Deterministic CFLs, PDAs, and Parsing

Monday, February 28, 2022

(AN UNMATHED LEFT PPRENTHESIS

(REATES AN UNRESOLVED TENSION
THAT WILL STRY WITH You ALL DAY.

Arnouncements
e HW 4 in

« HW 5 out
* Due Sun March 6 11:59pm
 Problems about PDAs

« Upcoming: Spring Break is week of March 14

Prewisty: CFLS, CFGS, and Parse Trees

Generating strings:

- Start with start variable,

- Repeatedly apply rules to
get a string (and parse tree)

A— B

A
4
A
A = 0A1 A
B
B — # .

A= 0A1 = 00A11 = 0004111 = 0008111 = 000#111

Today: GENErating vs Parsing

Generating strings:

- Start with start variable,

- Repeatedly apply rules to
get a string (and parse tree)

|
A :
| In practice, the
“‘1 opposite is more interesting:
A
|
B
|
#

A — 0A1 start with a string,
A — B then parse it into parse tree
B — #

A= 0A1 = 00A11 = 0004111 = 0008111 = 000#111

Generating vs Parsing

e In practice, parsing a string is more important than generating one

« £.g., a compiler’s first step parses source code into a parse tree
e (Actually, any program with string inputs must first parse it)

« But: the PDAs we've seen are non-deterministic (like NFAs)

« A compiler’s parsing algorithm must be deterministic

» So: to model parsers, we need a Deterministic PDA (DPDA)

last tiwe: (NONdeterministic) PDA

S — alb|b
T — Tale

€,5—b

(OOt
g, [—a e, e—1T
O l

e,5—b This PDA nondeterministically
e, T—e “tries all grammar rules at once”

a,a—€

b,b—e A parser implementation
can't do this!

DPDA: Formal Definition

The language of a DPDA is called a deterministic context-free language.

A deterministic pushdown automaton is a 6-tuple (Q, >, 1", 9, qo, F),

where @, ¥, I, and F are all finite sets, and A pushdown automaton is a 6-tuple

1. Q is the set of states, 1. @ is the set of states,
2. Y is the input alphabet,
3. I' is the stack alphabet,
4.0: Q x X xT.— (Q x I.) U {0} is the transition function
5. qo € @ is the start state, and 6
6. F' C @ is the set of accept states.

2. ¥ is the input alphabet,

3. T is the stack alphabet,

4. 5: Q x 3. xI.—P(Q x T,)
5. qo € Q is the start state, and

. F' C @Q is the set of accept states.
Difference: DPDA has only one possible action,

for any given state, input, and stack op
(similar to DFA vs NFA)

This must take into account € reads or stack ops!
E.g., if 8(q, a, X) is valid, then §(q, £, X) must not be

DPDAs are Not Equivalent to PDAS!

Should use S rule

A PDA non-deterministically

R — S ‘ T “tries all rules” (abandoning

failed attempts) but a DPDA must

S — aShb | ab decide on one rule at each step!
T — aTbb | abb

Parsing = deriving reversed:
start with string, end with parse tree

aaabbb — aaSbb
b

Should use T rule

A Don’t know which rule to use because
aa@bbbb — aalbbbb we can’t see rest of the input!

When parsing reaches this input position,
which rule should it use, S or T?

PDAs recognize CFLs, but DPDAs only recognize DCFLs! (a subset of CFLs)

Subclasses of CFLs

Unambiguous Grammars Ambiguous
Grammars
DCFLs < /TN LRK

{ L)\ | LR

Programming
language parsers /
compilers are ideally
in here

LALR(1)

SLR

LR(0)

All CFLS

112

Compiler Stages

DFAs (recognizing
regular languages)
in here!

A program string (chars) (e.g,a : = (5 + 3) ; ..)

Program “words”
(e.g, ID(a) ASSIGN LPAREN NUM(5) PLUS NUM(3) RPAREN SEMI

..)

113

A Lexer Implementation

%

/* C Declarations: */

#include "tokens.h" /*definitions of IF, ID, NUM, ... */
#include "errormsg.h"

union {int ival; string sval; double fval;} yylval;
int charPos=1;

#define ADJ (EM_tokPos=charPos, charPos+=yyleng)
%) A “lex” tool translates

/* Lex Definitions: */ this to a (C program)
digi 0- . .
rgits L0-al implementation of a lexer

)
GRC)

DFAs
(represented
as regular
expressions)!

/* Regular Expressions and Actions: */

if {ADJ; return IF;}
> [a-z] [a-z0-9] * {ADJ; yylval.sval=String (yytext) ;
return ID;}
{digits} {ADJ; yylval.ival=atoi (yytext) ;
return NUM; }
({digits}"."[0-9]*) | ([0-9]*"."{digits}) {ADJ;

yvylval.fval=atof (yytext) ;
return REAL; }
(n__n [a—z] *n\nn) | (n " | n\nn | "\t")+ {ADJ'-}
{ADJ; EM error("illegal character");}
114

Compiler Stages

A

DFAs (recognizing
regular languages)
in here!

DPDAs (recognizing
DCFLs) in here!

AssignStm Abstract Syntax tree (AST), i.e., a parse tree!

a

OpExp

program (chars) (e.g., a :

Program “words”

Parser

e

NumExp Plus

|
5

NumExp

|
3

(

5 + 3

)

3
1 4 (XX}

(e.g., ID(a) ASSIGN LPAREN NUM(5) PLUS NUM(3) RPAREN SEMT

115

..)

A Parser Implementation

%{

int yylex(void) ;
void yyerror (char *s) { EM error (EM tokPos, "%s", s); }
%)

Stoken ID WHILE BEGIN END DO IF THEN ELSE SEMI ASSIGN
$start prog
%

o\D

A “yvacc” tool translates
rog: stmlist . this to a (C program)
Just write the CFG! — Implementation of a parser

stm :" ID ASSIGN ID

| WHILE ID DO stm

| BEGIN stmlist END

| IF ID THEN stm

| IF ID THEN stm ELSE stm

stmlist : stm

| stmlist SEMI stm e

Parsing

R—S|T
S — aSb | ab
T — aTbb | abb

aaabbb — aaSbb
aD ao D

A parser must be able to choose the one correct rule, when reading input left-to-right

aaabbbbbb — aaTbbbb

LL parsing

Game: “You're the Parser”:

e | = [eft_to_right Guess which rule applies?
* L = leftmost derivation

S — if E then S else S E%enSdL
s -
S—‘/- beglnSL |
S int £
— prin F — num = num

1f 2 = 3 begin print 1; print 2; end else print O

1

LL parsing

e L = left-to-right
e L = leftmost derivation

S — if E then S else S i:?nSdL
S — begin § L |
S int £
— prin F — num = num

1f 27= 3 begin print 1; print 2; end else print 0

LL parsing

e L = left-to-right
e L = leftmost derivation

L d
S — if E then S else S e
S — begin S L ’
S int £
— b E — num = num

1f 2 = 3 begin print 1; print 2; end else print O

1

LL parsing

e L = left-to-right
e L = leftmost derivation

L d
§ — 5 dren § eke e
. L —:SL
S — begin S L
Int £
S —>[prn E — num = num

1f 2 = 3 begin print 1; print 2; end else print O

“Prefix” languages (like Scheme/Lisp) are easily parsed with LL parsers

LR parsing

S—>S§5: S E — id
o L = [eft-to-right S—i1d:= E E — num
* R = rightmost derivation * S > print (L)© E — E + E

a := 7;
B e @ o (@ - 5 B &)

When parse is here, can't determine whether it's an assign (: =) or addition (+)

Need to save input to some temporary memory, like a stack: this is a job for a (D)PDA!

Stack Input Action
push :
1 a :=7 ;b:=c+ (d:=5+6,4d) $ shift | “push”
1 1dyg ﬁ :=7 ; b:=c+ (d:=5+6,d) $ shift
State {1dg :=¢ 7 ; b:=c+ (d:=5+6,d) $ shift
name 1 1dg : =g numyg ; b :=c+ (d:=5+6 , d) $ reduce E — num
11dg :=¢ Eqq i b:=c+ (d:=5+6, d) § reduce S — id:=E
Y i b:=c+ (d:=5+6 , d) $§ shift

LR parsing
S—>8§5; 8 E — id
o L = [eﬂ‘_-tg-right S—i1d:= E E — num

* R = rightmost derivation S —prnt(L) E — E + E

Stack Input Action

1 a :=7 ; b:=c+ (d:=5+6,d) $ shift

1 1d4 :=7 ; b:=c+ (d:=5+6,d4d) $ shift

Lidy t=¢ ﬁ7;b=c+(d=5+6,d)$ shift

1 1dg :=¢ numy ;i b :=c+ (d:=5+6 , d) $ reduce E — num

1 id4 1 =6 Ell ; b :=c+ (d :=5 + 6 , d) $ reduce S — 1d:=E

192 i b:=c+ (d:=5+6,4d) $ shift 124

LR parsing
S—>8§5; 8 E — id
o L = [eﬂ‘_-tg-right S—i1d:= E E — num

* R = rightmost derivation S —prnt(L) E — E + E

Stack Input Action

1 a :=7 ; b:=c+ (d:=5+6,d) $ shift

1 1d4 =7 ; b:=c+ (d:=5+6,d) % shift

1 id4 1=6 7 ;b :=c+ (d:=5+6,4d) $ shift

1 1dg :=¢ numyg ﬁ ;i b :=c+ (d:=5+6 , d) $ reduce E — num

1 id4 1 =6 Ell ; b :=c+ (d :=5 + 6 , d) $ reduce S — 1d:=E

192 i b:=c+ (d:=5+6,4d) $ shift 125

LR parsing

e L = left-to-right
* R = rightmost derivation

Stack

1

1 1d4

11d4 :=¢

1 1dg : =g numyg
11dg :=¢ Eq)

1 52

a :=7 : b :
Can determine
(rightmost) rule | |

; b o
ﬁb t=
T b o=

QO Q0 00 a0 Qn

S—S5: 8§
S—>1d=E

S — print (L)

+ + + + + 4+

Qo Q0 Q

Input

ur o1 Ul 01 U1 U

+ + + + + +

O O O O O Ov

TR O TN O TRy O TRy O Ty o F

— e e S S o

E — 1d
E — num
EFE— FE + E

o o5 5 o o7 o5

Action

shift

shift

shift

reduce E — num

reduce S — 1d: =E

shift 126

LR parsing
S—>8§5; 8 E — id
o L = [eft-t()-right S—i1d:= E E — num

* R = rightmost derivation * S > print (L)© E — E + E

Stack Input Action

1 a :=7 ; b:=c+ (d:=5+6,d) % shift

1 1d4 :=7 ; b:=c+ (d:=5+6,d) $ shift

11dg4 :=¢ Candetermine = ¢ + (d :=5 + 6 , d) § shift

| 1d4 :=¢ numyq (rightmost)rule - ¢ + (d :=5 +6 , d) $ reduce E — num

1 id4 1 =6 Ell ;i b :=c+ (d :=5+6 , d) $ reduce S — 1d:=E

192 ﬁ b :=c+ (d:=5+6, d) $ shift 127

LR parsing
S—>8§5; 8 E — id
o L = [eﬂ‘_-tg-right S—i1d:= E E — num

* R = rightmost derivation S —prnt(L) E — E + E

Stack Input Action

1 a :=7 ; b:=c+ (d:=5+6,d) $ shift

1 1d4 =7 ; b:=c+ (d:=5+6,d) % shift

1 id4 1=6 7 ; b:=c+ (d:=5+6,4d) $ shift

1 1dg :=¢ numy ;i b :=c+ (d:=5+6 , d) $ reduce E — num

1 id4 1 =6 Ell ; b :=c+ (d :=5 + 6 , d) $ reduce S — 1d:=E

192 i b:=c+ (d:=54+6,4d) $ shift 128

To learn more, take a Compilers Class!

Unambiguous Grammars Ambiguous
Grammars
L(k) LR(k)

L) | RO
‘ \

A program (string of chars)

Lexer
(DFAs / NFASs)

Program “words”

Parser
(DPDAS)

Abstract Syntax tree (AST)

This phase needs computation that goes beyond CFLs

129

Non-CFLs

tstteet, PUumping Lemma for Regular Langs

« The Pumping Lemma describes how strings repeat

 Regular language strings can (only) repeat using Kleene pattern
« But the substrings are independent! -

Repeating pattern y:’\/ :
* A non-regular language: .' = rfpsat
{On1n| n 2z 0} Before repeat ’r ':
Kleene star can’t express this pattern: i
2nd part depends on (length of) 15t part _____|Independent /

* Q: How do CFLs repeat?

Repetition and Dependency in CFLs

Parts before/after repetition point are linked

Repetition ‘é — 041 {On#1ﬂ| n > 0}
A— B

B — # /}‘1\ repetition

an
A
/| N\

=
e
O 0 0 # 1 1 1
A= 0A1 = 00411 = 000A111 = 0008111 = 000#111

How Do Strings in CFLs Repeat?

e Strings in regular languages repeat states

NFA can take loop transition
any number of times, to
process repeated y in input

e Strings in CFLs repeat su btrees In the parse tree

One repeated subtree means that it
can be repeated any number of times

Linked parts

133

Pumping Lemma for CFLS

Pumping lemma for context-free languages If A is a context-free language,
then there is a number p (the pumping length) where, if s is any string in A of
length at least »_then < maw he divided into five pieces s = uvzyz satistying the

Now there are two pumpable parts.

conditions But they must be pumped together!

1. for each ¢ > 0, wvtzy'z € A,
2. |vy| > 0, and

3. “U:By| < p. Pumping lemma If A is a regular
pumping length) where if s is any stri

divided into three pieces, s = xyz, sat

T

R

R

' Yy Z

v T
rd |~ 4

Y

T

per p (the
s may be

1. for each i > 0, zy'z € A,

Two pumpable parts,

2. |y| > 0, and pumped together

3. |xy| < p.

=4

Non CFL example: D = {ww| w € {0,1}*}

Previous: D 1s nonregular: unpumpable counterexample s: 0P10P1
Now: this s can be pumped according to CFL pumping lemma:

01 01
r— —

rmm—— —
000---000 O 1 O 000---0001
N, e o o o e e

u () 2 Yy e
Pumping v and y (together) produces string still in D ' |
« CFL Pumping Lemma conditions:/1 1. for each ¢ > 0, uwv'xy'z € A,

This doesn’t prove that the language is a CFL! 2. |vy| > 0, and
It only means that this attempt to prove that 3. |vzy| < p.
the language is not a CFL failed.

Non CFL example: D = {ww| w € {0,1}*}

* Need another counterexample string s:

If vyx is contained in first or second half, then
any pumping will break the match

e W

OP1POP1P

\e— —

So vyx must straddle the middle
But any pumping still breaks the match because order is wrong

e CFL Pumping Lemma conditions: 1. foreachi > 0, uv'zy'z € A,
2. |vy| > 0, and

Now we have proven that 3. |vzy| < p.
this language is not a CFL!

CFL Pumping Lemma 1s Too Restrictive?
?227?
Pumping lemma for context-free languages If A is a context-free language,

then there is a number p (the pumping length) where, if s is any string in A of
length at least p, then s may be divided into five pieces s = uvzyz satistying the

conditions
1. for each ¢ > 0, wvtazy'z € A,
2. |vy| > 0, and
3. Jvxy| < p.

Fwiew: REgular Language Pumping Lemma

* The pumping length p for a language L Is ...

- the # of states in P s 1t 4ot gy s s e
th at I_a N g ua g e' S N F A! divided into three pieces, s = xyz, satistying the following conditions:

1. for each i > 0, zy‘z € A,
2. |y| > 0, and
3. |zy| < p.

-

* If string length > # of states, Repestd st
then some state must repeat | .{
\

« If a state is repeated once, then it can repeat multiple times

Repeating Pattern in CFL Strings?,

 When are we guaranteed to have a
repeated subtree?
« When height of parse tree > # of rules!

Subtrees!

* Let k=# of rules
and b = longest rule RHS length

* Then the length string where we know v
there's a repeat Is bk Don't care] on't care
* |.e, pumping length = bk 7?7?27 |

Pumping lemma for context-free languages If A is a context-free language,
then there is a|number p (the pumping length) jwhere, if s is any string in A of

H

length at least p, then s may be divided into five pieces s = wvryz satisfying the
conditions

1. for each i > 0, uv'zyiz € A,

2. |vy| > 0, and

3. vay| < p. Pumping Length could be too short!

Pumping lemma for context-free languages If A is a context-free language,
then there is a number p (the pumping length) where, if s is any string in A of
length at least p, then s may be divided into five pieces s = wvzyz satistying the

A Pumpable Non-CFL? oo s

2. |vy| > 0, and
3. |vay| < p.

e CFL Pumping Lemma says: Example:
« “All CFLs are pumpable’ L=1{ab/ckd' [i=0orj=Fk=1)
« So if we find a non-pumpable
language ... it's not a CFL! For any counterexample,
split into uvxyz where,

, « v="first char
 Pumping Lemma does not say: . z=remaining chars

e “All nonCFLs are not pumpable’ cu=x=y=¢

: o
(statement != it's inverse) e Ifthere are as ...

. 38[2‘{3‘5}%%&%@,%‘5 rﬁ%‘ﬁf‘égﬂ‘;} 26 * ... It's pumpable bc # of as is arbitrary

e I[f there there are no as

« ... It's pumpable bc # of other chars is
arbitrary

This language is pumpable ... but not a CFL!
(can't come up with a CFG) 14

Ogden’s Lemma (generalizes pumping lemma)

Ogden’s lemma is: If L is a CFL, then there is a constant n, such that if z|
is any string of length at least n in L, in which we select at least n positions to
be distinguished, then we can write z = uvwxy, such that:

|
Says that every long enough
1. vwz has at most n distinguished positions. segment must be pumpable

2. vx has at least one distinguished position.

3. For all i, ww'wz'y is in L.

Example:
I — {aibjc’“dl i=0orj=4k=1) This language is not a CFL because
it doesn't satisfy Ogden’s Lemma

Counterexample: ab”cd"

 n “distinguished” positions must include non-a character
« Impossible to pump no matter which n chars are chosen

A Practical Non-CFL

XML

e ELEMENT - <TAG>CONTENT</TAG>
« Where TAG is any string

« XML also looks like this non-CFL: D = {ww| w € {0,1}*}

* This means XML is not context-free!
« Note: HTML is context-free because ...
e ...there are only a finite number of tags,
« so they can be embedded into a finite number of rules.

e In practice:
« XML is parsed as a CFL, with a CFG
« Then matching tags checked in a 2"d pass with a more powerful machine ...

Mewt Tine: A MOre Powerful Machine ...

M accepts its input if it is in language: B = {w#w| w € {0,1}*}

My = “On input string w: Infinite memory, initially starts with input

1. Zig-zag across the tape to corresponding positions on either
side’ot the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

Can move to, and read/write
from, arbitrary memory locations

In-class quiz 2/28

See gradescope

145

