CS 420

Nondeterminism
Wednesday, February 8, 2023
UMass Boston Computer Science

Deterministic
computation

o Start

V= k‘\.k"\-k‘-\.k—\ VN
-nn L4

* accept or reject

Nondeterministic
computation

A
o)

* accept

%/{/{0«/{0@#{@/{&?

« HW 1 in
+dueFues 2711599 m-EST

* HW 2 out
e due Tues 2/14 11:59pm EST

last Tine: |S UnNion Closed For Regular Langs?

In this course, we are interested in (In general, 2 set is closed under an operation if
closed operations for a set of languages applying the operation to members of the set
(here the set of regular languages) =7 produces a result in the same set)
——— 'The class of regular languages is|closed/under the union operation.
ant to
prove this

statement

In other words, if A; and As are regular languages, so is A; U As.

Or this (same)
statement

last Tine: |S UnNion Closed For Regular Langs?

Want to
prove this
statement

THEOREM -

/v

In other words, if
Or this (same) /

statement

...................................... /Z‘

The class of regular languages is

applying the

(In general, a set is closed under an operation if

operation

to

members of the set

‘xget)

produces a result in the same
N

under the

union operation.

\

A; and Ay are regular languages

\

so1s A1 U As.

A member of the
set of regular
languages is ...

..a regular language,
which itself Is a set
(of strings) ...

.. SO the operations
we're interested In
are set operations

218

last Tine: |S UNioN Closed For Regular Langs?

Statements Do we know anything about A, and 4,?
1. A;and A, are regular languages

4.* Construct DFA M = (Q, 2, 6, qy, F) (todo)
5. M recognizes Al UAZ How to create this? Don’t

know what 4, and 4, are!

6. A, UA, Is aregular language

In other words, if A; and As are regular languages, sois A; U Az

Justifications

1.
2. A DFA Ml = (Ql’ Z) 61) ql; Fl) rECOgniZQS Al 2.
%,é DFA M, = (Q,, %, 6, q,, F;) recognizes A, 3.
4,

Assum
Def of
Def of
Def of

ntion
Regular Language

Regular Language
DFA

5. See examples

6. Def of Regular Language
7. The class of regular languages is closed under the union operation. 7 From stmt #1 and #6

M, (A
M @ Regular language 4,
recognizes A, Regular language AZ

O © If we don't know what exactly these

languages are, we still know these facts ...

A language is called a regular language

if some finite automaton recognizes it.

DEFINITION

A finite automaton is a S-tuple (Q, X, 6, qo, F'), where

\
M, (
recognizes A, _)Q
QO
O
.

1. Q is a finite set called the states,
2. ¥ is a finite set called the alphabet,
3. 0: Q@ x ¥—Q is the transition function,

\
4. qo € Q is the start state, and
5. F C Q is the set of accept states.
© My = (Q1,%,01,q1, F1), recognize Ay,
My = (Q2,, 92, q2, F»), recognize As,

Union

Want: M

- A
Ml

@ Recognizes
recognizes 4, © 4, U4,

Rough sketch Idea:
M is a combination
of M, and M, that
checks whether its
input is accepted
by either M, and M,

But, a DFA can only
read its input once!

Y

M

Need to somehow

simulate “being in”

both an M, and M,
state simultaneously

THHOREM

\
(
recognizes A, _)Q
O
O
O
N

y class of regular languages is closed under the union operation.

In other words, if A, and A3 are regular languages, so is A4; U As.

last Tire: UNION 1S ClOosed For Regular Langs

Proof

e Glven: M, = (@1, 2, 01,1, F1), recognize Ay, Want: M that can simultaneously

My = (Q2, 5392, g2, F2), recognize Ag, be in both an M, and M, state
 Construct: M = (Q, %, 6, qo,-F),¢sing M, and M,, that recognizes A, U 4,

. . Q={(ri,r2)|r € Qrand ro € Q2} =0, xQ,
states of M. This set is the Cartesian product of sets ()1 and Q-

A finite automaton is a S-tuple (Q, X, J, qo, F'), where A Stat? of M Is a pair:
- the first part is a state of M, and

1. Q is a finite set called the states, - the second part is a state of M,

2. ¥ is a finite set called the alphabet,

3. 0: Q x X—Q is the transition ﬁmction,l
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

So the states of M is all possible
combinations of the states of M, and M,

last Tire: UNION 1S ClOosed For Regular Langs

Proof
e Glven: My = (Ql;2951.,Q1,F1),recognize Ay,

My = (Q2,X, 02,42, F»), recognize As,
 Construct: M = (Q, %, 6, go-F'), using M, and M,, that recognizes A, U 4,

' This set is the Caxtesianproduct of sets Q1 and (-
P

A finite automaton is a 5-tuple (Q, X, 6, qo, F'), where (I,) — (51 (T1§ a,), (52 (ng GJ)) A step in M is includes both:
1. Q is a finite set called the states, - a step !n M;, and
2. ¥ is a finite set called the alpbhabet, - astep in M,
3. 0: Q x X—Q is the transition ﬁmctionﬂ
4. qo € Q is the start state, and
5. F C Q is the set of accept states.

last Tire: UNION 1S ClOosed For Regular Langs

Proof

e Glven: (Ql;2351,Q1,F1),recognize Ay,

(QZ: E: 62: qz2, F2), recognize AQ,
 Construct: M = (Q, 3,46, qo, F'), using M, and M,, that recognizes A, U A4,

. . Q — {(T‘lg 1’2)‘ r € Ql and To & QQ} =Q, X 0Q,
states of M: "This set is the Cartesian product of sets ()1 and Q)
* M transition fn: §((ry,72),a) = (61(r1, a), d2(r2, a))

Start state of M is both
start states of M, and M,

e M start state: (¢1,92)

224

last Tire: UNION 1S ClOosed For Regular Langs

Proof

e Glven: (Ql;2351,Q1,F1),recognize Ay,

(QZ: E: 62: qz2, F2), recognize AQ,
 Construct: M = (Q, 3,46, qo, F'), using M, and M,, that recognizes A, U A4,

. . Q={(ri,r2)|r € Qrand r2 € Q2} =0, xQ,
states of M. "This set is the Cartesian product of sets ()1 and Q)

* M transition fn: §((ry,72),a) = (61(r1, a), d2(r2, a))

M start state: (q1,92) Remember:

Accept states must
Accept if either M, or M, accept | | be subset of Q

* M accept states: F = {(ry,r2)|r1 € Fy orry € Fy} o) Il >

Another operation: Concatenation

We want this operation
to be closed ...
allows using DFAs as

212 Beacon Street building blocks

Example: Recognizing street addresses

'\ \ (~ modular programming)

M,: recognize

M: CONCAT

M,: recognize

numbers words

226

Concatenation: Ao B = {zy|z € Aand y € B}

Concatenation of Languages

Let the alphabet 3 be the standard 26 letters {a, b, ..., z}.
If A = {good,bad} and B = {boy, girl}, then

Ao B ={goodboy, goodgirl, badboy, badgirl}

s Concatenation Closed?

THEOREM ---

The class of regular languages is closed under the concatenation operation.

In other words, it A; and As are regular languages then so is 4; o As.

Construct a new machine M recognizing A o A,? (like union)
» Using DFA M, (which recognizes A,),
« and DFA M, (which recognizes 4,)

PROBLEM:
Can only
read input
once, can’t
backtrack

O

Concatentation

O

<
©
©,

Let M, recognize Ay, and M, recognize A,.

Want: Construction of M to recognize A; o A

Need to switch
machines at some
point, but when?

-

~N

~

o 51222

O ©

Concatenation: Ao B = {zy|z € Aand y € B}

Overlapping Concatenation Example

* Let M, recognize language A={ jen, jens}
« and M, recognize language B={smith}
« Want: Construct M to recognize AoB = {Eensmith,\j’enssmith }

 |[f M sees jen ...
« M must decide to either:

Concatenation: Ao B = {zy|z € Aand y € B}

Overlapping Concatenation Example

 Let M, recognize language A ={ jen,|jens|}
« and M, recognize language B = { smi’7(}
1

« Want: Construct M to recognize AoB =/{ Jensmith, Jjenssmith}

 |[f M sees jen ...

« M must decide to either:
e stay in M, (correct, if full input is|jenssmithi

Concatenation: Ao B = {zy|z € Aand y € B}

Overlapping Concatenation Example

» Let M, recognize language A = {|jen, jens}
» and M, recognize language B = {{smith
« Want: Construct M to recognize AoB ={ jensmith, jenssmith}

* If M sees jen .. A DFA can’t do this!

« M must decide to either:
e stay in M, (correct, if full input is jensspithy
* or switch to M, (correct, if full input is|jenjsmith)

 But to recognize A-B, it needs to handle both cases!
« Without backtracking

s Concatenation Closed?
FALSE?

THEOREM ---

The class of regular languages is closed under the concatenation operation.
In other words, if A; and A are regular languages then so is A; o As.

« Cannot combine A, and A,’s machine because:
* Not clear when to switch machines? (can only read input once)

« Requires a new kind of machine!
« But does this mean concatenation is not closed for regular langs?

Deterministic vs Nondeterministic

Deterministic
computation

e Start

states

b k£ Ak Ak— £k
.. [° ° ®

* accept or reject

DFAs

Deterministic vs Nondeterministic

Deterministic Nondeterministic
computation computation

° Start (.

. ()

can be in multiple states at

. : f \' the same time
reject (1

()

* accept or reject * accept

states {{-\: .f\\ Nondeterministic computation
Y

b k£ Ak Ak— £k

DFAs New FA

Finite Automata: The Formal Definition

DEFINITION
deterministic

A finite automaton is a 5-tuple (Q, X, 9, qo, F'), where

1. () is a finite set called the states,

2. 3 1s a finite set called the alphabet,

3. 0: Q X X—(Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

Also called a Deterministic Finite Automata (DFA)

Precise Terminology 1s Important

- A finite automata or finite state machine (FSM) defines ...
.. computation with a finite number of states

* There are many kinds of FSMs

« We've learned one kind, the Deterministic Finite Automata (DFA)
* (So up to now, the terms DFA and FSM refer to the same definition)

« But now we learn other kinds, e.g., Nondeterministic Finite Automata (NFA)

 Be careful with terminology!

Nondeterministic Finite Automata (NFA)

Compare with DFA:

DEFINITION

A nondeterministic finite automaton
is a S-tuple (Q, X, 4, qo, F'), where

1. () 1s a finite set of states,
2. 3 is a finite alphabet,

Difference

A finite automaton is a S-tuple (Q, X, 0, qo, F'), where

1. @ is a finite set called the states,

2. Y is a finite set called the alphabet,

3. 0: Q x X—Q is the transition function,
4. qo € Qs the start state, and

5.47°C Q) is the set of accept states.

3.0: Q x X.—>P(Q) is the transition function,

4. qp € Q 1s the start state, and
5. F C (@ is the set of accept states.

Power set, i.e. a transition
results in set of states

Power Sets

« A power set is the set of all subsets of a set

« Example: S={a, b, ¢}

 Power set of S =
* {{},{a},{b},{c},{a, b}, {a,c},{b,c},{a,b,c}}

« Note: includes the empty set!

Nondeterministic Finite Automata (NFA)

DEFINITION

A nondeterministic finite automaton
is a S-tuple (Q, X, 4, qo, F'), where

1. () 1s a finite set of states,
2. 3 is a finite alphabet,
3.0: Q x3.—>P(Q) is the transition function,
4. qp € Q is the start state, and
g L’ — (Yo +hao cnte ~F
Transition label can be “empty”, HEAGUERElES

i.e, machine can transition Ye =X U{e}
without reading input

NFA Example

« Come up with a formal description of the following NFA:

DEFINITION

A nondeterministic finite automaton
is a 5-tuple (Q, 3,46, qo, F), where
1. @ is a finite set of states,
2. ¥ is a finite alphabet,
3. 0: Q x X.—>P(Q) is the transition function,
4. qp € @ is the start state, and
5. F C Q is the set of accept states.

The formal description of N; is (@, X, 6, q1, F'), where

1. Q — {glaQQaq.?nqé.L}a 0: Q X ZEHP(Q)

B Empty transition
2. Y = {0,1}; (no input read)

3. 0 1s given as

Result of transition
Is a set

: Empty transition
1
4. q; is the start state, and : T —
5. F ={qs}.

Multiple 1 transitions No 0 transition

In-class Exercise

« Come up with a formal description for the following NFA
e X={a,b}

DEFINITION

A nondeterministic finite automaton
is a S-tuple (Q, X, 9, qo, F'), where
1. Q is a finite set of states,
2. ¥ is a finite alphabet,
3. 0: Q x X.—>P(Q) is the transition function,
4. qo € Q is the start state, and
5. F C @ is the set of accept states.

In-class Exercise Solution

Let N=(Q, %, 6, q,, F) 5(q,a)={}

*0={491,9, 953 } 6(qu,b)={q,}

*2X={a,b} o(qp,€e)=1{4qs}
o(q»a)=19 93}

°d ... 0(qpb)=1{qs}
0(q¢€)=1}

o g = Gy 0(gqza)={q:}

F={q,) o(gq3b)={}

o(qs€e)={}

NFA Computation (JFLAP demo): 010110

s
O OO

NFA Computation Sequence

Symbol read

Each step can
branch into
multiple states at
the same time!

So this is an accepting
computation

thstback: DFA Computation Model

Informally Formally (i.e, mathematically)
« Machine = a DFA - M = (Q,>%,0,q0, F)
* Input = string of chars, eg “1101” e W = WiW32 - Wy

M accepts w it

Machine “accepts” input If: sequence of states ro, 71, ..., 7, in) exists with
 Start in “start state” * 7o = qo
. Repeat: «r; =0(ri_1,w;), fori=1,...,n

 Read 1 char;
« Change state according to the transition table

« Result =
« Last state is “Accept” state « 1y €EF

NFA

Fhaskiack—DHA-COmputat

Informally

« Machine = aBFA-an NFA
* Input = string of chars, eg “1101”

Machine “accepts” input If:
« Start in “start state”

e Repeat:

 Read 1 char;
« Change state according to the transition table

e Result =
 Last state is “Accept” state

on Model

Formally (i.e., mathematically)

- M = (Q72757QO7F)

e W — W1W2 - Wn

M accepts w it
sequence of states ro, 71, ..., 7, in) exists with

r; € 5(7“7;_1,’(1]7;) This is now a set

A nondeterministic finite gutomaton
is a S-tuple (Q,%,4,q0, F'), where
1. @ is a finite set of sttes,
2. ¥ is a finite alphabajy
° f]"n E F 3.6: Q x Z.—P(Q) is the transition function,
4. gy € Q is the start state, and
5. F' C Q@ is the set of accept states.

d: Q X ¥—Q is the transition function

Flskback DFA Extended Transition Function

Define extended transition function: §: Q x ¥* — Q

Domain:
» Beginning state ¢ € () (not necessarily the start state)
* Inputstring w = wiwsg - -+ W, wherew,; € X

Range:

 Ending state (not necessarily an accept state)

(Defined recursively, on length of/input string)
Empty string

 Base case: §

— (Q75) — (| nonEmpty string || First char Remaining chars

(“smaller argument”)

e Recursive case: 5(Q7w) — 5(5((17’101)7’102 e wn)

Recursive call Single transition step

d: Q X ¥—Q is the transition function

Alternate Extended Transition Function

Define extended transition function: 6 : Q x ¥* — Q

Domain:
« Beginning state ¢ € () (not necessarily the start state)
* Input string w = wiwsg - -+ W, wherew; € X

Range:

 Ending state (not necessarily an accept state)

(Defined recursively, on length of input string)

Empty string Recursive call: (smaller argument)

. . g x computation “so far”
m Case. (5(6.77 5) —(q nonEmpty string P

(5((]7“}1 'wn—l)vwn)
: . 5(il = SUSl e o N o\
* Recursive case: 0\q, W) =0(0(q, W1), W2 Wn,) Single transition

step, on last char

NFA Extended Transition Function

« Beginning state ¢ € @
 Input string w = wjws -+ W, where w;

Define extended transition function: 6+ Q=< >* —Q
Domain: 2
0:Q xX" = PR (Q)
e X

Range: Result is set of states
« Ending state set of states

NFA Extended Transition Function

E

Define extended transition function: -6+ Q) xX*—Q

Domain: %
« Beginning state ¢ € () 0: QXY — P(Q)
* Input string w = wjwsa -+ W, where w; € X

Range: Result is set of states
* Ending state set of states

>y D

(Defined recursively, on length of input-string)
Empty string

» Base case: 4(q,e¢f= {q}

e Recursive case:

NFA Extended Transition Function

¢ N VE —
ya

Define extended transition function:

Domain: *
« Beginning state ¢ € () 0 : Q X 2

* Input string w = wiwsg - -+ W, wherew; € X

Range: Result is set of states
* Ending state set of states

<€D

> C:n)

(Defined recursively, on length of input string)

Empty string All single transition

e Base case: 5((}, e} — {q} . steps for last char

nonEmpty string U 5(q@-, wn) Recursive call: (smaller argument)

» Recursive case: (g, w) = i=1 computation so far

where: S(Q,wl o Wp—1) = 4q1s- -k}

Base case: 5(q, €) = {q}

NFA EXteﬂded 6 Example Recursive case: ,\ U(S qun

O, 1 where:

Stal‘t O O »O q7w1 " Wp,— 1) {ql,...,qk}
.(0)

e 0(qo,€) = Stay in start state

We haven’t considered
empty transitions!

o S(QO; 0) — Same as single step §

Combine result of recursive call with “last step”

. 4(go,00) =

o S(QU, 001) —

Adding Empty Transitions

» Define the set e-REACHABLE(q)
* ...to be all states reachable from q via zero or more empty transitions

(Defined recursively)

» Base case: ¢ € e-REACHABLE(q)

 Inductive case: A state is in the reachable set if ...

e-REACHABLE(q) = {r | p € e-REACHABLE(q) and r € d(p,€)}

... there i1s an empty transition to it from
another state in the reachable set

e-REACHABLE Example

© /

a €

e-REACHABLE(1) ={1,2,3,4,6}

No empty transitions

NFA Extended Transition Function

Define extended transition function: § - QXX — PQ)

Domain:
« Beginning state ¢ € @
* Input string w = wiws -+ W, where w; € ¥

Range:

« Ending set of states

(Defined recursively, on length of input string)

~A

- Base case: i(q,¢) = {q} k

* Recursive case: §(q, w) = =1

where: 0(q, w1 - wp—1) ={q1,---,qk}

With empty transitions

NFA Extended Transition Function

Define extended transition function: § - QXX — PQ)

Domain:
« Beginning state ¢ € @
* Input string w = wiws -+ W, where w; € ¥

Range:

« Ending set of states

: : : : “Take single step,
(Deﬂ N ed recursive ly, on le ﬂgth Of 1N p Ut Stﬂ ﬂg) then follow all empty transitions”

e-REACHABLE(q) 5

« Base case: ¢ =
Base (¢, €) ={¢ l’f / . e-REACHABLE(|_ | 6(gi, wn))
X (47, Wn) i=—1

* Recursive case: §(q, w) = i=1

where: S(Q,wl Wp_1) = 1q1,-- -Gk}

summary: NFAs vs DFAS

DFAs NFAs
« Can only be in one state « Can be in multiple states
e Transition: e Transition

« Must read 1 char Can read no chars

* |.e., empty transition

* Acceptance: * Acceptance:
« If final state is accept state * If one of final states is accept state

Concatenation: Ao B = {zy|z € Aand y € B}

last Tine: CONCaAtenation of Languages

Let the alphabet 3 be the standard 26 letters {a, b, ..., z}.
If A = {good,bad} and B = {boy, girl}, then

Ao B ={goodboy, goodgirl, badboy, badgirl}

Concatenation: Ao B = {zy|z € Aand y € B}

last Tine: CONcCatenation I1s Closed?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A; and A3 are regular languages then so is A; o As.

Proof: Construct a new machine
« How does it know when to switch machines?
« Can only read Iinput once

N, N, Concatentation

_ oo©/\ ° © ©/

N is an NFA! It simultaneously:

- Keeps checking 15t part with N,
and

- Moves to N, to check 2"d part

Let N; recognize Ay, and Na recognize As.

Want:Construction of N to recognize A; o A
e = “empty transition” = reads no input

N =

Allows N to be in both machines at once N\

4)

().
O ° OfH30 oo
O~ o

thstback: 1S UNion Closed For Regular Langs?

Statements Justifications

1. A;and A, are regular languages 1. Assumption

2. ADFAM,=(0Q,, %, 6,,q, F;) recognizes A; 2. Def of Regular Language
3. ADFAM,=(0,, %, 6,, q,, F,) recognizes A, 3. Def of Regular Language
4. Construct DFAM=(Q, %, 9, q,, F) 4. Def of DFA

5. Mrecognizes A, U 4, 5. See examples

6. A, UA, Is aregular language 6. Def of Regular Language
7. The class of regular languages is closed under the union operation. 7 From stmt #1 and #6

In other words, if A; and As are regular languages, so is A; U As.

s Concat Closed For Regular Langs?

Statements Justifications
1. A;and A, are regular languages Assumption

1.
2. ANFAN, =(0,,%,6, q,, F,) recognizes A, 2. Def of Regular Language
3598 NFA N, = (@, 2, 0y, 42, F) recognizes A, 3. Def of Regular Language
4
5

4.° Construct NFAN= 222 (todo) Def of NFA
5. Mrecognizes A,-JA,A, 0 A, . See examples

6. A 0A,A YA, Isaregular language 6. Def of Regular Language
/. 'The class of regular languages is closed under the concatenation operation. 7. From stmt #1 an d H6

In other words, if A; and As are regular languages then so is A; o As.

Concatenation is Closed for Regular Langs

PROOF

Let Ny = (Q1, 3,61, q1, F1) recognize Ay, and
Ny = (Q2, X, 02, q2, F>) recognize As.

Construct N = (Q, X, 9, q1, F») to recognize A; o A N, N,
1. Q — Ql U QZ o ©

, ~O | [-O 009
2. The state ¢ is the same as the start state of IV} °° © oo ©
3. The accept states F5 are the same as the accept states of N ﬂ

4. Define § so that for any ¢ € @ and any a € X,

Concatenation is Closed for Regular Langs
0

Wait, is this true?

PROOF

Let Ny = (Q1, 3,61, q1, F1) recognize Ay, and
Ny = (Q2, X, 62, g2, F>) recognize A,.

Construct N = (Q, X, 9, q1, F») to recognize A; o A N, N,
1. @ =Q1UQ2 ©

_ =@ O {—»O o ©
2. The state ¢; is the same as the start state of [V} °° 10 o o
3. The accept states F5 are the same as the accept states of N l
4. Define J so that for any ¢ € @ and any a € X, N

p
4 ? E
? {O o o gg%o c
5(Qaa):< o o
o

4

\ 2 7277 - 272

Fhashback: A DFA'S Language
« For DFA M = (Q, X, 6, qo, F)

o M accepts w it 0(qo, w) € F

* M recognizes language A it A = {w| M accepts w}

A language is a regular language if a DFA recognizes it

An NFA's Language

*For NFA N = (@, X, 6, qo, F)

intersection accept states

e N accepts w if 0(qg,w) N F £) not empty
« |.e, If the final states have at least one accept state

« Language of N=L(N) = {,w | S(QO,w) NEF # @}

Q: How does an NFA's language relate to regular languages
« Definition: A language is regular if a DFA recognizes it

s Concatenation Closed for Reg Langs?

« Concatenation of DFAs produces an NFA

To finish the proof ...
« we must prove that NFAs also recognize regular languages.

Specifically, we must prove:
* NFAs < regular languages

Check-in Quiz 2/8

On gradescope

