CS420

Computing with NFAs
Monday, February 13, 2023
UMass Boston CS

%/{/{M/me/ﬂe/{f@

* HW 2 out
* Due 2/14 11:59pm EST

 TAS
« Woody Lin
e OH: Tue 2-3:30pm, McCormack 3" floor, room 139

 Richard Chang
« OH: Friday 2-3:30pm, McCormack 3" floor, room 139

e QuiZz Preview (submit answer in gradescope):

* In the course so far, what are possible meanings of the € symbol?

HW 1 Observations

* Problems must be assigned to the correct pages

* Proof format must be a Statements and Justifications table

* Rejected string examples must use characters from X alphabet

Concatenation: Ao B = {zy|z € Aand y € B}

last Tine: CONCatenation of Languages

Let the alphabet ¥ be the standard 26 letters {a, b, ..., z}.

If A= {fort,south} B = {point,boston}

Ao B = { fortpoint, fortboston, southpoint, southboston}

Last Tire: 1S CONncatenation Closed?

THEOREM ---

The class of regular languages is closed under the concatenation operation.

In other words, it A; and As are regular languages then so is A4; o As.

« Cannot? combine A, and 4,’s machine to make a DFA because:
 Unclear when to switch? (can only read input once)

 Need a different kind of machine!

last Tive: NFA Formal Definition

DEFINITION

A nondeterministic finite automaton
is a S-tuple (Q, X, 4, qo, F'), where

1. () 1s a finite set of states,

2. 3 is a finite alphabet,

3.0: Q x X.—>P(Q) is the transition function,
4. qp € Q/is the start\state, and

5. F C () is the set of\accept states.

NFA transition allowed to Transition results
not read input, ¥. = X U {¢} in a set of states

last Tie: NFA COmputation Sequence

Symbol read
O _________________________
1 __________________
Each step can branch
Q ~--meeeeee into multiple states at

the same time!

ends In accept state () (2)
1 _________
0 —-eeeee- @ @ @ So this is an accepting
computation
(9

thstback: DFA Computation Model

Informally Formally (i.e, mathematically)
« Machine = a DFA - M = (Q,>%,0,q0, F)
* Input = string of chars, eg “1101” e W = WiW32 - Wy

M accepts w it

Machine “accepts” input If: sequence of states ro, 71, ..., 7, in) exists with
 Start in “start state” * 7o = qo
. Repeat: «r; =0(ri_1,w;), fori=1,...,n

 Read 1 char;
« Change state according to the transition table

« Result =
« Last state is “Accept” state « 1y €EF

NFA

Hretback-DFA-COmputation Model

Informally Formally (i.e, mathematically)
« Machine = aBFA-an NFA - M = (Q,>%,0,q0, F)
* Input = string of chars, eg “1101” e W = WiW32 - Wy

Machine “accepts” input If:

 Start in “start state”
(and states connected to start state with € transitions)

* Repeat:

 Read 1 char;
« Change states according to the transition table

A nondeterministic finite automaton
is a S-tuple (Q,%,4,q0, F'), where

o Resu lt = 1. @ is a finite set of states,
- ” 2. ¥ is a finite alphabet,
¢ LaSt StateS have an “ACCG pt State 3.6: Q x Z.—P(Q) is the transition function,

4. gy € Q is the start state, and
5. F C @ is the set of accept states.

NFA

Fhasktack—DHA-COmputation

Model

Informally

Formally (i.e., mathematically)

« Machine = aBFA-an NFA
* Input = string of chars, eg “1101”

Machine “accepts” input If:

 Start in “start state”
(and states connected to start state with € transitions)

* Repeat:

 Read 1 char;
« Change states according to the transition table

e Result =
« Last states have an “Accept” state

- M = (Q72757QO7F)

e W — W1W2 - Wn

M accepts w it
sequence of states ro, 71, ..., 7, in) exists with

i i) :5(?”‘@‘_1,%‘@), for 1 = 1,...,71

Next states is
5(7“7;_1, wz) now a set

A nondeterministic finite| automaton
is a S-tuple (Q, X, 4, qo, F|), where
1. @ is a finite set of states,
2. ¥ is a finite alphabel,
° f]"n E F 3.6: Q x Z.—P(Q) is the transition function,
4. gy € Q is the start state, and
5. F C @ is the set of accept states.

=
™.
M

d: Q X ¥—Q is the transition function

Flskback DFA Extended Transition Function

Define extended transition function: §: Q x ¥* — Q

Domain:
« Beginning state ¢ € () (not necessarily the start state)
* Inputstring w = wiwsg - -+ W, wherew,; € X

Range:

 Ending state (not necessarily an accept state)

(Defined recursively, on length of/input string)

: Remaining chars
Empty string First char

(“smaller argument”)

 Base case: 5(Q7) =¢q nonEmpty string

e Recursive case: 5(Q7w) — 5(5((17’101)7’102 e wn)

Recursive call Single transition step 246

d: Q X ¥—Q is the transition function

Alternate Extended Transition Function

Define extended transition function: 6 : Q x ¥* — Q

Domain:
« Beginning state ¢ € () (not necessarily the start state)
* Input string w = wiwsg - -+ W, wherew; € X

Range:

 Ending state (not necessarily an accept state)

(Defined recursively, on length of input string)

First chars
(“smaller argument”)

- Base case: 4(q,£) = g

5(5((]7 wy - wn—l)a wn)
: S S S TR last char
« Recursive case: 5(Q7 w) — UAWNY, W1), W2 """ Wn)

Recursive call Single transition step 247

d: Q x Xe—>"P(Q) is the transition function

NFA Extended Transition Function

Define extended transition function: ¢ : Q x X" — P(Q)
Domain:
« Beginning state ¢ € ()
* Input string w = wiws -+ W, where w; € ¥

Result is set of states

NFA Extended Transition Function

Define extended transition function: §: Q x ¥* — P(Q)

Domain:
« Beginning state ¢ € ()
* Input string w = wiwsg - -+ W, wherew; € X

Range: Result is set of states
* Ending state set of states

(Defined recursively, on length of input-string)
Empty string

» Base case: 4(q,e¢f= {q}

e Recursive case:

NFA Extended Transition Function

Define extended transition function: §: Q x ¥* — P(Q)

Domain:
« Beginning state ¢ € ()
* Input string w = wiwsg - -+ W, wherew; € X

Range: Result is set of states
* Ending state set of states

(Defined recursively, on length of input string)

Empty string Single transition

« Base case: 5((}, e} — {q} steps for last char

nonEmpty string (5((]7;, wn) Recursive call on first chars
C (smaller argument)

- Recursive case: 6(q, w) =

S(Q,wl e wp—1) = {q1, - -

aqk}

Base case: 5(q, €) = {q}

N FA EXte ﬂ d ed 6 Exa m p le Recursive case: S(Q,UJ) _

0, 1

k
5((]’127 w’n)
1=1

where
o(q,wi - wp—1) ={q1, ..., qr }
Start m 0 1 1 : : :
—={%) -(41)
. 0 — :
(90, €) We haven’t considered

empty transitions!

® ‘5(‘?09 0) —

Combine result of recursive call with “last step”
° 5(‘?0; 00) —

s

® 5(QU, 001) =

Adding Empty Transitions

» Define the set e-REACHABLE(q)
* ...to be all states reachable from q via zero or more empty transitions

(Defined recursively)

» Base case: ¢ € e-REACHABLE(q)

 Inductive case: A state is in the reachable set if ...

e-REACHABLE(q) = {r | p € e-REACHABLE(q) and r € d(p,€)}

... there i1s an empty transition to it from
another state in the reachable set

e-REACHABLE Example

© /

a €

e-REACHABLE(1) ={1,2,3,4,6}

No empty transitions

NFA Extended Transition Function

Define extended transition function: § - QXX — PQ)

Domain:
« Beginning state ¢ € @
* Input string w = wiws -+ W, where w; € ¥

Range:

« Ending set of states

(Defined recursively, on length of input string)

~A

- Base case: i(q,¢) = {q} k

* Recursive case: §(q, w) = =1

where: 0(q, w1 - wp—1) ={q1,---,qk}

With empty transitions

NFA Extended Transition Function

Define extended transition function: § - QXX — PQ)

Domain:
« Beginning state ¢ € @
* Input string w = wiws -+ W, where w; € ¥

Range:

« Ending set of states

(Defined recursively, on length of input string)

. e-REACHABLE(q)
* Base case: i(q,¢) = {g L “Take single step,
’ - then follow all empty transitions”
-REACHABLE (| 6(g;,w,))

* Recursive case: §(q, w) = i=1

where: S(Q,wl Wp—1) = G129 > Gk }

Summary: NFA vs DFA Computation

DFAs NFAs
« Can only be in one state « Can be in multiple states
e Transition: e Transition

« Must read 1 char Can read no chars

* |.e., empty transition

* Acceptance: * Acceptance:
« If final state is accept state * If one of final states is accept state

Concatenation: Ao B = {zy|z € Aand y € B}

last Tine: CONcCatenation I1s Closed?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A; and A3 are regular languages then so is A; o As.

Proof: Construct a new machine
« How does it know when to switch machines?
« Can only read Iinput once

Concatentation

_ oo©/\ ° © ©/

N is an NFA! Now it can:
- Keep checking 15t part with M,

: : and
Want: Construction of N to recognize A1 © Azl _ ymove to M. to check 21
2

Let M, recognize A;, and M, recognize As.

N part
e = “empty transition” = reads no input
(Allows N to be in both machines at the same time! I
~ 4 N\

O L
O ° OfH30 oo
O~ o

thstback: 1S UNion Closed For Regular Langs?

Statements Justifications

1. A;and A, are regular languages 1. Assumption

2. ADFAM,=(0Q,, %, 6,,q, F;) recognizes A; 2. Def of Regular Language
3. ADFAM,=(0,, %, 6,, q,, F,) recognizes A, 3. Def of Regular Language
4. Construct DFAM=(Q, %, 9, q,, F) 4. Def of DFA

5. Mrecognizes A, U 4, 5. See examples

6. A, UA, Is aregular language 6. Def of Regular Language
7. The class of regular languages is closed under the union operation. 7 From stmt #1 and #6

In other words, if A; and As are regular languages, so is A; U As.

s Concat Closed For Regular Langs?

Statements Justifications

1. A;and A, are regular languages 1. Assumption

2. ADFAM,=(0Q,, %, 6,,q, F;) recognizes A; 2. Def of Regular Language
3. ADFAM,=(0,, %, 6,, q,, F,) recognizes A, 3. Def of Regular Language
4, Construct NFAN= = 22?2 (todo) 4, Def of NFA

5. Nrecognizes A4,-J-A,A 04, 5. See examples

6. A oA,A YA, Isaregular language 6. Does NFA recognize regular lang?
/. 'The class of regular languages is closed under the concatenation operation. 7. From stmt #1 and H6

In other words, if A; and As are regular languages then so is A; o As.

Concatenation is Closed for Regular Langs

PROOF

Let DFA Ml = [Qli Z; 51; CI1, Fl) I’eCognize Al
DFA MZ = [QZ’ Z; 52; qz, Fz) reCOgnIZG AZ

Construct N = (Q, X, 9, q1, F») to recognize A; o A M, M,
LIQ]F Q1 U Q2 - 5
. @ @ —>O O O ©
2. The state ¢; is the same as the start state of M, i °° 9 oo | ©
3. The accept states|F5 jare the same as the accept states of M, l
4. Define § so that for any ¢ € @ and any a € X, N
/
/
Of< ©)
0| PO oo
5 eNe e o @)

273

Concatenation is Closed for Regular Langs

PROOF

Let DFA Ml = (Qli Z; 51; CI1, Fl) I’eCognize Al
DFA MZ = (QZ) Z; 52; qz; Fz) I’eCognlze AZ

Wait, is this true?

Construct N = (Q, X, 9, q1, F») to recognize A; o A M, M,
1. Q@ =Q1UQ> ©
_ - © O —() o ©
2. The state ¢; is the same as the start state of M, °° D o o
3. The accept states F5 are the same as the accept states of M, ﬂ
4. Define § so that for any ¢ € @ and any a € X, N
(? i
? {O o - %@ 0 o
5(Q) CL) = < o o
?
: N
\ ? ???- 274

Fhashback: A DFA'S Language

« For DFAM = (Q, %, 0, qo, F)
» Macceptswif §(qy,w) € F

« M recognizes language {w| M accepts w}

Definition: A DFA’s language is a regular language

An NFA's Language

- For NFA N = (Q, %, 6, qo, F)

intersection accept states

e N accepts w if 0(qg,w) N F £) not empty
* .., accept If final states contain at least one accept state

« Language of N=L(N) = {,w | S(QO,w) NEF # @}

Q: What kind of languages do NFAs recognize?

Concatenation Closed for Reg Langs?

« Combining DFAs to recognize concatenation of languages ...

... produces an NFA

SO to prove concatenation is closed ...

... we must prove that NFAs also recognize regular languages.

Specifically, we must prove:
NFAs < regular languages

‘If and only If” Statements

XY = “Xifandonlyif Y7 = Xiffy = X<=>Y
Represents two statements:

1. =>i1fX,thenY
« “forward” direction

2. <iIfY thenX
* “reverse” direction

How to Prove an “Iff” Statement

XY = “Xifandonlyif Y7 = Xiffy = X<=>Y
Proof at minimum has 2 (If-Then proof) parts:

1. =>i1fX,thenY
e “forward” direction
« assume X, then use it to prove Y

2. <iIfY thenX
* “reverse” direction
« assume Y, then use it to prove X

Proving NFAs Recognize Regular Langs

Theorem:
A language L is regular if and only if some NFA N recognizes L.

Statements
Proof: 2
= If L 1s regular, then some NFA N recognizes it Justifications?
(Easier)

. We know: If L is regular, then a DFA exists that recognizes it.
- So to prove this part: Convert that DFA — an equivalent NFA(see HW 2)

& If an NFA N recognizes L, then L is regular. “equivalent” =
“recognizes the same language”

= If L 1S regular, then some NFA N recognizes it

Statements Justifications

1. Lis aregular language 1. Assumption

2. A DFA M recognizes L 2. Def of Regular language
3. Construct NFANequivtoM 3. See hw 2

4. An NFA N recognizes L 4, 77?7

5. If Lis aregular language, 5. By Stmts #1 and #4

then some NFA N recognizes it

Proving NFAs Recognize Regular Langs

Theorem:
A language L is regular if and only if some NFA N recognizes L.

Proof:

= If L Is regular, then some NFA N recognizes It.
(Easier)
. We know: If L Is regular, then a DFA exists that recognizes it.
« So to prove this part: Convert that DFA — an equivalent NFA! (see HW 2)

& If an NFA N recognizes L, then L is regular. “equivalent” =
(Harder) “recognizes the same language”

. We know: for L to be regular, there must be a DFA recognizing it
« Proof Idea for this part: Convert given NFA N - an equivalent DFA

285

How to convert NFA-DFA?

A finite automaton is a S-tuple (Q, X, 6, qo, F'), where

1. @ is a finite set called the szates, <
2. Y is a finite set called the alphabet, :]

3. 0: Q x ¥— Q) is the transition function,

4. qo € () 1s the start state, and

5. F C Q is the set of accept states. A nondeterministic finite automaton
is a S-tuple (Q, %, 9, qo, F'), where

. 1. @ is a finite set of states,
Proof 1dea: > T is a finite alphabet
Let each “state” of the DFA T TS TR i o .
= set of states in the NFA 3.0: Q x ¥.—>P(Q) is the transition function,
4. gy € () 1s the start state, and
5. F C @ is the set of accept states.

Symbol read @ Start

SR ——
@ NFA computation can
{ e | be in multiple states
\ DFA computation can
O - only be In one state
@ @ So encode:
1 oo a set of NFA states
@ @ @ @ as one DFA state
T
This is similar to the proof
o @ @ @ @ @ strategy from

“Closure of union” where:

@ @ a state = a pair of states

Convert NFA-DFA, Formally
+LetNFAN = (Q, 22, 3, qo, F')

« An equivalent DFA M has states Q' = P(Q) (power set of Q)

The NFA N4

A DFA D that is equivalent to the NFA N,

No empty transitions

Have: NFA N = (Q, X, 0, qo, F)

Want: DFA M = (Q', X, ¢, qo’, F"')

1. Q, — P(Q) A DFA state = a set of NFA states
2. ForRe Q' and a € ¥,

5,(R7 a) — l \ (5(7“7 a) A DFA step = an NFA step for all states in the set
R = DFA state = set of NFA states rcR

3. 90" = {qo}
4. I = {R € Q'| R contains an accept state of N}

thshback: ADdINg EMpty Transitions

- Define the set e-REACHABLE(q)
* ...to be all states reachable from q via zero or more empty transitions

(Defined recursively)

» Base case: ¢ € e-REACHABLE(q)

* Inductive case:

A state is in the reachable set if ...

e-REACHABLE(q) = {r | p € e-REACHABLE(q) and r € d(p,€)}

... there i1s an empty transition to it from
another state in the reachable set

With empty transitions

NFA-DFA

Have: NFA N = (Q, 2,9, qo, F)
Want: DFA M = (Q’, 3,9, qo’, F')

1. Q" =P(Q)
2. For Re Q' and a € X,

5’ R,a) U {4 e-REACHABLE(J(r, a))

reR

3. o' =446+ =-REACHABLE(¢p)
4. I = {R € ()'| R contains an accept state of N}

Almost the same, except ...

Proving NFAs Recognize Regular Langs

Theorem:
A language L is regular if and only if some NFA N recognizes L.

Proof:

= If L Is regular, then some NFA N recognizes It.
(Easier)
. We know: If L Is regular, then a DFA exists that recognizes it.
- So to prove this part: Convert that DFA — an equivalent NFA! (see HW 2)

& If an NFA N recognizes L, then L is regular.
(Harder)
. We know: for L to be regular, there must be a DFA recognizing it
B) - Proof Idea for this part: Convert given NFA N — an equivalent DFA ...
... using our NFA to DFA algorithm!

Concatenation is Closed for Regular Langs

PROOF

_ . If a language has an NFA recognizing It,
DFA M, = (QZ' 2, 52' q2 FZ) recognize 4, then it is a regular language

Construct N = (Q, X, 9, q1, F») to recognize A; o A M, M,
1.Q=Q1UQs 0
. —J © O oo
2. The state ¢ is the same as the start state of M; °©° B o o
3. The accept states F5 are the same as the accept states of M, ﬂ
4. Define § so that for any ¢ € @ and any a € X, N
-
(91(g,) g€ Qrandq ¢ O
@ @ T=0 o=
5(a)_<61(Qaa’) qEFlanda#s °© o A = 5
& {g2} qe F anda=c¢ N
 92(¢; a) q € Q2. v 222l

Concat Closed for Reg Langs: Use NFAs Only

PROOF

If language is regular,

Let N1 = (Q1,%, 61, q1, F1) recognize Ahy then it has an NFA recognizing it ...
No = (Q2, X, 02, q2, F>) recognize As:

~
)

Construct N = (Q, X, 9, q1, F») to recognize A; o A N, N,
1.Q=0Q:1UQ, o 9
. @ @ —>O O O ©
2. The state ¢; is the same as the start state of /V; °° © oo ©
3. The accept states F5 are the same as the accept states of N l
4. Define § so that for any ¢ € @ and any a € X, N
>
(?
- g€ @Qrand g & Fi oo O-}e o
? g€ Fianda # ¢ o o DT "% 0
5(q’a) — . o O
? ge Fianda=¢ L
X R q € Qo. 296

Union: AUB ={z|z € Aorz € B}

thstback: UNioN 1S Closed For Regular Langs

THEOREM

The class of regular languages is closed under the union operation.

In other words, it A; and As are regular languages, so is A; U As.

Proof:

« How do we prove that a language is regular?
« Create a DFA or NFA recognizing it!

« Combine the machines recognizing A, and A4,
* Should we create a DFA or NFA?

Proof, with DFA

thstback: UNioN 1S Closed For Regular Langs

Proof
Gi . My = (Q1,%,01,4q1, F1), recognize Ay,
e Ulven:. .
My = (Q2, X, 02, q2, F2), recognize A,

« Construct: a new machine M = (Q, X, 9, qo, F') using M, and M,

» states of M: Q={(r1,m2)|m € Qrand rs € Q2} =0, xQ, Sﬁtgt;ntéw
This set is the Cartesian product of sets Q1 and Q2 | "y state

« M transition fn: 5((?"1, r9), (L) — (51 (r1,a),d2(rs, (L)) M step =

a stepin M, + a step in M,

« M start state: (q1,92)

Accept if either M, or M, accept
* M accept states: F = {(ry,r3)|r1 € Fy orry € Fy}

Alternate Proof, with NFAs

Union i1s Closed for Regular Languages

N

Add new start state,
and e-transitions to
old start states

L

~

Union i1s Closed for Regular Languages

PROOF

Let Ny = (Q1,%,01,¢q1, F1) recognize Aq, and
N2 = (QQ, 2?52, q2, Fg) recognize AQ.

Construct N = (Q, X, d,|qo,|F) to recognize A; U As.

1. Q =Hqo}jU Q1 U Q2.

2. The state|qp|is the start state of V.

3. The set of accept states F' = F} U F5.

Alternate Proof, with NFAs

N) —_—
Vo -0
08© E/Oo©

> [

NQ/_,O©‘ € @/ ©\
Q © O ©
S O L O

Alternate Proof, with NFAs

Union i1s Closed for Regular Languages

PROOF i ’ |

©o ke

Let Ny = (Q1,%,01,¢q1, F1) recognize Aq, and 00 © E/ ~0O
Ny = (Q2, %, 02, q2, F») recognize A,. \O_/ » Q \ ©

Construct N = (Q, X, 6, qo, F') to recognize A; U As. . 00 NS O

B s, O

1. Q ={q}UQ1UQ2. ke O %0

2. The state gg 1s the start state of V.

3. The set of accept states F' = F} U F5.
4. Define ¢ so that for any ¢ € Q and any a € X,

(01(q q €
S(ga)={ 1 LED
? g=qgoanda =€
? q=qoanda # € o

List of Closed Ops for Reg Langs (so far)

V]« Union

V1« Concatentation

» Kleene Star (repetition)

Star: A* = {x122...21| k > 0 and each z; € A}

Kleene Star Example

Let the alphabet 3 be the standard 26 letters {a, b, ..., z}.
If A = {good,bad}

{e, good, bad, goodgood, goodbad, badgood, badbad,

A* = goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, ... }

Note: repeat zero or more times

(this is an infinite language!)

Kleene Star

N
4 e
s | 90O ©
© ©
\ O Y,
New start (and accept) state,
e-transitions to old start state
\ Old accept states

e-transition to old
start state

(h-class exerclse,

Kleene Star 1s Closed for Regular Langs

THEOREM

The class of regular languages is closed under the star operation.

Kleene Star 1s Closed for Regular Langs

PROOF Let N = (Ql,E,él,ql,Fl) recognize Aq.
Construct N = (Q, 3, §, qo, F') to recognize Aj.

N

L

. O
O

@

I

/

£
O+

O

©

E}

N\

/

Kleene Star 1s Closed for Regular Langs

PROOF Let N1 = (Q1,%,01,q1, 1) recognize A;. M

Construct N = (Q, 3, 4, qo, F') to recognize Aj. @

1. Q= {q} U

2. The state qq is the new start state.
3. F = {Q()} U F1

Kleene star of a language must accept the empty string!

/

/

~N

N

‘@_

=

o

=

O
O

O
O

Kleene Star 1s Closed for Regular Langs

PROOF Let Ny = (Q1,%, 01,41, F1) recognize A;.
Construct N = (Q, 3, 4, qo, F') to recognize Aj.

1. Q@ ={q} U
2. The state qq is the new start state.

3. F={q}tVF
4. Define § so that for any g € @ and any a € X,

Ny

.

g€ @Qrand g & Fy

g€ Fianda # ¢

d(q,a) = g€ Fianda=¢

g=¢qoanda=¢€

N N N N N

¢ = qo and a # €.

Q0O

/
Eﬁg
O
@)
\

308

Many More Closed Operations on Regular Languages!

« Complement

* Intersection
 Difference

» Reversal

« Homomorphism

e (See HW?2)

Check-in Quiz 2/13

On gradescope

