Deterministic CFLs, PDAs, and Parsing

Monday, February 28, 2022

(AN UNMATHED LEFT PPRENTHESIS

(REATES AN UNRESOLVED TENSION
THAT WILL STRY WITH You ALL DAY.




Arnouncements
e HW 4 in

« HW 5 out
* Due Sun March 6 11:59pm
 Problems about PDAs

« Upcoming: Spring Break is week of March 14



Prewisty: CFLS, CFGS, and Parse Trees

Generating strings:

- Start with start variable,

- Repeatedly apply rules to
get a string (and parse tree)

A— B

A
4
A
A = 0A1 A
B
B — # .

A= 0A1 = 00A11 = 0004111 = 0008111 = 000#111



Today: GENErating vs Parsing

Generating strings:

- Start with start variable,

- Repeatedly apply rules to
get a string (and parse tree)

|
A :
| In practice, the
“‘1 opposite is more interesting:
A
|
B
|
#

A — 0A1 start with a string,
A — B then parse it into parse tree
B — #

A= 0A1 = 00A11 = 0004111 = 0008111 = 000#111



Generating vs Parsing

e In practice, parsing a string is more important than generating one

« £.g., a compiler’s first step parses source code into a parse tree
e (Actually, any program with string inputs must first parse it)

« But: the PDAs we've seen are non-deterministic (like NFAs)

« A compiler’s parsing algorithm must be deterministic

» So: to model parsers, we need a Deterministic PDA (DPDA)



last tiwe: (NONdeterministic) PDA

S — alb|b
T — Tale

€,5—b

(OOt
g, [—a e, e—1T
O l

e,5—b This PDA nondeterministically
e, T—e “tries all grammar rules at once”

a,a—€

b,b—e A parser implementation
can't do this!




DPDA: Formal Definition

The language of a DPDA is called a deterministic context-free language.

A deterministic pushdown automaton is a 6-tuple (Q, >, 1", 9, qo, F),

where @, ¥, I, and F are all finite sets, and A pushdown automaton is a 6-tuple

1. Q is the set of states, 1. @ is the set of states,
2. Y is the input alphabet,
3. I' is the stack alphabet,
4.0: Q x X xT.— (Q x I.) U {0} is the transition function
5. qo € @ is the start state, and 6
6. F' C @ is the set of accept states.

2. ¥ is the input alphabet,

3. T is the stack alphabet,

4. 5: Q x 3. xI.—P(Q x T,)
5. qo € Q is the start state, and

. F' C @Q is the set of accept states.
Difference: DPDA has only one possible action,

for any given state, input, and stack op
(similar to DFA vs NFA)

This must take into account € reads or stack ops!
E.g., if 8(q, a, X) is valid, then §(q, £, X) must not be



DPDAs are Not Equivalent to PDAS!

Should use S rule

A PDA non-deterministically

R — S ‘ T “tries all rules” (abandoning

failed attempts) but a DPDA must

S — aShb | ab decide on one rule at each step!
T — aTbb | abb

Parsing = deriving reversed:
start with string, end with parse tree

aaabbb — aaSbb
b

Should use T rule

A Don’t know which rule to use because
aa@bbbb — aalbbbb we can’t see rest of the input!

When parsing reaches this input position,
which rule should it use, S or T?

PDAs recognize CFLs, but DPDAs only recognize DCFLs! (a subset of CFLs)




Subclasses of CFLs

Unambiguous Grammars Ambiguous
Grammars
DCFLs < /TN LRK

{ L)\ | LR

Programming
language parsers /
compilers are ideally
in here

LALR(1)

SLR

LR(0)

All CFLS
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Compiler Stages

DFAs (recognizing
regular languages)
in here!

A program string (chars) (e.g,a : = (5 + 3 ) ; ..)

Program “words”
(e.g, ID(a) ASSIGN LPAREN NUM(5) PLUS NUM(3) RPAREN SEMI

..)
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A Lexer Implementation

%

/* C Declarations: */

#include "tokens.h" /*definitions of IF, ID, NUM, ... */
#include "errormsg.h"

union {int ival; string sval; double fval;} yylval;
int charPos=1;

#define ADJ (EM_tokPos=charPos, charPos+=yyleng)
%) A “lex” tool translates

/* Lex Definitions: */ this to a (C program)
digi 0- . .
rgits  L0-al implementation of a lexer

)
GRC)

DFAs
(represented
as regular
expressions)!

/* Regular Expressions and Actions: */

if {ADJ; return IF;}
> [a-z] [a-z0-9] * {ADJ; yylval.sval=String (yytext) ;
return ID;}
{digits} {ADJ; yylval.ival=atoi (yytext) ;
return NUM; }
({digits}"."[0-9]*) | ([0-9]*"."{digits}) {ADJ;

yvylval.fval=atof (yytext) ;
return REAL; }
(n__n [a—z] *n\nn) | (n " | n\nn | "\t")+ {ADJ'-}
{ADJ; EM error("illegal character");}
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Compiler Stages

A

DFAs (recognizing
regular languages)
in here!

DPDAs (recognizing
DCFLs) in here!

AssignStm  Abstract Syntax tree (AST), i.e., a parse tree!

a

OpExp

program (chars) (e.g., a :

Program “words”

Parser

e

NumExp  Plus

|
5

NumExp

|
3

(

5 + 3

)

3
1 4 (XX}

(e.g., ID(a) ASSIGN LPAREN NUM(5) PLUS NUM(3) RPAREN SEMT
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A Parser Implementation

%{

int yylex(void) ;
void yyerror (char *s) { EM error (EM tokPos, "%s", s); }
%)

Stoken ID WHILE BEGIN END DO IF THEN ELSE SEMI ASSIGN
$start prog
%

o\D

A “yvacc” tool translates
rog: stmlist . this to a (C program)
Just write the CFG! — Implementation of a parser

stm :" ID ASSIGN ID

| WHILE ID DO stm

| BEGIN stmlist END

| IF ID THEN stm

| IF ID THEN stm ELSE stm

stmlist : stm

| stmlist SEMI stm e



Parsing

R—S|T
S — aSb | ab
T — aTbb | abb

aaabbb — aaSbb
aD ao D

A parser must be able to choose the one correct rule, when reading input left-to-right

aaabbbbbb — aaTbbbb




LL parsing

Game: “You're the Parser”:

e | = [eft_to_right Guess which rule applies?
* L = leftmost derivation

S — if E then S else S E%enSdL
s -
S—‘/- beglnSL |
S int £
— prin F — num = num

1f 2 = 3 begin print 1; print 2; end else print O

1



LL parsing

e L = left-to-right
e L = leftmost derivation

S — if E then S else S i:?nSdL
S — begin § L |
S int £
— prin F — num = num

1f 27= 3 begin print 1; print 2; end else print 0



LL parsing

e L = left-to-right
e L = leftmost derivation

L d
S — if E then S else S e
S — begin S L ’
S int £
— b E — num = num

1f 2 = 3 begin print 1; print 2; end else print O

1



LL parsing

e L = left-to-right
e L = leftmost derivation

L d
§ — 5 dren § eke e
. L —:SL
S — begin S L
Int £
S —>[prn E — num = num

1f 2 = 3 begin print 1; print 2; end else print O

“Prefix” languages (like Scheme/Lisp) are easily parsed with LL parsers



LR parsing

S—>S§5: S E — id
o L = [eft-to-right S—i1d:= E E — num
* R = rightmost derivation * S > print (L )© E — E + E

a := 7;
B e @ o (@ - 5 B &)

When parse is here, can't determine whether it's an assign (: =) or addition (+)

Need to save input to some temporary memory, like a stack: this is a job for a (D)PDA!

Stack Input Action
push :
1 a :=7 ;b:=c+ (d:=5+6,4d) $ shift | “push”
1 1dyg ﬁ :=7 ; b:=c+ (d:=5+6,d) $ shift
State {1dg :=¢ 7 ; b:=c+ (d:=5+6,d) $ shift
name 1 1dg : =g numyg ; b :=c+ (d:=5+6 , d) $ reduce E — num
11dg :=¢ Eqq i b:=c+ (d:=5+6, d) § reduce S — id:=E
Y i b:=c+ (d:=5+6 , d) $§ shift




LR parsing
S—>8§5; 8 E — id
o L = [eﬂ‘_-tg-right S—i1d:= E E — num

* R = rightmost derivation S —prnt(L) E — E + E

Stack Input Action

1 a :=7 ; b:=c+ (d:=5+6,d) $ shift

1 1d4 :=7 ; b:=c+ (d:=5+6,d4d) $ shift

Lidy t=¢ ﬁ7;b=c+(d=5+6,d)$ shift

1 1dg :=¢ numy ;i b :=c+ (d:=5+6 , d) $ reduce E — num

1 id4 1 =6 Ell ; b :=c+ (d :=5 + 6 , d) $ reduce S — 1d:=E

192 i b:=c+ (d:=5+6,4d) $ shift 124




LR parsing
S—>8§5; 8 E — id
o L = [eﬂ‘_-tg-right S—i1d:= E E — num

* R = rightmost derivation S —prnt(L) E — E + E

Stack Input Action

1 a :=7 ; b:=c+ (d:=5+6,d) $ shift

1 1d4 =7 ; b:=c+ (d:=5+6,d) % shift

1 id4 1=6 7 ;b :=c+ (d:=5+6,4d) $ shift

1 1dg :=¢ numyg ﬁ ;i b :=c+ (d:=5+6 , d) $ reduce E — num

1 id4 1 =6 Ell ; b :=c+ (d :=5 + 6 , d) $ reduce S — 1d:=E

192 i b:=c+ (d:=5+6,4d) $ shift 125




LR parsing

e L = left-to-right
* R = rightmost derivation

Stack

1

1 1d4

11d4 :=¢

1 1dg : =g numyg
11dg :=¢ Eq)

1 52

a :=7 : b :
Can determine
(rightmost) rule | |

; b o
ﬁb t=
T b o=

QO Q0 00 a0 Qn

S—S5: 8§
S—>1d=E

S — print ( L)

+ + + + + 4+

Qo Q0 Q

Input

ur o1 Ul 01 U1 U

+ + + + + +

O O O O O Ov

TR O TN O TRy O TRy O Ty o F

— e e S S o

E — 1d
E — num
EFE— FE + E

o o5 5 o o7 o5

Action

shift

shift

shift

reduce E — num

reduce S — 1d: =E

shift 126



LR parsing
S—>8§5; 8 E — id
o L = [eft-t()-right S—i1d:= E E — num

* R = rightmost derivation * S > print (L )© E — E + E

Stack Input Action

1 a :=7 ; b:=c+ (d:=5+6,d) % shift

1 1d4 :=7 ; b:=c+ (d:=5+6,d) $ shift

11dg4 :=¢ Candetermine = ¢ + (d :=5 + 6 , d ) § shift

| 1d4 :=¢ numyq (rightmost)rule - ¢ + (d :=5 +6 , d) $ reduce E — num

1 id4 1 =6 Ell ;i b :=c+ (d :=5+6 , d) $ reduce S — 1d:=E

192 ﬁ b :=c+ (d:=5+6, d) $ shift 127



LR parsing
S—>8§5; 8 E — id
o L = [eﬂ‘_-tg-right S—i1d:= E E — num

* R = rightmost derivation S —prnt(L) E — E + E

Stack Input Action

1 a :=7 ; b:=c+ (d:=5+6,d) $ shift

1 1d4 =7 ; b:=c+ (d:=5+6,d) % shift

1 id4 1=6 7 ; b:=c+ (d:=5+6,4d) $ shift

1 1dg :=¢ numy ;i b :=c+ (d:=5+6 , d) $ reduce E — num

1 id4 1 =6 Ell ; b :=c+ (d :=5 + 6 , d) $ reduce S — 1d:=E

192 i b:=c+ (d:=54+6,4d) $ shift 128




To learn more, take a Compilers Class!

Unambiguous Grammars Ambiguous
Grammars
L(k) LR(k)

L) | RO
‘ \

A program (string of chars)

Lexer
(DFAs / NFASs)

Program “words”

Parser
(DPDAS)

Abstract Syntax tree (AST)

This phase needs computation that goes beyond CFLs
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Non-CFLs



tstteet, PUumping Lemma for Regular Langs

« The Pumping Lemma describes how strings repeat

 Regular language strings can (only) repeat using Kleene pattern
« But the substrings are independent! -

Repeating pattern y:’\/ :
* A non-regular language: .' = rfpsat
{On1n| n 2z 0} Before repeat ’r ':
Kleene star can’t express this pattern: i
2nd part depends on (length of) 15t part \_____|Independent /

* Q: How do CFLs repeat?



Repetition and Dependency in CFLs

Parts before/after repetition point are linked

Repetition ‘é — 041 {On#1ﬂ| n > 0}
A— B

B — # /}‘1\ repetition

an
A
/| N\

=
e
O 0 0 # 1 1 1
A= 0A1 = 00411 = 000A111 = 0008111 = 000#111



How Do Strings in CFLs Repeat?

e Strings in regular languages repeat states

NFA can take loop transition
any number of times, to
process repeated y in input

e Strings in CFLs repeat su btrees In the parse tree

One repeated subtree means that it
can be repeated any number of times

Linked parts
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Pumping Lemma for CFLS

Pumping lemma for context-free languages If A is a context-free language,
then there is a number p (the pumping length) where, if s is any string in A of
length at least »_then < maw he divided into five pieces s = uvzyz satistying the

Now there are two pumpable parts.

conditions But they must be pumped together!

1. for each ¢ > 0, wvtzy'z € A,
2. |vy| > 0, and

3. “U:By| < p. Pumping lemma If A is a regular
pumping length) where if s is any stri

divided into three pieces, s = xyz, sat

T

R

R

' Yy Z

v T
rd |~ 4

Y

T

per p (the
s may be

1. for each i > 0, zy'z € A,

Two pumpable parts,

2. |y| > 0, and pumped together

3. |xy| < p.

=4



Non CFL example: D = {ww| w € {0,1}*}

Previous: D 1s nonregular: unpumpable counterexample s: 0P10P1
Now: this s can be pumped according to CFL pumping lemma:

01 01
r— —

rmm—— —
000---000 O 1 O 000---0001
N, e o o o e e

u () 2 Yy e
Pumping v and y (together) produces string still in D ' |
« CFL Pumping Lemma conditions:/1 1. for each ¢ > 0, uwv'xy'z € A,

This doesn’t prove that the language is a CFL! 2. |vy| > 0, and
It only means that this attempt to prove that 3. |vzy| < p.
the language is not a CFL failed.




Non CFL example: D = {ww| w € {0,1}*}

* Need another counterexample string s:

If vyx is contained in first or second half, then
any pumping will break the match

e W

OP1POP1P

\e— —

So vyx must straddle the middle
But any pumping still breaks the match because order is wrong

e CFL Pumping Lemma conditions: 1. foreachi > 0, uv'zy'z € A,
2. |vy| > 0, and

Now we have proven that 3. |vzy| < p.
this language is not a CFL!




CFL Pumping Lemma 1s Too Restrictive?
?227?
Pumping lemma for context-free languages If A is a context-free language,

then there is a number p (the pumping length) where, if s is any string in A of
length at least p, then s may be divided into five pieces s = uvzyz satistying the

conditions
1. for each ¢ > 0, wvtazy'z € A,
2. |vy| > 0, and
3. Jvxy| < p.



Fwiew: REgular Language Pumping Lemma

* The pumping length p for a language L Is ...

- the # of states in P s 1t 4ot gy s s e
th at I_a N g ua g e' S N F A! divided into three pieces, s = xyz, satistying the following conditions:

1. for each i > 0, zy‘z € A,
2. |y| > 0, and
3. |zy| < p.

-

* If string length > # of states, Repestd st
then some state must repeat | .{
\

« If a state is repeated once, then it can repeat multiple times



Repeating Pattern in CFL Strings?,

 When are we guaranteed to have a
repeated subtree?
« When height of parse tree > # of rules!

Subtrees!

* Let k=# of rules
and b = longest rule RHS length

* Then the length string where we know v
there's a repeat Is bk Don't care ] on't care
* |.e, pumping length = bk 7?7?27 |

Pumping lemma for context-free languages If A is a context-free language,
then there is a|number p (the pumping length) jwhere, if s is any string in A of

H

length at least p, then s may be divided into five pieces s = wvryz satisfying the
conditions

1. for each i > 0, uv'zyiz € A,

2. |vy| > 0, and

3. vay| < p. Pumping Length could be too short!



Pumping lemma for context-free languages If A is a context-free language,
then there is a number p (the pumping length) where, if s is any string in A of
length at least p, then s may be divided into five pieces s = wvzyz satistying the

A Pumpable Non-CFL? oo s

2. |vy| > 0, and
3. |vay| < p.

e CFL Pumping Lemma says: Example:
« “All CFLs are pumpable’ L=1{ab/ckd' [i=0orj=Fk=1)
« So if we find a non-pumpable
language ... it's not a CFL!  For any counterexample,
split into uvxyz where,

, « v="first char
 Pumping Lemma does not say: . z=remaining chars

e “All nonCFLs are not pumpable’ cu=x=y=¢

: o
(statement != it's inverse) e Ifthere are as ...

. 38[2‘{3‘5}%%&%@,%‘5 rﬁ%‘ﬁf‘égﬂ‘;} 26 * ... It's pumpable bc # of as is arbitrary

e I[f there there are no as

« ... It's pumpable bc # of other chars is
arbitrary

This language is pumpable ... but not a CFL!
(can't come up with a CFG) 14




Ogden’s Lemma (generalizes pumping lemma)

Ogden’s lemma is: If L is a CFL, then there is a constant n, such that if z|
is any string of length at least n in L, in which we select at least n positions to
be distinguished, then we can write z = uvwxy, such that:

|
Says that every long enough
1. vwz has at most n distinguished positions. segment must be pumpable

2. vx has at least one distinguished position.

3. For all i, ww'wz'y is in L.

Example:
I — {aibjc’“dl i=0orj=4k=1) This language is not a CFL because
it doesn't satisfy Ogden’s Lemma

Counterexample: ab”cd"

 n “distinguished” positions must include non-a character
« Impossible to pump no matter which n chars are chosen




A Practical Non-CFL

XML

e ELEMENT - <TAG>CONTENT</TAG>
« Where TAG is any string

« XML also looks like this non-CFL: D = {ww| w € {0,1}*}

* This means XML is not context-free!
« Note: HTML is context-free because ...
e ...there are only a finite number of tags,
« so they can be embedded into a finite number of rules.

e In practice:
« XML is parsed as a CFL, with a CFG
« Then matching tags checked in a 2"d pass with a more powerful machine ...




Mewt Tine: A MOre Powerful Machine ...

M accepts its input if it is in language: B = {w#w| w € {0,1}*}

My = “On input string w: Infinite memory, initially starts with input

1. Zig-zag across the tape to corresponding positions on either
side’ot the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

Can move to, and read/write
from, arbitrary memory locations




In-class quiz 2/28

See gradescope
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