-zigs" gadget } x_i$

- Lit x_i makes clause c_j TRUE \rightarrow "detour" to c_j in gadget x_i
- Lit $\overline{x_i}$ makes clause c_i TRUE \rightarrow "detour" to c_i in gadget x_i

Now path goes through every node

Every clause must be TRUE so path hits all c_i nodes

• And edge directions align with TRUE/FALSE assignments

<u>Want</u>: Satisfiable 3cnf formula ⇔ graph with Hamiltonian path

<= if output has Ham. path, then input had Satisfying assignment

- A Hamiltonian path must choose to either zig-zag or zag-zig gadgets
- Ham path can only hit "detour" c_i nodes by coming right back
- Otherwise, it will miss some nodes

gadget x_i "detours" from left to right $\rightarrow x_i = \text{TRUE}$

gadget x_i "detours" from right to left $\rightarrow x_i = \text{FALSE}$

Theorem: UHAMPATH is NP-complete

 $UHAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

- Reduce HAMPATH to UHAMPATH (using Thm 7.36)
 - HW11
 - Remember to write out the 5 steps!

Theorem: VERTEX-COVER is NP-complete.

 $VERTEX-COVER = \{\langle G, k \rangle | G \text{ is an undirected graph that }$ has a k-node vertex cover $\}$

- A <u>vertex cover</u> of a graph is ...
 - ... a subset of its nodes where every edge touches one of those nodes
- Proof Sketch: Reduce 3SAT to VERTEX-COVER
- The <u>reduction</u> maps:
- Variable $x_i \rightarrow 2$ connected nodes
 - corresponding to the var and its negation, e.g.,
- Clause → 3 connected nodes
 - corresponding to its literals, e.g.,
- Additionally,
 - connect var and clause gadgets by ...
 - ... connecting nodes that correspond to the same literal

$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

Extra edges connecting variable and clause gadgets together

$$\phi = (x_1 \vee x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee x_2)$$

- Let formula have ...
 - *m* = # variables
 - *I* = # clauses
- Then graph has ...
 - # nodes = 2m + 3l
- => If satisfying assignment,
 - then show there is a k-cover where k = m + 2l
- Nodes in the cover:
 - In each of m var gadgets, <u>choose 1</u> node corresponding to TRUE literal
 - For each of *I* clause gadgets, ignore 1 TRUE literal and <u>choose other 2</u>
 - Since there is satisfying assignment, each clause has a TRUE literal
 - <u>Total</u> = *m* + 2*l*

Take home exercise:

Show that formula is satisfiable

Graph has a vertex cover with *k* nodes

Check-in Quiz 5/5

On gradescope