## CS 420 Nondeterminism

Wednesday, February 8, 2023 UMass Boston Computer Science



### Announcements

- HW 1 in
  - due Tues 2/7 11:59pm EST
- HW 2 out
  - due Tues 2/14 11:59pm EST

In this course, we are interested in closed operations for a set of languages (here the set of regular languages)

(In general, a set is closed under an operation if applying the operation to members of the set produces a result in the same set)

The class of regular languages is closed under the union operation.

In other words, if  $A_1$  and  $A_2$  are regular languages, so is  $A_1 \cup A_2$ .

Or this (same) statement

Want to prove this statement

**THEOREM** 

statement

(In general, a <u>set</u> is **closed under an operation** if **applying the <u>operation</u>** to <u>members of the set</u> produces a **result in the same set**)

Want to prove this

statement

The class of regular languages is closed under the union operation.

In other words, if  $A_1$  and  $A_2$  are regular languages, so is  $A_1 \cup A_2$ .

Or this (same)

A member of the set of regular languages is ...

... a regular language, which itself is a set (of strings) ...

... so the **operations** we're interested in are **set operations** 

### **Statements**

Do we know anything about  $A_1$  and  $A_2$ ?

- 1.  $A_1$  and  $A_2$  are regular languages
- 2. A DFA  $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  recognizes  $A_1$
- 3. A DFA  $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  recognizes  $A_2$
- 4. Construct DFA  $M = (Q, \Sigma, \delta, q_0, F)$  (todo)
- 5. M recognizes  $A_1 \cup A_2$  How to create this? Don't know what  $A_1$  and  $A_2$  are!
- 6.  $A_1 \cup A_2$  is a regular language
- 7. The class of regular languages is closed under the union operation. In other words, if  $A_1$  and  $A_2$  are regular languages, so is  $A_1 \cup A_2$ .

### **Justifications**

- 1. Assumption
- 2. Def of Regular Language
- 3. Def of Regular Language
- 4. Def of DFA
- 5. See examples
- 6. Def of Regular Language
- 7. From stmt #1 and #6



### Regular language $A_1$ Regular language $A_2$

If we <u>don't know</u> what exactly these languages are, <u>we still know these facts</u>...

A language is called a *regular language* if some finite automaton recognizes it.

# $M_2$

recognizes  $A_2$ 



#### **DEFINITION**

A *finite automaton* is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ , where

- 1. Q is a finite set called the *states*,
- 2.  $\Sigma$  is a finite set called the *alphabet*,
- **3.**  $\delta: Q \times \Sigma \longrightarrow Q$  is the *transition function*,
- **4.**  $q_0 \in Q$  is the *start state*, and
- **5.**  $F \subseteq Q$  is the **set of accept states**.

$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
, recognize  $A_1$ ,  $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ , recognize  $A_2$ ,



### <u>Proof</u>

• Given:  $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ , recognize  $A_1$ ,  $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ , recognize  $A_2$ ,

Want: *M* that can simultaneously be in both an  $M_1$  and  $M_2$  state

- Construct:  $M = (Q, \Sigma, \delta, q_0, F)$ , using  $M_1$  and  $M_2$ , that recognizes  $A_1 \cup A_2$
- $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ • states of *M*: This set is the *Cartesian product* of sets  $Q_1$  and  $Q_2$

### A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ , where

- 1. Q is a finite set called the *states*,
- 2.  $\Sigma$  is a finite set called the *alphabet*,
- **3.**  $\delta: Q \times \Sigma \longrightarrow Q$  is the *transition function*, <sup>1</sup>
- **4.**  $q_0 \in Q$  is the **start state**, and
- **5.**  $F \subseteq Q$  is the **set of accept states**.

### A state of *M* is a <u>pair</u>:

- the first part is a state of  $M_1$  and
- the second part is a state of M<sub>2</sub>

So the states of *M* is all possible <u>combinations</u> of the states of  $M_1$  and  $M_2$  222

### <u>Proof</u>

- Given:  $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ , recognize  $A_1$ ,  $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ , recognize  $A_2$ ,
- Construct:  $M=(Q,\Sigma,\delta,q_0,F)$ , using  $M_1$  and  $M_2$ , that recognizes  $A_1 \cup A_2$
- $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the **Cartesian product** of sets  $Q_1$  and  $Q_2$ • states of *M*:

A finite automaton is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ , where  $a = (\delta_1(r_1, a), \delta_2(r_2, a))$  A step in M is includes both:

- 1. Q is a finite set called the *states*,
- 2.  $\Sigma$  is a finite set called the *alphabet*,
- **3.**  $\delta: Q \times \Sigma \longrightarrow Q$  is the *transition function*,
- **4.**  $q_0 \in Q$  is the **start state**, and
- **5.**  $F \subseteq Q$  is the **set of accept states**.

- a step in  $M_1$ , and
- a step in  $M_2$

### <u>Proof</u>

- Given:  $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ , recognize  $A_1$ ,  $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ , recognize  $A_2$ ,
- Construct:  $M=(Q,\Sigma,\delta,q_0,F)$ , using  $M_1$  and  $M_2$ , that recognizes  $A_1 \cup A_2$
- states of M:  $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets  $Q_1$  and  $Q_2$
- *M* transition fn:  $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- M start state:  $(q_1, q_2)$  Start state of M is both start states of  $M_1$  and  $M_2$

### **Proof**

- Given:  $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ , recognize  $A_1$ ,  $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ , recognize  $A_2$ ,
- Construct:  $M=(Q,\Sigma,\delta,q_0,F)$ , using  $M_1$  and  $M_2$ , that recognizes  $A_1 \cup A_2$
- states of M:  $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets  $Q_1$  and  $Q_2$
- *M* transition fn:  $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- M start state:  $(q_1, q_2)$

Accept if either  $M_1$  or  $M_2$  accept

Remember:
Accept states must
be subset of *Q* 

• *M* accept states:  $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$ 



# Another operation: Concatenation

We want this operation Example: Recognizing street addresses to be **closed** ... allows using DFAs as building blocks 212 Beacon Street (~ modular programming) M<sub>3</sub>: CONCAT  $M_1$ : recognize  $M_2$ : recognize numbers words

# Concatenation of Languages

Let the alphabet  $\Sigma$  be the standard 26 letters  $\{a, b, \dots, z\}$ .

If  $A = \{ good, bad \}$  and  $B = \{ boy, girl \}$ , then

 $A \circ B = \{ goodboy, goodgirl, badboy, badgirl \}$ 

## Is Concatenation Closed?

#### **THEOREM**

The class of regular languages is closed under the concatenation operation.

In other words, if  $A_1$  and  $A_2$  are regular languages then so is  $A_1 \circ A_2$ .

- Construct a <u>new</u> machine M recognizing  $A_1 \circ A_2$ ? (like union)
  - Using **DFA**  $M_1$  (which recognizes  $A_1$ ),
  - and **DFA**  $M_2$  (which recognizes  $A_2$ )



 $M_1$ 





**PROBLEM**:

Can only read input once, can't backtrack

Let  $M_1$  recognize  $A_1$ , and  $M_2$  recognize  $A_2$ .

<u>Want</u>: Construction of *M* to recognize  $A_1 \circ A_2$ 

Need to switch machines at some point, but when?



 $M_2$ 

# Overlapping Concatenation Example

- Let  $M_1$  recognize language  $A = \{ jen, jens \}$
- and  $M_2$  recognize language  $B = \{ smith \}$
- Want: Construct M to recognize  $A \circ B = \{ jensmith, jenssmith \}$
- If *M* sees **jen** ...
- *M* must decide to either:

# Overlapping Concatenation Example

- Let  $M_1$  recognize language  $A = \{ jen, jens \}$
- and  $M_2$  recognize language  $B = \{ smith \} \}$
- Want: Construct M to recognize  $A \circ B \neq \{$  jensmith, jenssmith  $\}$
- If *M* sees **jen** ...
- M must decide to either:
  - stay in  $M_1$  (correct, if full input is **jens smith**)

# Overlapping Concatenation Example

- Let  $M_1$  recognize language  $A = \{$  jen, jens  $\}$
- and  $M_2$  recognize language  $B = \{$  smith $\}$
- Want: Construct M to recognize  $A \circ B = \{ jensmith, jenssmith \}$
- If *M* sees **jen** ...

A **DFA** can't do this!

- *M* must decide to either:
  - stay in  $M_1$  (correct, if full input is jenssmith)
  - or switch to  $M_2$  (correct, if full input is **jensmith**)
- But to recognize  $A \circ B$ , it needs to handle both cases!!
  - Without backtracking

## Is Concatenation Closed?

### FALSE?

#### THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if  $A_1$  and  $A_2$  are regular languages then so is  $A_1 \circ A_2$ .

- Cannot combine A<sub>1</sub> and A<sub>2</sub>'s machine because:
  - Not clear when to switch machines? (can only read input once)
- Requires a <u>new kind of machine!</u>
- But does this mean concatenation is not closed for regular langs?

## Deterministic vs Nondeterministic

Deterministic computation



## Deterministic vs Nondeterministic



## Finite Automata: The Formal Definition

#### **DEFINITION**

deterministic

A *finite automaton* is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ , where

- 1. Q is a finite set called the *states*,
- 2.  $\Sigma$  is a finite set called the *alphabet*,
- **3.**  $\delta: Q \times \Sigma \longrightarrow Q$  is the *transition function*,
- **4.**  $q_0 \in Q$  is the **start state**, and
- **5.**  $F \subseteq Q$  is the **set of accept states**.

Also called a **Deterministic Finite Automata (DFA)** 

# Precise Terminology is Important

- A finite automata or finite state machine (FSM) defines ... ... computation with a <u>finite</u> number of states
- There are <u>many kinds</u> of FSMs
- We've learned one kind, the Deterministic Finite Automata (DFA)
  - (So up to now, the terms **DFA** and **FSM** refer to the same definition)
- But now we learn other kinds, e.g., Nondeterministic Finite Automata (NFA)
- Be careful with terminology!

## Nondeterministic Finite Automata (NFA)

#### DEFINITION

#### Compare with DFA:

### A nondeterministic finite automaton

is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ , where

- **1.** Q is a finite set of states,
- 2.  $\Sigma$  is a finite alphabet,

A *finite automaton* is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ , where **1.** *Q* is a finite set called the *states*,

- 2.  $\Sigma$  is a finite set called the *alphabet*,
- **3.**  $\delta: Q \times \Sigma \longrightarrow Q$  is the *transition function*,
- **4.**  $q_0 \in Q$  is the **start state**, and
- **5.**  $F \subseteq Q$  is the **set of accept states**.

3.  $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$  is the transition function,

Difference

- **4.**  $q_0 \in Q$  is the start state, and
- **5.**  $F \subseteq Q$  is the set of accept states.

Power set, i.e. a transition results in <u>set</u> of states

### Power Sets

• A power set is the set of all subsets of a set

• Example:  $S = \{a, b, c\}$ 

- Power set of *S* =
  - { { }, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} }
  - Note: includes the empty set!

## Nondeterministic Finite Automata (NFA)

#### DEFINITION

### A nondeterministic finite automaton

is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ , where

- **1.** Q is a finite set of states,
- 2.  $\Sigma$  is a finite alphabet,
- 3.  $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$  is the transition function,
- **4.**  $q_0 \in Q$  is the start state, and

Transition label can be "empty", accept states.

i.e., machine can transition
without reading input

$$\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$$

## NFA Example

• Come up with a formal description of the following NFA:



#### **DEFINITION**

#### A nondeterministic finite automaton

is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ , where

- **1.** Q is a finite set of states,
- **2.**  $\Sigma$  is a finite alphabet,
- **3.**  $\delta \colon Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$  is the transition function,
- **4.**  $q_0 \in Q$  is the start state, and
- **5.**  $F \subseteq Q$  is the set of accept states.

### The formal description of $N_1$ is $(Q, \Sigma, \delta, q_1, F)$ , where

1. 
$$Q = \{q_1, q_2, q_3, q_4\},\$$

- 2.  $\Sigma = \{0,1\},$
- 3.  $\delta$  is given as

Result of transition is a set

**4.**  $q_1$  is the start state, and

5. 
$$F = \{q_4\}.$$



**Empty transition** 

(no input read)

 $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ 

## In-class Exercise

Come up with a formal description for the following NFA

•  $\Sigma = \{ a, b \}$ 

#### **DEFINITION**

#### A nondeterministic finite automaton

is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ , where

- 1. Q is a finite set of states,
- **2.**  $\Sigma$  is a finite alphabet,
- **3.**  $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$  is the transition function,
- **4.**  $q_0 \in Q$  is the start state, and
- **5.**  $F \subseteq Q$  is the set of accept states.



## In-class Exercise Solution

```
Let N = (Q, \Sigma, \delta, q_0, F)
                                         \delta(q_1, a) = \{\}
• Q = \{ q_1, q_2, q_3 \}
                                         \delta(q_1, b) = \{q_2\}
• \Sigma = \{ a, b \}
                                         \delta(q_1, \varepsilon) = \{q_3\}
                                         \delta(q_2, a) = \{q_2, q_3\}
                                     \rightarrow \delta(q_2, b) = \{q_3\}
• δ ... –
                                         \delta(q_2, \varepsilon) = \{\}
                                          \delta(q_3, a) = \{q_1\}
• q_0 = q_1
                                         \delta(q_3, b) = \{\}
• F = \{ q_1 \}
                                          \delta(q_3, \varepsilon) = \{\}
```

# NFA Computation (JFLAP demo): 010110



## NFA Computation Sequence



Each step can branch into multiple states at the same time!

So this is an accepting computation

246

## Flashback: DFA Computation Model

### *Informally*

- Machine = a DFA
- Input = string of chars, e.g. "1101"

### Machine "accepts" input if:

- Start in "start state"
- Repeat:
  - Read 1 char;
  - Change state according to the transition table

#### Result =

• Last state is "Accept" state

### Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

### M accepts w if

sequence of states  $r_0, r_1, \ldots, r_n$  in Q exists with

- $r_0 = q_0$
- $r_i = \delta(r_{i-1}, w_i)$ , for i = 1, ..., n

•  $r_n \in F$ 

### NFA

## Flashback: DFA Computation Model

### *Informally*

- Machine = a DFA an NFA
- Input = string of chars, e.g. "1101"

### Machine "accepts" input if:

- Start in "start state"
- Repeat:
  - Read 1 char;
  - Change state according to the transition table
- Result =
  - Last state is "Accept" state

### Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

### M accepts w if

sequence of states  $r_0, r_1, \ldots, r_n$  in Q exists with

• 
$$r_0 = q_0$$

•  $r_n \in F$ 

• 
$$r_i = \delta(r_{i-1}, w_i)$$
, for  $i = 1, ..., n$ 

$$r_i \in \delta(r_{i-1}, w_i)$$
 This is now a set

A nondeterministic finite automaton is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ , where

- 1. Q is a finite set of states,
- **2.**  $\Sigma$  is a finite alphabet, 248
- 3.  $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$  is the transition function,
- **4.**  $q_0 \in Q$  is the start state, and
- **5.**  $F \subseteq Q$  is the set of accept states.

## Flashback: DFA Extended Transition Function

Define **extended transition function**:  $\hat{\delta}: Q \times \Sigma^* \to Q$ 

### Domain:

- Beginning state  $q \in Q$  (not necessarily the start state)
- Input string  $w = w_1 w_2 \cdots w_n$  where  $w_i \in \Sigma$

### Range:

Ending state (not necessarily an accept state)

(Defined recursively, on length of input string)

Empty string

• Base case:  $\hat{\delta}(q,\varepsilon)=q$  nonEmpty string First char

Remaining chars ("smaller argument")

• Recursive case:  $\hat{\delta}(q,w) = \hat{\delta}(\delta(q,w_1),w_2\cdots w_n)$ 

Recursive cal

Single transition step

## Alternate Extended Transition Function

Define **extended transition function**:  $\hat{\delta}: Q \times \Sigma^* \to Q$ 

### Domain:

- Beginning state  $q \in Q$  (not necessarily the start state)
- Input string  $w = w_1 w_2 \cdots w_n$  where  $w_i \in \Sigma$

### Range:

Ending state (not necessarily an accept state)

(Defined recursively, on length of input string)

• Base case:  $\hat{\delta}(q, \varepsilon) = q$  nonEmpty string  $\delta(\hat{\delta}(q, w_1 \cdots w_{n-1}), w_n)$ 

**Recursive call:** (smaller argument)

$$\delta(\hat{\delta}(q, w_1 \cdots w_{n-1}), w_n)$$

• Recursive case:  $\hat{\delta}(q,w) = \hat{\delta}(\delta(q,w_1),w_2\cdots w_n)$ 

Single transition step, on last char

### NFA

## Extended Transition Function

## Define **extended transition function**: $\hat{\delta}: Q \times \Sigma^* \to Q$

### **Domain:**

- Beginning state  $q \in Q$
- Input string  $w = w_1 w_2 \cdots w_n$  where  $w_i \in \Sigma$

### Range:

Ending state set of states

 $\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$ 

Result is set of states

### NFA

# Extended Transition Function

## Define **extended transition function**: $\hat{\delta}: Q \times \Sigma^* \to Q$

## Domain:

- Beginning state  $q \in Q$
- Input string  $w = w_1 w_2 \cdots w_n$  where  $w_i \in \Sigma$

### Range:

Ending state set of states

Result is set of states

 $\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$ 

(Defined recursively, on length of input string)

Empty string

- Base case:  $\hat{\delta}(q, \epsilon) = \{q\}$
- Recursive case:

### NFA

# Extended Transition Function

Define **extended transition function**:  $\hat{\delta}: Q \times \Sigma^* \to Q$ 

## Domain:

- Beginning state  $q \in Q$
- Input string  $w = w_1 w_2 \cdots w_n$  where  $w_i \in \Sigma$

## Range:

Ending state set of states

 $\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$ 

Result is set of states

(Defined recursively, on length of input string)

**Empty string** 

• Base case:  $\hat{\delta}(q, \epsilon) = \{q\}$  k

• Recursive case:  $\hat{\delta}(q,w)=i=1$ 

All single transition steps for last char

Recursive call: (smaller argument) computation "so far"

where:  $\hat{\delta}(q, w_1 \cdots w_{n-1}) = \{q_1, \dots, q_k\}$ 

Base case: 
$$\hat{\delta}(q, \epsilon) = \{q\}$$

# NFA Extended δ Example

Recursive case: 
$$\hat{\delta}(q, w) = \bigcup_{i=1}^{\kappa} \delta(q_i, w_n)$$

where: 
$$\hat{\delta}(q, w_1 \cdots w_{n-1}) = \{q_1, \dots, q_k\}$$



•  $\hat{\delta}(q_0, \epsilon) =$ 

Stay in start state

We haven't considered empty transitions!

• 
$$\hat{\delta}(q_0,0) =$$

Same as single step  $\delta$ 

Combine result of recursive call with "last step"

• 
$$\hat{\delta}(q_0, 00) =$$

• 
$$\hat{\delta}(q_0, 001) =$$

# Adding Empty Transitions

- Define the set arepsilon-REACHABLE(q)
  - ... to be all states reachable from q via zero or more empty transitions

(Defined recursively)

- Base case:  $q \in \varepsilon$ -reachable(q)
- Inductive case:

A state is in the reachable set if ...

$$\varepsilon\text{-reachable}(q) = \{ \overrightarrow{r} \mid p \in \varepsilon\text{-reachable}(q) \text{ and } \overrightarrow{r} \in \delta(p, \varepsilon) \}$$

... there is an empty transition to it from another state in the reachable set

# $\varepsilon$ -reachable Example



$$\varepsilon$$
-REACHABLE(1) =  $\{1, 2, 3, 4, 6\}$ 

# NFA Extended Transition Function

Define **extended transition function**:  $\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$ 

### Domain:

- Beginning state  $q \in Q$
- Input string  $w = w_1 w_2 \cdots w_n$  where  $w_i \in \Sigma$

## Range:

Ending set of states

(Defined recursively, on length of input string)

• Base case: 
$$\hat{\delta}(q, \epsilon) = \{q\}$$

• Base case: 
$$\delta(q,\epsilon) = \{q\}$$
• Recursive case:  $\hat{\delta}(q,w) = i=1$ 
where:  $\hat{\delta}(q,w) = i=1$ 

$$\bigcup^{k} \delta(q_i, w_n)$$

where: 
$$\hat{\delta}(q, w_1 \cdots w_{n-1}) = \{q_1, \dots, q_k\}$$

# NFA Extended Transition Function

Define **extended transition function**:  $\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$ 

### Domain:

- Beginning state  $q \in Q$
- Input string  $w = w_1 w_2 \cdots w_n$  where  $w_i \in \Sigma$

## Range:

Ending set of states

(Defined recursively, on length of input string)

"Take single step, then follow all empty transitions"

• Base case: 
$$\hat{\delta}(q,\epsilon) = \{q\}$$
  $k$ 

$$\bigcup^k \delta(q_i, w_n)$$

EACHABLE
$$(q)$$

$$\begin{array}{c}
k \\
\delta(q_i, w_n)
\end{array}$$
 $\varepsilon$ -REACHABLE $(\bigcup_{i=1}^k \delta(q_i, w_n))$ 

• Recursive case:  $\hat{\delta}(q,w) = i=1$ 

where: 
$$\hat{\delta}(q, w_1 \cdots w_{n-1}) = \{q_1, \dots, q_k\}$$

# Summary: NFAs vs DFAs

#### **DFAs**

- Can only be in <u>one</u> state
- Transition:
  - Must read 1 char

- Acceptance:
  - If final state <u>is</u> accept state

#### **NFAs**

- Can be in <u>multiple</u> states
- Transition
  - Can read no chars
  - i.e., empty transition
- Acceptance:
  - If one of final states is accept state

# Last Time: Concatenation of Languages

Let the alphabet  $\Sigma$  be the standard 26 letters  $\{a, b, \ldots, z\}$ .

If  $A = \{ good, bad \}$  and  $B = \{ boy, girl \}$ , then

 $A \circ B = \{ goodboy, goodgirl, badboy, badgirl \}$ 

# Last Time: Concatenation is Closed?

#### **THEOREM**

The class of regular languages is closed under the concatenation operation.

In other words, if  $A_1$  and  $A_2$  are regular languages then so is  $A_1 \circ A_2$ .

## **Proof**: Construct a <u>new</u> machine

- How does it know when to switch machines?
  - Can only read input once

### Concatentation



Let  $N_1$  recognize  $A_1$ , and  $N_2$  recognize  $A_2$ .

<u>Want</u>: Construction of N to recognize  $A_1 \circ A_2$ 

 $\circ$   $A_2$  and  $\bullet$  And  $\bullet$  And  $\bullet$ 

- Moves to  $N_2$  to check  $2^{nd}$  part

*N* is an **NFA**! It <u>simultaneously</u>:

- Keeps checking 1st part with  $N_1$ 



# Flashback: Is Union Closed For Regular Langs?

### **Statements**

- 1.  $A_1$  and  $A_2$  are regular languages
- 2. A DFA  $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  recognizes  $A_1$
- 3. A DFA  $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  recognizes  $A_2$
- 4. Construct DFA  $M = (Q, \Sigma, \delta, q_0, F)$
- 5. M recognizes  $A_1 \cup A_2$
- 6.  $A_1 \cup A_2$  is a regular language
- 7. The class of regular languages is closed under the union operation. In other words, if  $A_1$  and  $A_2$  are regular languages, so is  $A_1 \cup A_2$ .

## **Justifications**

- 1. Assumption
- 2. Def of Regular Language
- 3. Def of Regular Language
- 4. Def of DFA
- 5. See examples
- 6. Def of Regular Language
- 7. From stmt #1 and #6

# Is <u>Concat</u> Closed For Regular Langs?

### **Statements**

- 1.  $A_1$  and  $A_2$  are regular languages
- 2. A NFA  $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  recognizes  $A_1$
- 3. A NFA  $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  recognizes  $A_2$
- 4. Construct NFA N = (todo)
- 5. M recognizes  $A_1 \cup A_2 A_1 \circ A_2$
- 6.  $A_1 \circ A_2 A_4 \cup A_2$  is a regular language
- 7. The class of regular languages is closed under the concatenation operation. In other words if  $A_1$  and  $A_2$  are regular languages then so is  $A_1 \circ A_2$ .

## **Justifications**

- 1. Assumption
- 2. Def of Regular Language
- 3. Def of Regular Language
- 4. Def of NFA
- 5. See examples
- 6. Def of Regular Language
- 7. From stmt #1 and #6

# Concatenation is Closed for Regular Langs

#### **PROOF**

Let 
$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize  $A_1$ , and  $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  recognize  $A_2$ .

Construct  $N = (Q, \Sigma, \delta, q_1, F_2)$  to recognize  $A_1 \circ A_2$ 

1. 
$$Q = Q_1 \cup Q_2$$

- 2. The state  $q_1$  is the same as the start state of  $N_1$
- **3.** The accept states  $F_2$  are the same as the accept states of  $N_2$
- **4.** Define  $\delta$  so that for any  $q \in Q$  and any  $a \in \Sigma_{\varepsilon}$ ,



N

# Concatenation is Closed for Regular Langs

#### **PROOF**

Let 
$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize  $A_1$ , and  $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  recognize  $A_2$ .

Construct  $N = (Q, \Sigma, \delta, q_1, F_2)$  to recognize  $A_1 \circ A_2$ 

1. 
$$Q = Q_1 \cup Q_2$$

- 2. The state  $q_1$  is the same as the start state of  $N_1$
- **3.** The accept states  $F_2$  are the same as the accept states of  $N_2$
- **4.** Define  $\delta$  so that for any  $q \in Q$  and any  $a \in \Sigma_{\varepsilon}$ ,

$$\delta(q, a) = \begin{cases} \delta_1(\mathbf{q}, a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(\mathbf{q}, a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(\mathbf{q}, a) \cup \{q_2\} & q \in F_1 \text{ and } a = \varepsilon \\ \delta_2(\mathbf{q}, a) & q \in Q_2. \end{cases}$$





N



# Flashback: A DFA's Language

- For DFA  $M=(Q,\Sigma,\delta,q_0,F)$
- M accepts w if  $\hat{\delta}(q_0, w) \in F$
- M recognizes language A if  $A = \{w | M \text{ accepts } w\}$
- A language is a regular language if a DFA recognizes it

# An NFA's Language

- For NFA  $N=(Q,\Sigma,\delta,q_0,F)$
- - i.e., if the final states have at least one accept state

• Language of 
$$\mathit{N}$$
 =  $\mathit{L}(\mathit{N})$  =  $\left\{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \right\}$ 

Q: How does an NFA's language relate to regular languages

• <u>Definition</u>: A language is regular if a <u>DFA</u> recognizes it

# Is Concatenation Closed for Reg Langs?

Concatenation of DFAs produces an NFA

To finish the proof ...

• we must prove that NFAs also recognize regular languages.

Specifically, we must prove:

• NFAs ⇔ regular languages

# Check-in Quiz 2/8

On gradescope