CS420

Regular Languages
Wednesday, February 1, 2023
UMass Boston Computer Science

Turing Machines

Linear bounded Automata

%/{/{0«/{0@#{@/{&?

« HW O In
+ PyeFuesH3+1:59pmEST

* HW 1 out
* Due Tues 2/7 11:59pm EST

* Quiz preview:
Why do we know that a language is a regular language
If it has an FSM recognizing it?

M accepts w it S(QO,’IU) c F
last Tiee: COMpPuUtation and Languages

« The language of a machine is the set of all strings that it accepts

« A computation model is equivalent to the set of machines it defines
« E.g, all possible Finite State Automata are a computation model

DEFINITION
) _ Turing Machines
A finite automaton is a S-tuple (Q, X, d, qo, F'), where

1. Q is a finite set called the states,
2. ¥ is a finite set called the alpbabet, Linear bounded Automata
3. 0: Q x ¥X—Q is the transition function,
4. qo € Q is the start state, and

5. I C Q is the set of accept states.

Push-down Automata

« Thus: a computation model is also equivalent to a set of languages

last Time: Regular Languages: Definition

f a finite automaton (FSM) recognizes a language,

then that language is called a regular language.

A language is a set of strings.

M recognizes language A
it A= {w| M accepts w}

last Time: A LAaNguage, Regular or Not?

e |f given: a Finite Automaton M

« We know: L(M), the language recognized by M, is a regular language
* Because:

If a finite automaton (FSM) recognizes a language, | (and modus ponens)
then that language is called a regular language.

e |If given: a Language A
* |Is A a regular language?
« Not necessarily!
« How do we determine, i.e,, prove, that A is a regular language?

An Inference Rule: Modus Ponens

Premises
 [f Pthen Q

e Pis true

Conclusion
* QIS true

We know this
(definition of regular language)

Example Premises

« |f there is an FSM recognizes language 4,
then A Is a regular language

* There 1s an FSM M where L(M) = A

... then we need to show
Conclusion
« AIs aregular language!

If we want to
prove this ...

Proving a Language 1s Regular: Example

Prove that the following language is regular:

L={w|wis astring with an odd # of 1s}

$={0,1}

Proving a Language 1s Regular: Example

Statements Justifications

1. If an FSM recognizes L, 1. Def. of a Regular Language

then L is a regular language .

programming,

m)2. M=(Q,2 6 qyF)isan FSM (todo) 2. Definition of an FSM o0 S2ver

program does
what it is

m) 3. Mrecognizes L 3. Thisis hard problem! supposed to do?
In this class, we use tests.

4. L={w]|wisstring with odd # of 1s} 4. Stmt #1 & #3 (modus ponens)
Is a regular language

Tips on Designing Finite Automata

m In programming, to
Finite Automata ~ “Programs” s “understand” a problem,
Designing Finite Automata ~ “Programming”! create examples!

1. Confirm understanding of the problem
- Create tests: examples and expected results (accept / reject)

FSM M Examples: accept strs with odd

« On Input 1:
« Accept

« On input O:
* Reject

« On input 01:
 Accept

« On input 11:
* Reject

« On input 1101:
 Accept

« On input ¢
* Reject

1s

Tips on Designing Finite Automata

Analogy

Finite Automata ~ “Programs” &
Designing Finite Automata ~ “Programming

”
!

1. Confirm understanding of the problem
- Create tests: examples and expected results (accept / reject)

2. Decide information to “remember”
* These are the machine states: some are accept states; one is start state

3. Determine transitions between states

Designing FSM M: accept strs with odd

e States:

e 2 states:
e seen even 1s so far

e seen odds 1s so far

* Alphabet: @ and 1
0
A AY
. Transitions: @.@
1 O 1 O

- Start / Accept states: @.

1

1s

Tips on Designing Finite Automata

Analogy
Finite Automata ~ “Programs” &

Designing Finite Automata ~ “Programming

”
!

1. Confirm understanding of the problem
- Create tests: examples and expected results (accept / reject)

2. Decide information to “remember”
« These are the machine states: some are accept states; one is start state

3. Determine transitions between states

4. Test machine behaves as expected
« Use Initial examples; and create additional tests If needed

128

Does the Machine Accept Expected Strings?

« On input 1: %

- Accept

« On input O:

* Reject

« On input 01:

* Accept

* On Input 11:

* Reject

* On input 1101:

* Accept

* On input ¢

* Reject

Proving a Language 1s Regular: Example

Statements Justifications

1. If an FSM recognizes L, 1. Def. of a Regular Language
then L is a regular language

ALY
2. M= —» is an FSM 2. Definition of an FSM

3. Mrecognizes L 3. See examples. This isn't a proof, but
good enough for programmers(?), and CS 420

4. L={w]|wisstring with odd # of 1s} 4. Stmt #1 & #3 (modus ponens)
is a regular language B

INn-class exercise

 Prove: the following language Is a regular language:
* A={w | w has exactly three 1’s}
« Key step: design a finite automata that recognizes it!

Come up with examples first!

* Where £ ={0, 1}

DEFINITION

A finite automaton is a S-tuple (Q, 3, 6, qo, F'), where

- Remember: 1. Q is a finite set called the states,

2. ¥ is a finite set called the alphabet,

3. 0: Q x X—Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

INn-class exercise Solution

Design finite automata recognizing:

So finite automata are
used to recognize simple

* {w | w has exactly three 1’s} string patterns?

States:

Yes!

* Need one state to represent how many 1's seen so far
* @ =1{do 91, 92, 3 4} Do you know a

Alphabet: £= {0, 1}

Transitions:

Start state:
o qO

Accept states:

* {93}

“programming
language” to recognize
simple string patterns?

Make sure to test this with your examples!

S fa~ FInite State Automaton, aka. DFAS

deterministic

A finite automaton is a 5-tuple (Q, X, 0, qo, F'), where

1. @ is a,/finite set called the states,

2. ¥ is/a finite set called the alphabet,

3. 0:/Q) x X— Q@ is the transition ﬁmction,l
4. go € Q is the start state, and

5/ F C Q is the set of accept states.

 Key charactetistic:
e Has a finite number of states

- le, a “program” with access to only a single cell of memory,
« Where: states = the possible values that can be written to memory

- Often used for text matching ™~)" "w() "o

Combining DFAS?

Password Requirements

A DFA

» Passwords must have a minimum length of ten (10) characters - but more is better!

» Passwords must include at least 3 different types of characters:
» upper-case letters (A-Z) <— DFA

DFA —»~|ower-case letters (a-z)
» symbols or special characters (%, &, *, $, etc.) <— DFA

» numbers (0-9) «— DFA

» Passwords cannot contain all or part of your email address<— DFA

» Passwords cannot be re-used < DFA

https://www.umb.edu/it/password

To match all requirements, combine
smaller DFAsS into one b|g DFA? (We do this with programs all the time)

139

https://www.umb.edu/it/password

Password Checker DFAs

What if this
Is not a DFA?

Mc: AND

OR

M,: Check special chars

M,: Check uppercase

Want to be able to
easily combine DFAs,
l.e., composability

M,: Check length

We want these operations:
OR : DFA X DFA — ,DFA

v

AND : DFA X DFA — DFA

To combine more than once,
operations must be closed!

142

“Closed” Operations

» Set of Natural numbers ={0, 1, 2, ...}

« Closed under addition:
« if xand y are Natural numbers,
« thenz=x+yisa Natural number

 Closed under multiplication?
* yes

e Closed under subtraction?
° NnNo

* Integers ={..,-2,-1,0,1, 2, ...}
 Closed under addition and multiplication
 Closed under subtraction?
* yes
 Closed under division?
° no

A set is closed under an operation if:
the result of applying the operation to
members of the set is in the same set

« Rational numbers = {x| x=y/z y and z are Integers}

e Closed under division?
e No?
e Yes ifz!=0

143

Why Care About Closed Ops on Reg Langs?

 Closed operations preserve “regularness”
e |.e, It preserves the same computation model!

* This way, a “combined” machine can be “combined” again!

We want:
OR, AND : DFA X DFA —» DFA

* So this semester, we will look for operations that are closed!

Password Checker: “OR” = “Union”

M;: OR
M,: Check special chars

M,: Check uppercase

146

Password Checker: “OR” = “Union”

A B

M;: Check special chars @

(a)

M,: Check uppercase

147

Union: AUB ={z|z € Aorz € B}

Union of Languages

Let the alphabet 3 be the standard 26 letters {a, b, ..., z}.
If A = {good,bad} and B = {boy, girl}, then

AU B = {good, bad, boy, girl}

Check-in Quiz 2/1

On gradescope

