CS420 Computing With Finite Automata

Monday, January 30, 2023 UMass Boston Computer Science

Announcements

- HW 0
 - due Tue 1/31 11:59pm EST
- HW 1
 - released Wed
- Please ask all HW questions on Piazza!
 - So all course staff can see,
 - and entire class can benefit
 - Do not email course staff with HW questions

Last Time: Finite Automata Formal Definition

DEFINITION

deterministic

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

Also called a **Deterministic Finite Automata (DFA)**

(will be important later)

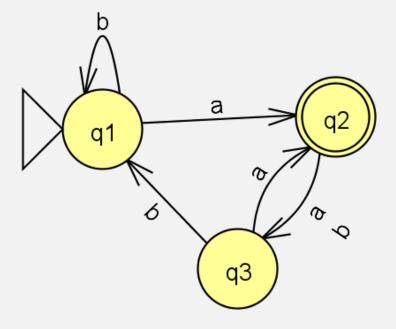
In-class Exercise

Come up with a formal description of the following machine:

DEFINITION

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.



In-class Exercise: solution

•
$$Q = \{q1, q2, q3\}$$

•
$$\Sigma = \{ a, b \}$$

δ

•
$$\delta(q1, a) = q2$$

•
$$\delta(q1, b) = q1$$

•
$$\delta(q2, a) = q3$$

•
$$\delta(q2, b) = q3$$

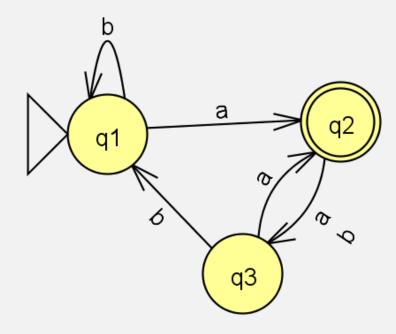
•
$$\delta(q3, a) = q2$$

•
$$\delta(q3, b) = q1$$

•
$$q_0 = q1$$

•
$$F = \{q2\}$$

$$M = (Q, \Sigma, \delta, q_0, F)$$



Quiz Preview

- 1. Which are possible inputs to an FSM computation?
- 2. Which are possible results of running an FSM computation?
- 3. In CS 420, what kind of mathematical object is a language?

A Computation Model is ... (from lecture 1)

Some base definitions and axioms ...

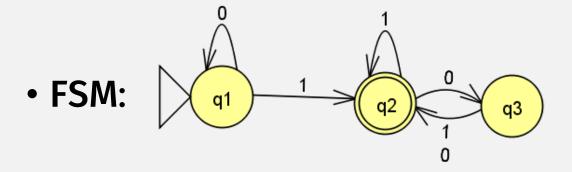
DEFINITION

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

• And rules that use the definitions ...

Computation with FSMs (JFLAP demo)



• Input: "1101"

FSM Computation Rules

HINT: to better understand the math, always work out concrete examples

Informally

- <u>Computation</u> = "Program" = a finite automata
- Input = string of chars, e.g. "1101"

To run a computation / "program":

- Start in "start state"
- Repeat:
 - Read 1 char;
 - <u>Change</u> state according to the <u>transition</u> table
- Result =
 - Accept if last state is "Accept" state
 - Reject otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

Define variables r_0 , ..., r_n , representing sequence of states in the computation

- $r_0 = q_0$ e.g., i=1, $r_1 = \delta(r_0, w_1)$ $r_2 = \delta(r_1, w_2)$...
- $r_i = \delta(r_{i-1}, w_i)$, for i = 1, ..., n

Let's come up with **nicer notation** to represent this part

• M accepts w if sequence of states r_0, r_1, \ldots, r_n in Q exists ...

This is still a little verbose / informal with $r_n \in F_1$

An Extended Transition Function

set of pairs

* = "0 or more"

Define extended transition function:

- Domain:
 - Beginning state $q \in Q$ (not necessarily the start state)
 - Input string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range:
 - Ending state (not necessarily an accept state)

(Defined recursively)

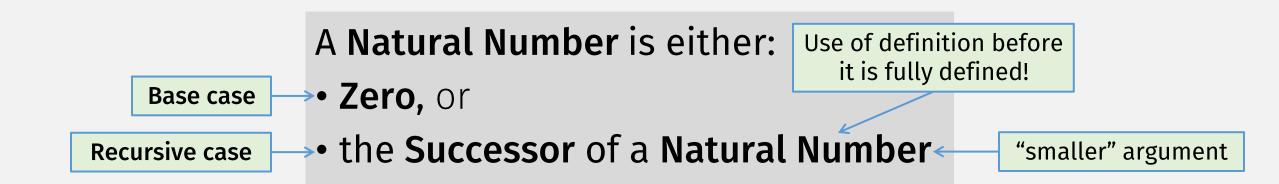
• <u>Base</u> case: ...

 Σ^* = set of all strings!

Recursive Definitions

- Why is this <u>allowed</u>?
 - It's a "feature" (i.e., an axiom!) of the programming language
- Why does this "work"? (Why doesn't it loop forever?)
 - Because the recursive call always has a "smaller" argument ...
 - ... and so eventually reaches the base case and stops

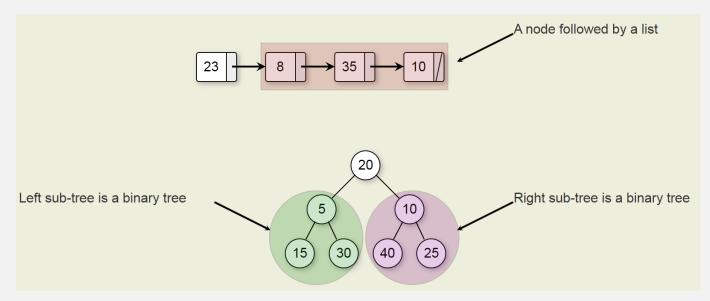
Recursive Definitions



Examples

- Zero
- Successor of Zero (= "one")
- Successor of Successor of Zero (= "two")
- Successor of Successor of Successor of Zero (= "three") ...

Recursive Definitions



Recursive definitions have:

- base case and
- <u>recursive case</u> (with a "smaller" object)

```
/* Linked list Node*/
class Node {
   int data;
   Node next;
}
```

This is a <u>recursive definition</u>:

Node is used before it is fully defined (but must be "smaller")

An Extended Transition Function

Define **extended transition function**:

$$\hat{\delta}: Q \times \Sigma^* \to Q$$

- Domain:
 - Beginning state $q \in Q$ (not necessarily the start state)
 - Input string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range:
 - Ending state (not necessarily an accept state)

(Defined recursively)

Empty string

• Base case: $\hat{\delta}(q,\varepsilon)=q$ nonEmpty string First char

Remaining chars ("smaller argument")

• Recursive case: $\hat{\delta}(q,w) = \hat{\delta}(\delta(q,w_1), w_2 \cdots w_n)$

Recursive cal

Single transition step

FSM Computation Model

Informally

- "Program" = a finite automata
- Input = string of chars, e.g. "1101"

To run a "program":

- Start in "start state"
- Repeat:
 - Read 1 char;
 - <u>Change</u> state according to the <u>transition</u> table
- Result =
 - "Accept" if last state is "Accept" state
 - "Reject" otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

- $r_0 = q_0$
- $r_i = \delta(r_{i-1}, w_i)$, for i = 1, ..., n

Let's come up with **nicer notation** to represent this part

• M accepts w if sequence of states r_0, r_1, \ldots, r_n in Q exists \ldots with $r_n \in F_{_{82}}$

FSM Computation Model

Informally

- "Program" = a finite automata
- Input = string of chars, e.g. "1101"

To run a "program":

- Start in "start state"
- Repeat:
 - Read 1 char;
 - <u>Change</u> state according to the <u>transition</u> table
- Result =
 - "Accept" if last state is "Accept" state
 - "Reject" otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

- $r_0 = q_0$
- $r_i = \delta(r_{i-1}, w_i)$, for i = 1, ..., n

• M accepts w if $\hat{\delta}(q_0, w) \in F$ sequence of states r_0, r_1, \dots, r_n in Q exists \dots with $r_n \in F$

Definition of Accepting Computations

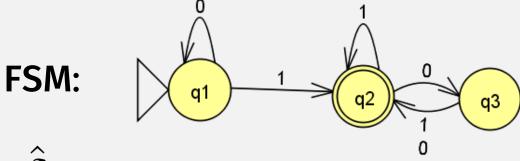
An accepting computation, for FSM $M = (Q, \Sigma, \delta, q_0, F)$ and string w:

- 1. starts in the start state q_0
- 2. goes through a valid sequence of states according to δ
 - this implies that all $w_i \in \Sigma$
- 3. ends in an accept state

All 3 must be true for a computation to be an accepting computation!

M accepts w if $\hat{\delta}(q_0, w) \in F$

Accepting Computation or Not?



- $oldsymbol{\cdot}\hat{\delta}$ (q1, 1101)
- $\cdot \hat{\delta}$ (q1, 110)
 - No (doesn't end in accept state)
- $\cdot\delta$ (q2, 101)
 - No (doesn't start in start state)
- $\cdot \hat{\delta}$ (q1, 123)
 - No (doesn't follow delta transition function)

Alphabets, Strings, Languages

An alphabet is a non-empty finite set of symbols

$$\Sigma_1 = \{\texttt{0,1}\}$$

$$\Sigma_2 = \{\texttt{a},\texttt{b},\texttt{c},\texttt{d},\texttt{e},\texttt{f},\texttt{g},\texttt{h},\texttt{i},\texttt{j},\texttt{k},\texttt{l},\texttt{m},\texttt{n},\texttt{o},\texttt{p},\texttt{q},\texttt{r},\texttt{s},\texttt{t},\texttt{u},\texttt{v},\texttt{w},\texttt{x},\texttt{y},\texttt{z}\}$$

• A **string** is a <u>finite</u> <u>sequence</u> of symbols from an alphabet

01001 abracadabra

 ε Empty string (length 0)

A language is a <u>set</u> of strings

$$A = \{\texttt{good}, \texttt{bad}\}$$
 $\emptyset \quad \{\ \}$

Empty set is a language

 $A = \{w | w \text{ contains at least one 1 and }$

an even number of 0s follow the last 1}

"the set of all ..."

"such that ..."

Languages can be infinite

Computation and Languages

The language of a machine is the set of all strings that it accepts

• E.g., An **FSM** M accepts w if $\hat{\delta}(q_0,w) \in F$

• Language of $M = L(M) = \{w \mid M \text{ accepts } w\}$

"the set of all ..."

"such that ..."

Language Terminology

• M accepts $w \leftarrow ----$ string

• M recognizes language A Set of strings $\text{if } A = \{w | \ M \text{ accepts } w \}$

Computation and Classes of Languages

- The language of a machine is the set of all strings that it accepts
- A computation model is equivalent to the set of machines it defines
- E.g., all possible FSMs are a computation model
- Thus: a computation model is also equivalent to a set of languages

Regular Languages: Definition

If a finite automaton (FSM) <u>recognizes</u> a language, then that language is called a **regular language**.

A *language* is a set of strings.

M recognizes language A if $A = \{w | M \text{ accepts } w\}$

A Language, Regular or Not?

- If given: a Finite Automaton M
 - We know: L(M), the language recognized by M, is a regular language

If a finite automaton (FSM) <u>recognizes</u> a language, then that language is called a <u>regular language</u>.

(modus ponens)

- If given: a Language A
 - Is A is a regular language?
 - Not necessarily!
 - How do we determine, i.e., prove, that A is a regular language?

An Inference Rule: Modus Ponens

Premises

- If P then Q
- P is true

Conclusion

Q must also be true

Example Premises

- If there is an FSM recognizing language A, then A is a regular language
- There is an FSM M where L(M) = A

Conclusion

• A is a regular language!

A Language, Regular or Not?

- If given: a Finite Automaton M
 - We know: L(M), the language recognized by M, is a regular language

If a finite automaton (FSM) <u>recognizes</u> a language, then that language is called a <u>regular language</u>.

- If given: a Language A
 - Is A is a regular language?
 - Not necessarily!
 - How do we determine, i.e., *prove*, that *A* is a regular language?

Create an FSM recognizing A!

Designing Finite Automata: Tips

- Input is read only once, one char at a time
- Must decide accept/reject after that
- States = the machine's **memory**!
 - # states must be decided in advance
 - Think about what information must be remembered.
- Every state/symbol pair must have a transition (for DFAs)
- Come up with examples!

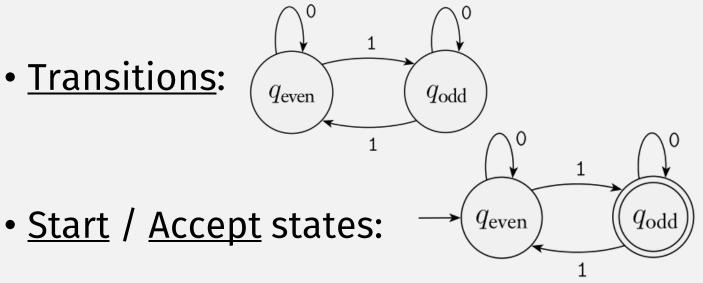
Design a DFA: accept strs with odd # 1s

- On input 1:
 - Accept
- On input 0:
 - Reject
- On input **01**:
 - Accept
- On input 11:
 - Reject
- On input 1101:
 - Accept
- On input ε
 - Reject

Design a DFA: accept strs with odd # 1s

- States:
 - 2 states:
 - seen even 1s so far
 - seen odds 1s so far

- Alphabet: 0 and 1
- Transitions:



In-class exercise

- Prove: the following language is a regular language:
 - $A = \{w \mid w \text{ has exactly three 1's}\}$
 - i.e., design a finite automata that recognizes it!
- Where $\Sigma = \{0, 1\}$,

• Remember:

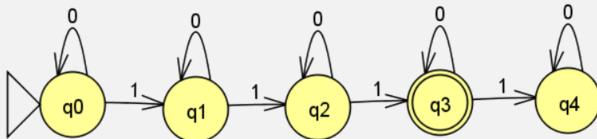
DEFINITION

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the *set of accept states*.

In-class exercise Solution

- Design finite automata recognizing:
 - {w | w has exactly three 1's}
- States:
 - Need one state to represent how many 1's seen so far
 - $Q = \{q_0, q_1, q_2, q_3, q_{4+}\}$
- Alphabet: $\Sigma = \{0, 1\}$
- Transitions:



So finite automata are used to <u>recognize simple</u> <u>string patterns</u>?

Yes!

Have you ever used a programming language feature to <u>recognize</u> <u>simple string patterns</u>?

- Start state:
 - q₀
- Accept states:
 - $\{q_3\}$

Check-in Quiz 1/30

On gradescope