CS420 Computing with NFAs Monday, February 13, 2023 UMass Boston CS ### Announcements - HW 2 out - Due 2/14 11:59pm EST - TAs - Woody Lin - OH: Tue 2-3:30pm, McCormack 3rd floor, room 139 - Richard Chang - OH: Friday 2-3:30pm, McCormack 3rd floor, room 139 - Quiz Preview (submit answer in gradescope): - In the course so far, what are possible meanings of the E symbol? ### HW 1 Observations Problems must be <u>assigned to the correct pages</u> Proof format must be a Statements and Justifications table • Rejected string examples must use characters from Σ alphabet ## Last Time: Concatenation of Languages ``` Let the alphabet \Sigma be the standard 26 letters \{a,b,\ldots,z\}. If A=\{fort, south\} B=\{point, boston\} A\circ B=\{fortpoint, fortboston, southpoint, southboston\} ``` ### Last Time: Is Concatenation Closed? #### **THEOREM** The class of regular languages is closed under the concatenation operation. In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$. - Cannot? combine A_1 and A_2 's machine to make a DFA because: - Unclear when to switch? (can only read input once) - Need a <u>different kind of machine!</u> ### Last Time: NFA Formal Definition #### **DEFINITION** ### A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where - **1.** Q is a finite set of states, - 2. Σ is a finite alphabet, - **3.** $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function, - **4.** $q_0 \in Q$ is the start state, and - 5. $F \subseteq \mathcal{Q}$ is the set of accept states. NFA transition allowed to not read input, $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$ Transition results in a <u>set of states</u> ## Last Time: NFA Computation Sequence NFA accepts input if: at least <u>one path</u> <u>ends in accept state</u> ## Flashback: DFA Computation Model ### *Informally* - Machine = a DFA - Input = string of chars, e.g. "1101" ### Machine "accepts" input if: • Start in "start state"— ### • Repeat: - Read 1 char; - Change state according to the transition table #### Result = • Last state is "Accept" state ### Formally (i.e., mathematically) - $M = (Q, \Sigma, \delta, q_0, F)$ - $w = w_1 w_2 \cdots w_n$ ### M accepts w if sequence of states r_0, r_1, \ldots, r_n in Q exists with $$r_0 = q_0$$ $$\rightarrow \cdot r_i = \delta(r_{i-1}, w_i), \text{ for } i = 1, \dots, n$$ $$\rightarrow r_n \in F$$ #### NFA ## Flashback: DFA Computation Model ### *Informally* - Machine = a DFA an NFA - Input = string of chars, e.g. "1101" ### Machine "accepts" input if: - Start in "start state" (and states connected to start state with ε transitions) - Repeat: - Read 1 char; - Change states according to the transition table - Result = - Last states have an "Accept" state ### Formally (i.e., mathematically) - $M = (Q, \Sigma, \delta, q_0, F)$ - $w = w_1 w_2 \cdots w_n$ ### M accepts w if sequence of states r_0, r_1, \ldots, r_n in Q exists with • $$r_0 = q_0$$ • $$r_i = \delta(r_{i-1}, w_i)$$, for $i = 1, ..., n$ #### A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where - 1. Q is a finite set of states, - **2.** Σ is a finite alphabet, - 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function, - **4.** $q_0 \in Q$ is the start state, and - **5.** $F \subseteq Q$ is the set of accept states. #### NFA ## Flashback: DFA Computation Model ### *Informally* - Machine = a DFA an NFA - Input = string of chars, e.g. "1101" ### Machine "accepts" input if: - Start in "start state" (and states connected to start state with \(\epsilon \) transitions) - Repeat: - Read 1 char; - Change states according to the <u>transition</u> table - Result = - Last states have an "Accept" state ### Formally (i.e., mathematically) - $M = (Q, \Sigma, \delta, q_0, F)$ - $w = w_1 w_2 \cdots w_n$ ### M accepts w if sequence of states r_0, r_1, \ldots, r_n in Q exists with • $$r_0 = q_0$$ • $r_n \in F$ • $$r_i = \delta(r_{i-1}, w_i)$$, for $i = 1, ..., n$ $$r_i \in \delta(r_{i-1}, w_i)$$ Next states is now a set A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where - 1. Q is a finite set of states, - 2. Σ is a finite alphabet, - 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function, - **4.** $q_0 \in Q$ is the start state, and - **5.** $F \subseteq Q$ is the set of accept states. ## Flashback: DFA Extended Transition Function Define **extended transition function**: $\hat{\delta}: Q \times \Sigma^* \to Q$ ### Domain: - Beginning state $q \in Q$ (not necessarily the start state) - Input string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$ ### Range: Ending state (not necessarily an accept state) (Defined recursively, on length of input string) Empty string First char Remaining chars ("smaller argument") • Base case: $\hat{\delta}(q,\varepsilon)=q$ nonEmpty string • Recursive case: $\hat{\delta}(q,w) = \hat{\delta}(\delta(q,w_1),w_2\cdots w_n)$ Recursive call Single transition step ### Alternate Extended Transition Function Define **extended transition function**: $\hat{\delta}: Q \times \Sigma^* \to Q$ ### Domain: - Beginning state $q \in Q$ (not necessarily the start state) - Input string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$ ### Range: Ending state (not necessarily an accept state) (Defined recursively, on length of input string) • Base case: $\hat{\delta}(q, \varepsilon) = q$ First chars ("smaller argument") $$\delta(\hat{\delta}(q, w_1 \cdots w_{n-1}), w_n)$$ • Recursive case: $\delta(q,w) = \frac{1}{\delta(\delta(q,w_1,w_1,w_2,w_n))}$ last char Recursive call Single transition step $\delta \colon Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function NFA ### Extended Transition Function Define **extended transition function**: $\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$ Domain: - Beginning state $q \in Q$ - Input string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$ Result is set of states ### NFA ### Extended Transition Function ## Define **extended transition function**: $\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$ ### Domain: - Beginning state $q \in Q$ - Input string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$ ### Range: • Ending state set of states Result is set of states (Defined recursively, on length of input string) Empty string - Base case: $\hat{\delta}(q, \epsilon) = \{q\}$ - Recursive case: ### NFA ### Extended Transition Function Define **extended transition function**: $\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$ ### Domain: - Beginning state $q \in Q$ - Input string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$ ### Range: Ending state set of states Result is set of states (Defined recursively, on length of input string) **Empty string** • Base case: $\hat{\delta}(q, \epsilon) = \{q\}$ nonEmpty string $\delta(q_i, w_n)$ • Recursive case: $\hat{\delta}(q, w) = i = 1$ Single transition steps for last char > Recursive call on first chars (smaller argument) $$\hat{\delta}(q, w_1 \cdots w_{n-1}) = \{q_1, \dots, q_k\}$$ Base case: $$\hat{\delta}(q, \epsilon) = \{q\}$$ ## NFA Extended δ Example where: $$i=1$$ $$\hat{\delta}(q, w_1 \cdots w_{n-1}) = \{q_1, \dots, q_k\}$$ • $\hat{\delta}(q_0,\epsilon) =$ We haven't considered empty transitions! • $$\hat{\delta}(q_0,0) =$$ Combine result of recursive call with "last step" • $$\hat{\delta}(q_0, 00) =$$ • $$\hat{\delta}(q_0, 001) = \delta(q_0, 1)$$ ## Adding Empty Transitions - Define the set arepsilon-REACHABLE(q) - ... to be all states reachable from q via zero or more empty transitions (Defined recursively) - Base case: $q \in \varepsilon$ -reachable(q) - Inductive case: A state is in the reachable set if ... $$\varepsilon\text{-reachable}(q) = \{ \overrightarrow{r} \mid p \in \varepsilon\text{-reachable}(q) \text{ and } \overrightarrow{r} \in \delta(p, \varepsilon) \}$$... there is an empty transition to it from another state in the reachable set ## ε -reachable Example $$\varepsilon$$ -REACHABLE(1) = $\{1, 2, 3, 4, 6\}$ ### NFA Extended Transition Function Define **extended transition function**: $\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$ ### Domain: - Beginning state $q \in Q$ - Input string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$ ### Range: Ending set of states (Defined recursively, on length of input string) • Base case: $$\hat{\delta}(q, \epsilon) = \{q\}$$ • Base case: $$\delta(q,\epsilon) = \{q\}$$ • Recursive case: $\hat{\delta}(q,w) = i=1$ where: $\hat{\delta}(q,w) = i=1$ $$\bigcup^{k} \delta(q_i, w_n)$$ where: $$\hat{\delta}(q, w_1 \cdots w_{n-1}) = \{q_1, \dots, q_k\}$$ ### NFA Extended Transition Function Define extended transition function: $\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$ ### Domain: - Beginning state $q \in Q$ - Input string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$ ### Range: Ending set of states (Defined recursively, on length of input string) • Base case: $$\hat{\delta}(q, \epsilon) = \{q\}$$ ε -REACHABLE (q) ε -REACHABLE (q) ε -REACHABLE (q) "Take single step, then follow all empty transitions" • Recursive case: $\hat{\delta}(q, w) = i=1$ where: $$\hat{\delta}(q, w_1 \cdots w_{n-1}) = \{q_1, \ldots, q_k\}$$ ## Summary: NFA vs DFA Computation #### **DFAs** - Can only be in <u>one</u> state - Transition: - Must read 1 char - Acceptance: - If final state is accept state #### **NFAs** - Can be in <u>multiple</u> states - Transition - Can read no chars - i.e., empty transition - Acceptance: - If one of final states is accept state ### Last Time: Concatenation is Closed? #### **THEOREM** The class of regular languages is closed under the concatenation operation. In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$. ### **Proof**: Construct a <u>new</u> machine - How does it know when to switch machines? - Can only read input once ### Concatentation Let M_1 recognize A_1 , and M_2 recognize A_2 . <u>Want</u>: Construction of N to recognize $A_1 \circ A_2$ ε = "empty transition" = reads no input N - Keep checking 1st part with M_1 and - Move to M_2 to check 2^{nd} part ## Flashback: Is Union Closed For Regular Langs? ### **Statements** - 1. A_1 and A_2 are regular languages - 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1 - 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2 - 4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$ - 5. M recognizes $A_1 \cup A_2$ - 6. $A_1 \cup A_2$ is a regular language - 7. The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$. ### **Justifications** - 1. Assumption - 2. Def of Regular Language - 3. Def of Regular Language - 4. Def of DFA - 5. See examples - 6. Def of Regular Language - 7. From stmt #1 and #6 ## Is <u>Concat</u> Closed For Regular Langs? #### **Statements** - 1. A_1 and A_2 are regular languages - 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1 - 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2 - 4. Construct NFA N = ??? (todo) - 5. N recognizes $A_1 \cup A_2 A_1 \circ A_2$ - 6. $A_1 \circ A_2 A_4 \cup A_2$ is a regular language - 7. The class of regular languages is closed under the concatenation operation. In other words if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$. ### **Justifications** - 1. Assumption - 2. Def of Regular Language - 3. Def of Regular Language - 4. Def of NFA - 5. See examples - 6. Does NFA recognize regular lang - 7. From stmt #1 and #6 ## Concatenation is Closed for Regular Langs #### **PROOF** Let DFA $$M_1 = [Q_1, \Sigma, \delta_1, q_1, F_1]$$ recognize A_1 DFA $M_2 = [Q_2, \Sigma, \delta_2, q_2, F_2]$ recognize A_2 Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$ 1. $$Q = Q_1 \cup Q_2$$ - 2. The state q_1 is the same as the start state of M_1 - 3. The accept states F_2 are the same as the accept states of M_2 - **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$, ## Concatenation is Closed for Regular Langs #### **PROOF** Let DFA $$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$ recognize A_1 DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$ 1. $$Q = Q_1 \cup Q_2$$ - 2. The state q_1 is the same as the start state of M_1 - 3. The accept states F_2 are the same as the accept states of M_2 - **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$, $$\delta(q,a) = \begin{cases} \delta_1(\mathbf{q};a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(\mathbf{q};a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \mathbf{q} \in F_1 \text{ and } a = \varepsilon \end{cases}$$ $$\delta_2(\mathbf{q};a) & q \in Q_2.$$ ## Flashback: A DFA's Language • For DFA $M=(Q,\Sigma,\delta,q_0,F)$ • *M* accepts w if $\hat{\delta}(q_0,w) \in F$ • M recognizes language $\{w|\ M$ accepts $w\}$ Definition: A DFA's language is a regular language ## An NFA's Language - For NFA $N=(Q,\Sigma,\delta,q_0,F)$ - - i.e., accept if final states contain at least one accept state - Language of $N = L(N) = \left\{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \right\}$ Q: What kind of languages do NFAs recognize? ## Concatenation Closed for Reg Langs? • Combining DFAs to recognize concatenation of languages produces an NFA So to prove concatenation is closed we must prove that NFAs also recognize regular languages. Specifically, we must prove: NFAs ⇔ regular languages ## "If and only if" Statements ``` X \Leftrightarrow Y = "X \text{ if and only if } Y" = X \text{ iff } Y = X <=> Y ``` ### Represents two statements: - 1. \Rightarrow if X, then Y - "forward" direction - 2. \Leftarrow if Y, then X - "reverse" direction ### How to Prove an "iff" Statement ``` X \Leftrightarrow Y = "X \text{ if and only if } Y" = X \text{ iff } Y = X <=> Y ``` Proof <u>at minimum</u> has 2 (If-Then proof) parts: - 1. \Rightarrow if X, then Y - "forward" direction - assume X, then use it to prove Y - 2. \Leftarrow if Y, then X - "reverse" direction - assume *Y*, then use it to prove *X* ## Proving NFAs Recognize Regular Langs ### **Theorem:** A language L is regular **if and only if** some NFA N recognizes L. ### Proof: - \Rightarrow If L is regular, then some NFA N recognizes it. (Easier) - We know: if L is regular, then a DFA exists that recognizes it. - So to prove this part: Convert that DFA → an equivalent NFA! (see HW 2) - \Leftarrow If an NFA N recognizes L, then L is regular. Statements & Justifications? "equivalent" = "recognizes the same language" ## \Rightarrow If L is regular, then some NFA N recognizes it #### **Statements** - 1. L is a regular language - 2. A DFA *M* recognizes *L* - 3. Construct NFA N equiv to M - 4. An NFA N recognizes L - 5. If *L* is a regular language, then some NFA *N* recognizes it ### **Justifications** - 1. Assumption - 2. Def of Regular language - 3. See hw 2 - 4. ??? - 5. By Stmts #1 and #4 ## Proving NFAs Recognize Regular Langs ### **Theorem:** A language L is regular **if and only if** some NFA N recognizes L. ### Proof: - ⇒ If *L* is regular, then some NFA *N* recognizes it. (Easier) - We know: if L is regular, then a DFA exists that recognizes it. - So to prove this part: Convert that DFA → an equivalent NFA! (see HW 2) - ← If an NFA N recognizes L, then L is regular. (Harder) "equivalent" = "recognizes the same language" - We know: for L to be regular, there must be a DFA recognizing it - Proof Idea for this part: Convert given NFA N → an equivalent DFA ### How to convert NFA→DFA? ### A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where - 1. Q is a finite set called the *states*, - 2. Σ is a finite set called the *alphabet*, - **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, - **4.** $q_0 \in Q$ is the *start state*, and - **5.** $F \subseteq Q$ is the *set of accept states*. #### Proof idea: Let each "state" of the DFA = set of states in the NFA ### A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where - **1.** Q is a finite set of states, - 2. Σ is a finite alphabet, - 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function, - **4.** $q_0 \in Q$ is the start state, and - **5.** $F \subseteq Q$ is the set of accept states. **NFA** computation can be in <u>multiple</u> states **DFA** computation can only be in <u>one</u> state So encode: a <u>set of NFA states</u> as <u>one DFA state</u> This is similar to the proof strategy from "Closure of union" where: a state = a pair of states # Convert **NFA→DFA**, Formally • Let NFA N = $(Q, \Sigma, \delta, q_0, F)$ • An equivalent DFA M has states $Q' = \mathcal{P}(Q)$ (power set of Q) # Example: The NFA N_4 A DFA D that is equivalent to the NFA N_4 ## NFA→DFA <u>Have</u>: NFA $N=(Q,\Sigma,\delta,q_0,F)$ <u>Want</u>: DFA $M=(Q',\Sigma,\delta',q_0',F')$ - 1. $Q' = \mathcal{P}(Q)$ A DFA state = a set of NFA states - **2.** For $R \in Q'$ and $a \in \Sigma$, $$\delta'(R,a) = \bigcup \, \delta(r,a) \,$$ A DFA step = an NFA step for all states in the set $R = \text{DFA state} = \text{set of NFA states} \mid_{r \in R}$ 3. $$q_0' = \{q_0\}$$ **4.** $F' = \{R \in Q' | R \text{ contains an accept state of } N\}$ # Flashback: Adding Empty Transitions - Define the set arepsilon-REACHABLE(q) - ... to be all states reachable from q via zero or more empty transitions (Defined recursively) - Base case: $q \in \varepsilon$ -reachable(q) - Inductive case: A state is in the reachable set if ... $$\varepsilon\text{-reachable}(q) = \{ \overrightarrow{r} \mid p \in \varepsilon\text{-reachable}(q) \text{ and } \underline{r} \in \delta(p, \varepsilon) \}$$... there is an empty transition to it from another state in the reachable set ## **NFA→DFA** - <u>Have</u>: NFA $N=(Q,\Sigma,\delta,q_0,F)$ - <u>Want</u>: DFA $M=(Q',\Sigma,\delta',q_0',F')$ - 1. $Q' = \mathcal{P}(Q)$ Almost the same, except ... **2.** For $R \in Q'$ and $a \in \Sigma$, $$\delta'(R, a) = \bigcup_{r \in R} \frac{\delta(r, a)}{\varepsilon - \text{REACHABLE}(\delta(r, a))}$$ - 3. $q_0' = \{q_0\}$ ε -REACHABLE (q_0) - **4.** $F' = \{R \in Q' | R \text{ contains an accept state of } N\}_{QQ}$ # Proving NFAs Recognize Regular Langs ### Theorem: A language L is regular **if and only if** some NFA N recognizes L. ### Proof: - \Rightarrow If *L* is regular, then some NFA *N* recognizes it. (Easier) - We know: if L is regular, then a DFA exists that recognizes it. - So to prove this part: Convert that DFA → an equivalent NFA! (see HW 2) - \Leftarrow If an NFA N recognizes L, then L is regular. (Harder) - We know: for L to be regular, there must be a DFA recognizing it - Proof Idea for this part: Convert given NFA N → an equivalent DFA using our NFA to DFA algorithm! # Concatenation is Closed for Regular Langs ### **PROOF** Let DFA $$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$ recognize A_1 DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$ - **1.** $Q = Q_1 \cup Q_2$ - 2. The state q_1 is the same as the start state of M_1 - **3.** The accept states F_2 are the same as the accept states of M_2 - **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$, $$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q, a) & q \in F_1 \text{ and } a \neq \varepsilon \end{cases}$$ $$\{q_2\} \quad q \in F_1 \text{ and } a = \varepsilon$$ $$\delta_2(q, a) \quad q \in Q_2.$$ If a language has an NFA recognizing it, then it is a regular language # Concat Closed for Reg Langs: Use NFAs Only ### **PROOF** Let $$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$ recognize A_1 , and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 . If language is regular, then it has an NFA recognizing it ... Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$ 1. $$Q = Q_1 \cup Q_2$$ - 2. The state q_1 is the same as the start state of N_1 - **3.** The accept states F_2 are the same as the accept states of N_2 - **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$, $$\delta(q, a) = \begin{cases} \delta_1(?, a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(?, a) & q \in F_1 \text{ and } a \neq \varepsilon \end{cases}$$ $$? \qquad \{q_2\} \quad q \in F_1 \text{ and } a = \varepsilon$$ $$\delta_2(?, a) \qquad q \in Q_2.$$ **Union**: $A \cup B = \{x | x \in A \text{ or } x \in B\}$ # Flashback: Union is Closed For Regular Langs ### **THEOREM** The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$. ### **Proof:** - How do we prove that a language is regular? - Create a DFA or NFA recognizing it! - Combine the machines recognizing A_1 and A_2 - Should we create a DFA or NFA? # Flashback: Union is Closed For Regular Langs ## **Proof** - Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 , - Construct: a <u>new</u> machine $M=(Q,\Sigma,\delta,q_0,F)$ using M_1 and M_2 - states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2 State in $M = M_1$ state + M_2 state • *M* transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$ M step = a step in M_1 + a step in M_2 • M start state: (q_1, q_2) Accept if either M_1 or M_2 accept • *M* accept states: $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$ # Union is Closed for Regular Languages # Union is Closed for Regular Languages ### **PROOF** Let $$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$ recognize A_1 , and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 . Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$. - **1.** $Q = \{q_0\} \cup Q_1 \cup Q_2$. - **2.** The state q_0 is the start state of N. - **3.** The set of accept states $F = F_1 \cup F_2$. # Union is Closed for Regular Languages ### **PROOF** Let $$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$ recognize A_1 , and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 . Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$. - **1.** $Q = \{q_0\} \cup Q_1 \cup Q_2$. - **2.** The state q_0 is the start state of N. - **3.** The set of accept states $F = F_1 \cup F_2$. - **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$, $$\delta(q, a) = \begin{cases} \delta_1(?, a) & q \in Q_1 \\ \delta_2(?, a) & q \in Q_2 \\ \{q_1?q_2\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & ? & q = q_0 \text{ and } a \neq \varepsilon \end{cases}$$ # List of Closed Ops for Reg Langs (so far) - ✓ Union - Concatentation Kleene Star (repetition) # Kleene Star Example ``` Let the alphabet \Sigma be the standard 26 letters \{a, b, \ldots, z\}. ``` ``` If A = \{ good, bad \} ``` ``` A^* = \{ \varepsilon, \text{ good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, ...} \} ``` Note: repeat zero or more times (this is an infinite language!) ## In-class exercise: # Kleene Star is Closed for Regular Langs #### **THEOREM** The class of regular languages is closed under the star operation. # Kleene Star is Closed for Regular Langs **PROOF** Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 . Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^* . # Kleene Star is Closed for Regular Langs **PROOF** Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 . Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^* . 1. $$Q = \{q_0\} \cup Q_1$$ **2.** The state q_0 is the new start state. **3.** $$F = \{q_0\} \cup F_1$$ Kleene star of a language must accept the empty string! # Kleene Star is Closed for Regular Langs **PROOF** Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 . Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^* . 1. $$Q = \{q_0\} \cup Q_1$$ - **2.** The state q_0 is the new start state. - **3.** $F = \{q_0\} \cup F_1$ - **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$, $$\delta(q, a) = \begin{cases} \delta_1(q, a), & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q, a), & q \in F_1 \text{ and } a \neq \varepsilon \end{cases}$$ $$\delta(q, a) = \begin{cases} \delta_1(q, a), & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q, a), & q \in F_1 \text{ and } a = \varepsilon \end{cases}$$ $$\{q_1\}, & q \in Q_1 \text{ and } a \neq \varepsilon \}$$ $$\{q_1\}, & q \in Q_1 \text{ and } a \neq \varepsilon \}$$ $$\{q_1\}, & q \in Q_1 \text{ and } a \neq \varepsilon \}$$ $$\{q_1\}, & q \in Q_1 \text{ and } a \neq \varepsilon \}$$ $$\{q_1\}, & q \in Q_1 \text{ and } a \neq \varepsilon \}$$ ## Many More Closed Operations on Regular Languages! - Complement - Intersection - Difference - Reversal - Homomorphism - (See HW2) ## Check-in Quiz 2/13 On gradescope