CS420
Computing With Finite Automata

Monday, January 30, 2023
UMass Boston Computer Science

%/{/{0«/{0@#(@/{13’

 HW O
e due Tue 1/3111:59pm EST

e HW 1
* released Wed

 Please ask all HW questions on Piazza!
* So all course staff can see,
« and entire class can benefit
« Do not email course staff with HW questions

last Time: FINITEe Automata Formal Definition

DEFINITION
deterministic

A finite automaton is a 5-tuple (Q, X, 9, qo, F'), where

1. () is a finite set called the states,

2. 3 1s a finite set called the alphabet,

3. 0: Q X X—(Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

Also called a Deterministic Finite Automata (DFA)
(will be important later)

In-class Exercise

Come up with a formal description of the following machine:

DEFINITION
A finite automaton is a S-tuple (Q, X, 0, qo, F'), where

1. Q is a finite set called the states,

2. Y is a finite set called the alphabet,

3. 0: Q X X—Q is the transition function,
4. qo € Q) is the start state, and

5. F C Q is the set of accept states.

In-class Exercise: solution

* Q={CI1, g2, CI3} M = (QZ(S Q[}FF)

*2={ab}

0)
* 4(gl,a)=q2
- 5(q1,b) =q1
. 5(q2,2) = 3
* 0(g2,b)=q3
* 0(g3,a)=q2
* 0(g3,b)=q1l

* qo=q

* F={q2}

Quiz Preview

1. Which are possible inputs to an FSM computation?
2. Which are possible results of running an FSM computation?

3. In CS 420, what kind of mathematical object is a language?

A Computation Model Is ... (from lecture 1)

« Some base definitions and axioms ...

DEFINITION

A finite automaton is a 5-tuple (Q, %, 6§, qo, F'), where

1. @ is a finite set called the states,

2. Y 1s a finite set called the alpbabet,

3. 0: Q x ¥—Q is the transition function,
4. qo € Q is the start state, and

5. F C Q) is the set of accept states.

« And rules that use the definitions ...

Computation with FSMS (JFLAP demo)

|
 FSM: >° 1 e

* Input: “1101”

HINT: to better understand
the math, always work out

FSM Computation Rules concrete examples

Informally Formally (i.e, mathematically)

- Computation = “Program” = a finite automata M = (Q,%,6,q,F)
 Input = string of chars, eg “1101” « W = WiW3 *** Wy

_) i} Define variabtes ry, ..., r,, representing
To run a computation / “program”: sequence of states in the computation

« Start in “start state” ro = qo
eg,i=1,r =6{ry,wy) | | 1=0(r,wy) ..

T; :5(7“7;_1,11)7;), for ¢ = 1,...,n

* Repeat:

 Read 1 char;
« Change state according to the transition table

Let's come up with nicer notation to represent this part

* Result= . * M accepts w it
» Accept If last state Is “Accept” state : :
. Reject otherwise sequence of states 1, 71,...,7, In) exists . ..

This is still a little verbose / informal | with r,, € F

d: Q X ¥—Q is the transition function

An Extended Transition Function

set of pairs *="0 or more”
Define extended transition function: 0:Q XX —Q
 Domain:
« Beginning state ¢ €) (not necessarily the start state) X" = set of all strings!
* Input string w = wiws -+ Wy where w; € X
* Range:

- Ending state (not necessarily an accept state)
(Defined recursively)

e Base case: ...

Recursive Definitions

function factorial(n)

{

Base case if (0) Function is called before

o o
return 1: it is fully defined!

Recursive case else - -
Recursive call with

“smaller” argument

return factorial

« Why is this allowed?
e It's a “feature” (i.e,, an axiom!) of the programming language

« Why does this “work”? (why doesn't it loop forever?)
« Because the recursive call always has a “smaller” argument ...
e ... and so eventually reaches the base case and stops

Recursive Definitions

A Natural Number is either: | use of definition before
it is fully defined!
Base case e Zero, Or

Recursive case e the Successor of a Natural Number “smaller” argument

Examples

« Zero

 Successor of Zero (= “one”)

» Successor of Successor of Zero (= “two”)

« Successor of Successor of Successor of Zero (= “three”) ...

Recursive Definitions

A node followed by a list

S IEE]
Left sub-tree is a binary tree \ o @ /Right sub-tree is a binary tree

Recursive definitions have: - This is a recursive definition:
2 > Node is used before it is fully

- base case and)
- recursive case data; > defined (but must be “smaller”)
Node next;

(with a “smaller” object)

d: Q X ¥—Q is the transition function
An Extended Transition Function

Define extended transition function: 0:Q XX —Q
 Domain:
+ Beginning state ¢ €) (not necessarily the start state)
* Inputstring w = wiws - -+ Wy where w; € X
* Range:

 Ending state (not necessarily an accept state)

(Defined recursively)
Empty string

e Base case: 5 g‘ — : Remaining chars
LA =1 ((Ja) q nonEmpty string | First char (“smaller argument”)

e Recursive case: 5((]7?1)) — 5(5((]7’1111)7’11)2 e wn)

Recursive call Single transition step

FSM Computation Model

Informally Formally (i.e, mathematically)
« “Program” = a finite automata M = (Q’ >3, 0, qo, F)

 Input = string of chars, eg “1101” e W = WiW3 -+ Wy

To run a “program’:

« Start in “start state” * 70 = qo
* Repeat: - TZ':5(7“7;_1,w?;),f01”i:1,...,n

 Read 1 char;

« Change state according to the transition table

Let's come up with nicer notation to represent this part

* Result= . * M accepts w it
« “Accept” If last state Is “Accept” state : :
. “Reject” otherwise sequence of states 1, 71,...,7, In) exists . ..

with r,, € F82

FSM Computation Model

Informally Formally (i.e, mathematically)
- “Program” = a finite automata - M = (Q,X%,0,q0, F)
 Input = string of chars, eg “1101” « W = WiW3 *** Wy

To run a “program’:

« Start in “start state” * 70 = qo
* Repeat: - TZ':5(7“7;_1,w?;),f01”i:1,...,n

 Read 1 char;
« Change state according to the transition table

e Result =
« “Accept” if last state is “Accept” state

M accepts w it 8((]0,?1)) c F

. “Reject” otherwise sequence of states rg,r1,...,7, in () exists . ..

with r,, € F

Definition of Accepting Computations

An accepting computation, for FSM M =(Q, Z, 6, g,, F) and string w:
1. starts in the start state g,

2. goes through a valid sequence of states according to 6
e this implies that all w; € X

3. ends in an accept state

All 3 must be true for a computation
to be an accepting computation! X
M accepts w if d(qg,w) € F

Accepting Computation or Not?

.5 (q1,1101)

VIS

o 5 (q1,110)

_* No (doesn’t end in accept state)

.0 (g2, 101)

« No (doesn’t start in start state)

-5 (q1, 123)

« No (doesn’t follow delta transition function)

Alphabets, Strings, Languages

« An alphabet is a non-empty finite set of symbols
2 = {0,1}

22 — {a?b? Cﬂd'?e?f?g?h?i?j7k717m7n?07p7q3r7S7t7u7v?W7X?Y3z}

A string is a finite sequence of symbols from an alphabet

01001 abracadabra € Empty string (length 0)

A language is a set of strings Languages can be infinite
A = {good, bad} A = {w| w contains at least one 1 and

0 {} an even number of Os, follow the last 1}

Empty set is a language “the set of all ...” “such that ...”

Computation and Languages

« The language of a machine is the set of all strings that it accepts
* £.g, An FSM M accepts w it 5((]0, w) € F

e Language of M = L(M) = {w | M accepts w}

“the set of all ...” “such that...”

Language Terminology

* M accepts w string

* M recognizes langnage A Set of strings
it A = {w| M accepts w}

Computation and Classes of Languages

« The language of a machine is the set of all strings that it accepts

« A computation model is equivalent to the set of machines it defines

« £.g, all possible FSMs are a computation model

* Thus: a computation model is also equivalent to a set of languages

Regular Languages: Definition

f a finite automaton (FSM) recognizes a language,
then that language is called a regular language.

A language is a set of strings.

M recognizes language A
it A= {w| M accepts w}

A Language, Regular or Not?

e |f given: a Finite Automaton M
« We know: L(M), the language recognized by M, is a regular language

If a finite automaton (FSM) recognizes a language,
then that language is called a regular language.

(modus ponens)

e |If given: a Language A
* Is A is a regular language?
« Not necessarily!
« How do we determine, i.e,, prove, that A is a regular language?

An Inference Rule: Modus Ponens

Premises Example Premises
 If Pthen Q « |f there is an FSM recognizing language A4,
DS T then A Is a regular language

* There 1s an FSM M where L(M) = A

Conclusion Conclusion
e QO must also be true *A s aregular language!

A Language, Regular or Not?

« |f given: a Finite Automaton M
« We know: L(M), the language recognized by M, is a regular language

If a finite automaton (FSM) recognizes a language,
then that language is called a regular language.

e |f given: a Language A
* Is A is a regular language?
* Not necessarily!
« How do we determine, i.e,, prove, that A is a regular language?

Create an FSM recognizing A!

103

Designing Finite Automata: Tips
 Input is read only once, one char at a time

« Must decide accept/reject after that

- States = the machine’s memory!
e ## states must be decided in advance
e Think about what information must be remembered.

e Every state/symbol pair must have a transition (for DFASs)

« Come up with examples!

Design a DFA: accept strs with odd

« On Input 1:
« Accept

« On input O:
* Reject

« On input 01:
 Accept

« On input 11:
* Reject

« On input 1101:
 Accept

« On input ¢
* Reject

1s

Design a DFA: accept strs with odd

e States:

e 2 states:
e seen even 1s so far

e seen odds 1s so far

* Alphabet: @ and 1
0
A AY
. Transitions: @.@
1 O 1 O

- Start / Accept states: @.

1

1s

INn-class exercise

« Prove: the following language is a regular language:

* A={w | w has exactly three 1’s}
* |.e., design a finite automata that recognizes it!

« Where 3= {0, 1},

DEFINITION

A finite automaton is a S-tuple (Q, 3, 6, qo, F'), where

- Remember: 1. Q is a finite set called the states,

2. ¥ is a finite set called the alphabet,

3. 0: Q x X—Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

INn-class exercise Solution

Design finite automata recognizing:
* {w | w has exactly three 1’s}

States:
* Need one state to represent how many 1's seen so far

* Q=1{dp 91, 92 q3 Q4+}
Alphabet: £= {0, 1}

()

Transitions:

Start state:
o qO

Accept states:

* {93}

So finite automata are
used to recognize simple
string patterns?

Yes!

Have you ever used a
programming language
feature to recognize
simple string patterns?

()

Check-in Quiz 1/30

On gradescope

