CS420

(Deterministic) Finite Automata

Wednesday, January 25, 2023
UMass Boston Computer Science

%/{/{0«/{0@%@/{5&’

 Quizzes
« 15 min limit
* 1/23 quiz “graded”
« Use gradescope issue ticket for
questions / complaints
 HW
« Weekly; in/out Sun midnight
« ~4-5 questions, Paper-and-pencil
proofs (no programming)

 Discussing with classmates ok;
Final answers written up /
submitted individually

« HW 0 extended:
due Tues 1/31 11:59pm EST

* Lectures
« Slides posted

 Closely follow the listed textbook
chapters

« Might be recorded?

» Office Hours
« Wed 12:30-2pm (in person,
McCormack 3 floor, Rm 201)

e Fri 12:30-2pm (zoom, access link
from blackboard)

« Let me know Iin advance if
possible, but drop-ins also fine

« TATBD

Last Tie: HOW Mathematics Works

Mathematician
(or student)

Actually, it's not always so
easy to create the next level ...
Preciseness is important

More Theorems

More Axioms

More Definitions

Proofs = Figuring out how to
(precisely) fit known “facts” together

N

Theorem

Theorem

Axioms

Definitions

“facts”

How CS 420 Works

~—
Theory
Set Theory

Prerequisite < | e

(CS 220) Boolean

(see hwo) | Logic

 — -: T -
| Mathematical « How to combine known
Logic “facts” to discover new “facts”

5

Mathematical Logic Operators

« Conjunction (AND, A\)
- Disjunction (OR, V)
 Negation (NOT, -)

* Implication (IF-THEN, =, —)

Mathematical Statements: AND

Using:
* If we know A A B is TRUE, o
what do we know about A and B individually?

A 1s TRUE, and

* Bis TRUE A | B ANAB
True True @ True <:|

Provi ng: True False False

« To prove A A B Is TRUE: False True False

e Prove A4 Is TRUE, and
e Prove B Is TRUE

False False False

Mathematical Statements: IF-THEN

Using:
* If we know P - @Q Is TRUE, -
what do we know about P and Q individually?

e Fither PIs FALSE, or
e If Pis TRUE, then Q is TRUE (modus ponens)

p 9 P—4g

PrOVing; True True True <:|

True False | False

False = True @ True <:|
False False True <:|

Using an IF-THEN statement:
The “Modus Ponens” Inference Rule

Premises (if these statements are true)
 [f Pthen Q
e PIs TRUE

_IDON'T KNOW WHAT MODUS
~—— PONENSIS

Conclusion (then we can say that this is also true) =

*) must also be TRUE

< - /
‘Auur n%mm MiT00®

. NAFRAIDTOIASK]

emegenetHBPAM]

Mathematical Logic Operators: IF-THEN

Using:
* If we know P — Q Is TRUE, -
what do we know about P and Q individually?
e Fither PIs FALSE, or

» [f Pis TRUE, then Q is TRUE (modus ponens)
p qQ P—q
PrOVing; True | True @ True -

* TO prove P—- (Q IS TRUE: True False False
* If PIs FALSE, statement is always TRUE | e True | True -
* Assume P Is TRUE, then prove Q i1s TRUE
False False True -

last Tine: DEAUCtIVe Proof Example

Prove the following:

Proving

o |T 2
IT: If 2 >4, then 2% > x Assume these are true
Using

e And: z is the sum of the squares of four positive integers

o Thel’]: s 2 3;‘2 Prove this is true

Statements / Justifications Table

last Tine: DeAUCtIVE Proof Example

Prove: If If 2 > 4, then 2* > 22 and z is the sum of the squares of four positive integers

Proof:

then 2% > z2

Statement

1.
2.

o U FW

r=a’+b°+c*+d?
a>1;0>1;¢>1;d>1
a*>10P>1;c2>1;d° > 1
x >4

If z > 4, then 2% > z°

2T > 2

o U1 & WD

Justification
1.

Assumption

Assumption

By Stmt #2 & arithmetic laws
Stmts #1, #3, and arithmetic
Assumption

Stmts #4 and #5 | Modus ponens
N

How CS 420 Wor

Semester End

More CS420 Definitions,
Axioms, & Theorems

CS420 Theorems

Semester Start CS420 Definitions & Axioms

C (What you will learn

Theory this semester)

— Set Theory
Prerequisite S]
(CS 220) S Boolean

(see hw0) | Logic

{ Mathematical ’
- Loglc

15

A Word of Advice

Important:
Do not fall behind
In this course

77

To prove a (new) theorem ...

... need to know all axioms,
definitions, and (previous)
theorems below it

16

“Answer Hunting”

MOre Advice won’'t work in CS420

i
)"\Qll‘ '
iif

“Blocks” from outside the
course won't work in the proof

HEEC

T

Hw Is graded on your
understanding of T
how to get to the -

answer, not the final

answer itself!

77,

HW 1, Problem 1

Prove that ABC = XY Z
(.

Prove that ABC = XYZ

o~ T
r‘ll"‘ "’]P‘)y "?\T :%.

theorems in this course

... can be used to prove (new)

Only axioms, definitions, and
theorems from this course ...

18

{=

Textbooks
« Sipser. Intro to Theory of Computation, 3" ed.

« Hopcroft, Motwani, Ullman. Intro to Automata Theory,
Languages, and Computation, 3™ ed.

- Recommended but not required,
- slides and lecture should be self-contained,
- Readings to accompany lectures will be posted
FYI: Reading the readings correlated with good grades!

All course info available on web site:
https://www.cs.umb.edu/~stchang/cs420/s23

Grading

« HW: 80% * A range: 90-100
* Weekly: Out Monday, In Sunday « B range: 80-90

« Approx. 12 assignments . .
» Lowest grade dropped C range: 70-80

. Quizzes: 5% * D range: 60-70
« End of every lecture * F: <60
* To help everyone keep up

* Participation: 15%
 Lecture, office hours, plazza
e NO exams

All course info available on web site:
https://www.cs.umb.edu/~stchang/cs420/s23

Late HW

* Is bad ... try not to do It please

» Grades get delayed
e Can't discuss solutions
* You fall behind!

 Late Policy: 3 late days to use during the semester

HW Collaboration Policy

Allowed Not Allowed
» Discussing HW with « Submitting someone else’s answer
cla.ssmates (but must cite) . ¢'s still someone else’s answer if:
» Using other resources, e.g,, - variables are changed,
youtube, other books, etc. - words are omitted,
o Wr|t|ng up answers e Or sentences rearranged ...
on your own, from scratch, < Using sites like Chegg, CourseHero,
In your own words Bartleby, Study, etc.

e Can't use theorems or definitions
not from this course

26

Honesty Policy

* 15t offense: zero on problem
« 2nd offense: zero on hw, reported to school
« 314 offense+: F for course

Regret policy

* If you self-report an honesty violation, you’ll only
recelve a zero on the problem and we move on.

All Up to Date Course Info

Survey, Schedule, Office Hours, HWs s, ...

See course website:

https://www.cs.umb.edu/~stchang/cs420/s23/

31

https://www.cs.umb.edu/~stchang/cs420/f20/index.html
https://www.cs.umb.edu/~stchang/cs420/f20/index.html
https://www.cs.umb.edu/~stchang/cs420/f20/index.html
https://www.cs.umb.edu/~stchang/cs420/f20/index.html

last Tiee: The Theory of Computation ...

Formally defines mathematical models of computation -l

In order to:

1. Make predictions (about computer programs)

e |f possib[e function(x, y, z, n) {
if n > 2 & XAn + yAn == zAn_{

AT e eI Fermat’s Last Theorem
} (unknown for ~350 years,
solved in 1990s)

¥
2. Compare the models to each other

« Java vs Python? The “same”?

3. Explore the limits of computation
« What programs cannot be written?

last Tire: COMputation = Programs!

import RP1.GPIO as GPIO

import time

import numpy as np
{ import cv2

import os
. . isport satplib
Turing Machines o e e o
from email . MINEText import MIMEText
from email import [n‘(oders

grail_user

grail_pwd
i to 1

sensor .

GPI0. setmode (GP10.BCH)

Linear bounded Automata 1 o, 0.3, .0

More powerful
More complex
case Cut:rcntStau: is LeSS restricted
Push-down Automata e e e o
INFA machine containes 11 total states Vﬁ‘lsk{lh‘ <« “"L‘tili StariCnt <= 13 | | e =
else Nex(State « idle; _—
Lesson 3 - Runtime Parser :"d if’;‘l L;:::(":lq
when wail = *

W
if (cnt = n) then

Reading expression "3+5*7"

Nf:nTerm):_nal E i LJ:. B C:f:l 1 Finite State ;:; ihrl:e.\lh‘tule g4 i';::;T ',,m;o.‘
.. . Automata ?(_:;lS[alc <« idle; nm\.'
Intuition for this course: ,

NextState <= ready; end <= 1;

- A model of computation defines a class of machines (each box)
- Think of: a class of machines = a “Programming Language”!
- Think of: a single machine instance = a “Program”!

Last Tie: COMpuUtation = Programs!

Very important Note: | use the “programs” and

“programming language” analogy to helpyou [

understand CS420 formal concepts, by connecting
them to real-world ideas you've seen before |

s TIEAr DOUTIET AUTOITATA s
]

But don't get confused: This course does not prrove

pre complex

I formally study or define this connection to =i
S e “programs” and “programming languages

\\\\\

Finite State '
Automata ‘

Intuition for this course:

- A model of comp
- Think of: a class
- Think of: a single

In fact, the term language will formally
mean somethlng else (later)

last Tire: MOdels of Computation Hierarchy

Turing Machines

Linear bounded Automata

More powerful
More complex
Less restricted

Push-down Automata

We’'ll start here ...

36

Finite Automata: “Simple” Computation / “Programs”

B2 HHREE
Us'BAEAA

37

Qulz Preview

The formal definition of a finite (state) automata (FSM)
* has how many components?

« s what kind of mathematical object?

Finite Automata

« A finite automata or finite state machine (FSM) ...

e ..computes with a finite number of states

A Microwave Finite Automata

Inputs change states
(possibly)

press stop press start

é press start é
press stop

States

Finite Automata: Not Just for Microwaves

State pattern

From Wikipedia, the free encyclopedia

The state pattern is a behavioral software design pattern that allows an object to alter its behavior when its internal
state changes. This pattern is close to the concept of finite-state machines. The state pattern can be interpreted as a
strategy pattern, which is able to switch a strategy through invocations of methods defined in the pattern's interface.

Finite Automata:

acommon——__
programming pattern

(More powerful) Computation Simulating
other (weaker) Computation
(@ common theme this semester)

41

Video Games Love Finite Automata

@ Unity Documentation

State Machine Basics

The basic idea is that a character is engaged in some particular kind of action at any given time. The actions available will depend
on the type of gameplay but typical actions include things like idling, walking, running, jumping, etc. These actions are referred to as
states, in the sense that the character is in a “state” where it is walking, idling or whatever. In general, the character will have
restrictions on the next state it can go to rather than being able to switch immediately from any state to any other. For example, a
running jump can only be taken when the character is already running and not when it is at a standstill, so it should never switch
straight from the idle state to the running jump state. The options for the next state that a character can enter from its current state
are referred to as state transitions. Taken together, the set of states, the set of transitions and the variable to remember the current
state form a state machine.

The states and transitions of a state machine can be represented using a graph diagram, where the nodes represent the states and
the arcs (arrows between nodes) represent the transitions. You can think of the current state as being a marker or highlight that is
placed on one of the nodes and can then only jump to another node along one of the arrows.

/ Running Jump
Fall \

Idle X Run

\ Walk /

Standing Jump

A

Finite Automata 1n Video Games

H ValveSoftware / halflife G

<> Code (D) Issues 1.6k {1 Pull requests 23 () Actions [Projects [wiki C

5d761709a3 ~ halflife / game_shared / bot / simple_state_machine.h

Alfred Reynolds initial seed of Half-Life 1 SDK

A2 0 contributors

85 lines (67 sloc) 2.15 KB

// simple state machine.h
// Simple finite state machine el capsulation
// Author: Michael S. Booth (mike@turtlerockstudios.com), November 2003

#ifndef SIMPLE_STATE MACHINE H_
#define STMPLE_STATE_MACHINE H_

JE*
* Encapsulation of a finite-state-machine state
*/

template < typename T >

class SimpleState

r

45

Model-view-controller (MVC) is an FSM

(MODEL 4\
States
UPDATES MANIPULATES Inputs Change States
VIEW CONTROLLER
: N5 /!
The View draws states R &
N\ /

A Finite Automata, as a “Program”

« A very limited “program” that uses finite memory
 Actually, only 1 “cell” of memory!
« States = the possible things that can be written to memory

* Finite Automata has different representations:

« Code (wont use in this class)
»>State diagrams

Finite Automata state diagram

Accept State
1
1 0
O O=0
Start State " ™ Inputs cause state transitions

States

A Finite Automata = a “Program”

« Avery limited program with finite memory
 Actually, only 1 “cell” of memory!
 States = the possible things that can be written to memory

 Finite Automata has different representations:
* Code
 State diagrams
»Formal mathematical description

49

Finite Automata: The Formal Definition

24 5 components

DEFINITION
A finite automaton is a 5-tuple (Q, X, 0, qo, F'), where

1. () is a finite set called the states,

2. 3 1s a finite set called the alphabet,

3. 0: Q X X—(Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

Sets and Sequences

= Both are: mathematical objects that group other objects
= Members of the group are called elements

= Can be: empty, finite, or infinite

= Can contain: other sets or sequences

Sets Sequences

* Unordered * Ordered

« Duplicates not allowed « Duplicates ok

« Common notation: { } « Common notation: (), or just commas
« “Empty set” denoted: @ or { } * “Empty sequence”: ()

- A language is a (possibly infinite) A tuple is a finite sequence

set of strings » A string is a finite sequence of characters

Set

or

Sequence,?

A function is ...

set

DEFINITION

nite automaton is a 5-tuple (Q, X, 9, qo, F),Aﬁlﬁ:

Set of pairs
(domain)

310"

Don’t know!
(states can be
anything)

s

.. a set of pairs
(15t of each pair from domain, 2" from range)

..can write it in many
ways: as a mapping, a

table, ...

sequence

() is a finite set called the states,
is a finite set called the alphabet,<— set

0: Q xX—0Q &f}wt*mfon function,
qo € Q is the start state, and Set (range)
F C Q) is the set of accept states.

\ set

A pair is ... H a sequence of 2 elements

53

Finite Automata: The Formal Definition

24 5 components

DEFINITION
A finite automaton is a 5-tuple (Q, X, 9, qo, F'), where

1. () is a finite set called the states,

2. 3 1s a finite set called the alphabet,

3. 0: Q X X—(Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

DEFINITION
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where

1. Q is a finite set called the states,

2. 3 is a finite set called the alphabet,

3. 0: Q x X—Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

Example: as state diagram

Example: as formal description

DEFINITION
A finite automaton is a S-tuple (Q, 3, 6, qo, F'), where My = (Q, 2, (53 g1, F), where

1. @ is a finite set called the states, 1 -
Note: o —
2. Y 1s a finite set called the alpbabet, | Notthe same @ Q {(h 425 43 }’

3. 0: Q x X—Q is the transition function, 2.2 = {031}7 braces -
4. qo € Q is the start state, and 2 B dlemeehed e (Setdnof’atlon)
5. F C Q is the set of accept states. no duplicates
0 1
0 1 q1 [91 42
‘ g2 | 93 g2
1 43 | 42 g2,
q1 , -- ‘
@ 1 4. ¢ 1s the start state, and

0 5. F = {g).

Example: as state diagram

56

Example: as form ription
DEFINITION ample: as formal descrip

A finite automaton is a S-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (53 g1, F), where

1. @) is a finite set called the states, 1 _
2. 3 is a finite set called the alphabet,) Q {Ql 92, 43 }’ . .
3. 0: Q x X—Q is the transition function, 2. Y = {O,]—}, Possible inputs
4. qo € Q is the start state, and 3. §is described as
5. F C Q is the set of accept states.
0 1
Ill 1 d1 | 91 q2
‘ g2 | 43 42
1 43 | 42 42,
. 4. ¢, 1s the start state, and

1
0 5. F = {g).

Example: as state diagram

57

Example: as formal description

DEFINITION
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (53 g1, F), where
1. Q is a finite set called the states, 1 _
2. Y is a finite set called the alphabet, | Q {Ql » 42, 43 }’
3. 0: Q x X—Q is the transition function, 2. X = {O,]—},
4. qo € Q is the start state, and : g —
0 €& 3. disdescribed as [y Gthicis next
5. F C Q is the set of accept states. : ”
0 1 Input symbol
0 - q1 [91 42 :
“If in this “Then go to
state” Q2 | 43 92 this state”
43 | 92 42,
q1 .
4. ¢, 1s the start state, and
5. F = {g}.

Example: as state diagram

Example: as form ription
DEFINITION ample: as formal descrip

A finite automaton is a S-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (53 g1, F), where

1. Q is a finite set called the states, 1 _
2. 3 is a finite set called the alphabet,) Q {Ql 42, 43 }’
3. 0: Q x X—Q is the transition function, 2. X = {071},
4. qo € Q is the start state, and 3. § is described as
5. F C Q is the set of accept states.
o) 1
0 1 q1 [91 42
‘ g2 | 43 G2
1 43 | 42 42,
. 4. ¢, 1s the start state, and

1
0 5. F = {go).

Example: as state diagram

Example: as form ription
DEFINITION ample: as formal descrip

A finite automaton is a S-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (53 g1, F), where

1. Q is a finite set called the states, 1 _
2. 3 is a finite set called the alphabet,) Q {Ql 42, 43 }’
3. 0: Q x X—Q is the transition function, 2. Y = {071},
4. qo € Q is the start state, and 3. § is described as
5. F C Q is the set of accept states.
O 1
0 q1 | 91 g2
q2 | 43 Q2
1 43 | 92 42,
q1 :
4. ¢ 1s the start state, and

5. F = {QQ}.

Example: as state diagram

Example: as formal description

DEFINITION
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (53 g1, F), where
1. Q is a finite set called the states, 1 _
2. 3 is a finite set called the alphabet,) Q {Ql 42, 43 }’
3. 0: Q x X—Q is the transition function, 2. Y = {0,1},
4. qo € Q is the start state, and 3. §is described as
5. F C Q is the set of accept states.
0 1
A “Program” — a |l g ¢
A “Programming Language” g2 | g3 g2

43 | 42 42,
4. ¢ 1s the start state, and

Remember: this is just way to help your intuition

But these are not formal terms.

Don’t get confused 5. F = {QQ}.
Programming Analogy

In-class Exercise

Come up with a formal description of the following machine:

DEFINITION
A finite automaton is a S-tuple (Q, X, 0, qo, F'), where

1. Q is a finite set called the states,

2. Y is a finite set called the alphabet,

3. 0: Q X X—Q is the transition function,
4. qo € Q) is the start state, and

5. F C Q is the set of accept states.

In-class Exercise: solution

* Q:{q']’ C|2, q3} M = (Q26 q[]:F)

¥={a,b}

°* 0
* 6(gl,a)=q2
* 5(q1,b)=q
* 5(g2,a)=93
* 6(g2,b)=g3
* 5(g3,a)=q2
* 5(qg3,b)=q1

* qo=1Q1

+ F={q2)

A Computation Model Is ... (from lecture 1)

« Some base definitions and axioms ...

DEFINITION

A finite automaton is a 5-tuple (Q, %, 6§, qo, F'), where

1. @ is a finite set called the states,

2. Y 1s a finite set called the alpbabet,

3. 0: Q x ¥—Q is the transition function,
4. qo € Q is the start state, and

5. F C Q) is the set of accept states.

« And rules that use the definitions ...

Computation with FSMS (JFLAP demo)

|
 FSM: >° 1 e

 Input: “1101"

FSM Computation Model

Informally

« Program = a finite automata
 Input = string of chars, eg “1101”

To run a program:
e Start in “start state”

* Repeat:

 Read 1 char;
« Change state according to the transition table

e Result =
« “Accept” if last state is “Accept” state
« “Reject” otherwise

Formally (i.e., mathematically)

- M = (Q72757QO7F)

e W — W1W2 * - Wn

* 5(T7;,’LUZ'+1) = Ti+1, for ¢ = O,...,“n,— 1

Let's come up with nicer notation to represent this part

* M accepts w if

sequence of states 1o, 71, .., 7, In\Q) exists . ..

Still a little verbose with r, € F

Check-in Quiz 1/25

On gradescope

