CS420 Combining Automata & Closed Operations

Monday, February 6, 2023

UMass Boston Computer Science

Announcements

- HW 1
 - Due Tue 2/7 11:59pm EST

Quiz Preview

- To prove the statement:
 - "The set of regular languages is closed under the union operation"
- What is the equivalent IF-THEN statement to prove?

Last Time: Proving a Language is Regular

Statements

- 1. If an FSM recognizes *L*, then *L* is a regular language
- 3. M recognizes L

Justifications

1. Def. of a Regular Language

- 2. Definition of an FSM
- 3. See examples. This isn't a proof, but good enough for programmers(?), and CS 420
- 4. $L = \{ w \mid w \text{ is string with odd } \# \text{ of 1s} \}$ 4. Stmt # 1 & # 3 (modus ponens) is a regular language

this FSM!

Last Time: Tips on Designing Finite Automata

Analogy Finite Automata ~ "Programs" :: Designing Finite Automata ~ "Programming"!

- 1. <u>Confirm understanding</u> of the problem
 - Create tests: example inputs vs expected results (accept / reject)
- 2. Decide information that machine "remembers"
 - These are the machine states: some are accept states; one is start state
- 3. Determine <u>transitions</u> between states
- 4. Test machine behaves as expected
 - Use initial examples; and create additional tests if needed

Last Time: Combining DFAs?

To match <u>all</u> requirements, <u>combine</u> smaller DFAs into one big DFA?

https://www.umb.edu/it/password

(We do this with programs all the time)

Password Checker DFAs

What if this is not a DFA?

Want to be able to easily <u>combine</u> DFAs, i.e., <u>composability</u>

We want these operations:

 $OR : DFA \times DFA \rightarrow DFA$

 $AND: DFA \times DFA \rightarrow DFA$

To <u>combine more than once</u>, operations must be **closed**!

"Closed" Operations

- Set of Natural numbers = {0, 1, 2, ...}
 - <u>Closed</u> under addition:
 - if x and y are Natural numbers,
 - then z = x + y is a Natural number
 - Closed under multiplication?
 - yes
 - Closed under subtraction?
 - · no
- Integers = $\{..., -2, -1, 0, 1, 2, ...\}$
 - <u>Closed</u> under addition and multiplication
 - Closed under subtraction?
 - yes
 - · Closed under division?
 - · no
- Rational numbers = $\{x \mid x = y/z, y \text{ and } z \text{ are Integers}\}$
 - Closed under division?
 - No?
 - **Yes** if *z* !=0

A set is <u>closed</u> under an operation if: <u>result</u> of the operation <u>is in the same set</u> <u>as inputs</u> to the operation

We Want "Closed" Ops For Regular Langs!

- Set of Regular Languages = $\{L_1, L_2, ...\}$
 - Closed under ...?
 - OR (union)
 - AND (intersection)
 - ...

A set is <u>closed</u> under an operation if: <u>result</u> of the operation <u>is in the same set</u> <u>as inputs</u> to the operation

Why Care About Closed Ops on Reg Langs?

- Closed operations for regulars langs preserve "regularness"
- I.e., it preserves the same computation model!
- This allows "combining" smaller computation to get bigger ones:

For Example:

OR: Regular Lang × Regular Lang → Regular Lang

So this semester, we will look for operations that are closed!

Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}$

Union of Languages

Let the alphabet Σ be the standard 26 letters $\{a, b, \ldots, z\}$.

If
$$A = \{ good, bad \}$$
 and $B = \{ boy, girl \}$, then

$$A \cup B = \{ good, bad, boy, girl \}$$

In this course, we are interested in closed operations for a set of languages (here the set of regular languages)

(In general, a set is closed under an operation if applying the operation to members of the set produces a result in the same set)

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Or this (same) statement

Want to prove this statement

THEOREM -----

(In general, a set is closed under an operation if applying the operation to members of the set produces a result in the same set)

Want to prove this statement

Or this (same)

statement

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

A member of the set of regular languages is ...

... a regular language, which itself is a set (of strings) ...

... so the **operations** we're interested in are **set operations**

THEOREM

Want to prove this statement

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Or this (same) statement

Flashback: Mathematical Statements: IF-THEN

Using:

- If we know: $P \rightarrow Q$ is TRUE, what do we know about P and Q individually?
 - <u>Either P is FALSE</u> (<u>not too useful</u>, can't prove anything about Q), or
 - If P is TRUE, then Q is TRUE (modus ponens)

Proving:

Flashback: Mathematical Statements: IF-THEN

THEOREM

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

tQ), or

Proving:

Would have to prove there are <u>no</u> <u>regular languages</u> (impossible)

- To prove: $P \rightarrow Q$ is TRUE:
 - Prove *P* is FALSE (usually hard or impossible)
 - Assume P is TRUE, then prove Q is TRUE

p	q	p o q	
True	True	True	
True	False	False	
False	True	True	
False	False	True	
1/4			

Statements

Do we know anything about A_1 and A_2 ?

- 1. A_1 and A_2 are regular languages
- 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
- 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
- 4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$ (todo)
- 5. M recognizes $A_1 \cup A_2$ How to create this? Don't know what A_1 and A_2 are!
- 6. $A_1 \cup A_2$ is a regular language
- 7. The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Justifications

- 1. Assumption
- 2. Def of Regular Language
- 3. Def of Regular Language
- 4. Def of DFA
- 5. See examples
- 6. Def of Regular Language
- 7. From stmt #1 and #6

M_1 recognizes A_1

Regular language A_1 Regular language A_2

If we <u>don't know</u> what exactly these languages are, <u>we still know these facts</u>...

A language is called a *regular language* if some finite automaton recognizes it.

M_2

recognizes A_2

DEFINITION

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
, recognize A_1 , $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2 ,

<u>Proof</u>

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Want: *M* that can simultaneously be in both an M_1 and M_2 state
- Construct: $M = (Q, \Sigma, \delta, q_0, F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ • states of *M*: This set is the *Cartesian product* of sets Q_1 and Q_2

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, ¹
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

A state of *M* is a <u>pair</u>:

- the <u>first part</u> is a state of M_1 and
- the second part is a state of M₂

So the states of *M* is all possible combinations of the states of M_1 and M_2 183

<u>Proof</u>

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the **Cartesian product** of sets Q_1 and Q_2 • states of *M*:

A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where $a) = (\delta_1(r_1, a), \delta_2(r_2, a))$ A step in M is includes both:

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

- a step in M_1 , and
- a step in M_2

<u>Proof</u>

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2
- *M* transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- M start state: (q_1, q_2) Start state of M is both start states of M_1 and M_2

Proof

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2
- *M* transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- M start state: (q_1, q_2)

Accept if either M_1 or M_2 accept

Remember:
Accept states must
be subset of *Q*

• *M* accept states: $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

Another operation: Concatenation

Example: Recognizing street addresses

Concatenation of Languages

Let the alphabet Σ be the standard 26 letters $\{a, b, \ldots, z\}$.

If $A = \{ \text{good}, \text{bad} \}$ and $B = \{ \text{boy}, \text{girl} \}$, then

 $A \circ B = \{ goodboy, goodgirl, badboy, badgirl \}$

Is Concatenation Closed?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Construct a <u>new</u> machine M recognizing $A_1 \circ A_2$? (like union)
 - Using **DFA** M_1 (which recognizes A_1),
 - and **DFA** M_2 (which recognizes A_2)

 M_1

PROBLEM:

Can only read input once, can't backtrack

Let M_1 recognize A_1 , and M_2 recognize A_2 .

<u>Want</u>: Construction of *M* to recognize $A_1 \circ A_2$

Need to switch machines at some point, but when?

 M_2

Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ jen, jens \}$
- and M_2 recognize language $B = \{ smith \}$
- Want: Construct M to recognize $A \circ B = \{ jensmith, jenssmith \} \}$
- If *M* sees **jen** ...
- *M* must decide to either:

Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ jen, jens \}$
- and M_2 recognize language $B = \{ smith \} \}$
- Want: Construct M to recognize $A \circ B \neq \{$ jensmith, jenssmith $\}$
- If *M* sees **jen** ...
- M must decide to either:
 - stay in M_1 (correct, if full input is **jens smith**)

Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ jen, jens \}$
- and M_2 recognize language $B = \{$ smith $\}$
- Want: Construct M to recognize $A \circ B = \{ jensmith, jenssmith \}$
- If *M* sees **jen** ...

A **DFA** can't do this!

- *M* must decide to either:
 - stay in M_1 (correct, if full input is jenssmith)
 - or switch to M_2 (correct, if full input is **jensmith**)
- But to recognize $A \circ B$, it needs to handle both cases!!
 - Without backtracking

Is Concatenation Closed?

FALSE?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Cannot combine A₁ and A₂'s machine because:
 - Need to switch from A_1 to A_2 at some point ...
 - ... but we don't know when! (we can only read input once)
- This requires a <u>new kind of machine!</u>
- But does this mean concatenation is not closed for regular langs?

Nondeterminism

Deterministic vs Nondeterministic

Deterministic computation

Deterministic vs Nondeterministic

Finite Automata: The Formal Definition

DEFINITION

deterministic

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

Also called a **Deterministic Finite Automata (DFA)**

Precise Terminology is Important

- A finite automata or finite state machine (FSM) defines computation with a <u>finite</u> number of states
- There are many kinds of FSMs

- We've learned one kind, the Deterministic Finite Automata (DFA)
 - (So currently, the terms **DFA** and **FSM** refer to the same definition)
- We will learn <u>other kinds</u>, e.g., Nondeterministic Finite Automata (NFA)
- Be careful with terminology!

Nondeterministic Finite Automata (NFA)

DEFINITION

Compare with DFA:

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- 2. Σ is a finite alphabet,

1. Q is a finite set called the *states*,

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,

Difference

- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

Power set, i.e. a transition results in <u>set</u> of states

Power Sets

• A power set is the set of all subsets of a set

• Example: $S = \{a, b, c\}$

- Power set of *S* =
 - {{ }, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
 - Note: includes the empty set!

Nondeterministic Finite Automata (NFA)

DEFINITION

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- 2. Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and

Transition label can be "empty", accept states.

i.e., machine can transition
without reading input

$$\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$$

NFA Example

Come up with a formal description of the following NFA:

DEFINITION

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- **3.** $\delta \colon Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where

Empty transition

(no input read)

1.
$$Q = \{q_1, q_2, q_3, q_4\},\$$

- 2. $\Sigma = \{0,1\},\$
- 3. δ is given as

Result of transition is a set

4. q_1 is the start state, and

5.
$$F = \{q_4\}.$$

 $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$

Multiple 1 transitions

In-class Exercise

Come up with a formal description for the following NFA

• $\Sigma = \{ a, b \}$

DEFINITION

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- **3.** $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

In-class Exercise Solution

```
Let N = (Q, \Sigma, \delta, q_0, F)
                                         \delta(q_1, a) = \{\}
• Q = \{ q_1, q_2, q_3 \}
                                         \delta(q_1, b) = \{q_2\}
• \Sigma = \{ a, b \}
                                         \delta(q_1, \varepsilon) = \{q_3\}
                                         \delta(q_2, a) = \{q_2, q_3\}
                                     \rightarrow \delta(q_2, b) = \{q_3\}
• δ ... –
                                         \delta(q_2, \varepsilon) = \{\}
                                          \delta(q_3, a) = \{q_1\}
• q_0 = q_1
                                         \delta(q_3, b) = \{\}
• F = \{ q_1 \}
                                          \delta(q_3, \varepsilon) = \{\}
```

Next Time: Running Programs, NFAs (JFLAP demo): **010110**

Check-in Quiz 2/6

On gradescope