UMB CS 420

Regular Expressions
Wednesday February 22, 2023

Expressions
Small Re gul r

Expression Expression Express on

o o U

$4.23 A2V $6.23




%/{/{0«/{0@%@/{5&’

« HW 3 out
« Due Sun 2/26 11:59pm EST

_ A————©)
» Quiz Preview: ON /
1. What is the alphabet of the following NFA? 8 @

« You may assume that empty transitions are denoted with €

2. Which of the following is a representation of a regular language?



last Tie: Why These (Closed) Operations?

e Union
e Concat
e Kleene star

All regular languages can be constructed from:
- single-char strings, and
- these three closed operations!




$o Far: Regular Language Representations

(NFA/DFA)

State diagram

1.

Formal
description

2.

1. Q ={q1, 92, g3},
2. ¥ ={0,1},
3. ) is described as

4. ¢ is the start state
5. F ={q2}

Our Running Analogy:

- Class of regular languages ~ a “programming language”
- One regular language

23

2500127

o) 1
d1 | 91 g2
q2 | 43 g2
43 | 92 g2

~a “program”

Need a more concise
(textual) notation??

Actually, it's a real
programming language, for
text search / string matching
computations

(doesn't fit)

Find and Replace
=} QuickFind ~ | A7

Finé\what:

Quick Replace ~

— (Qa Ea 57 q0,

Replace with:
Z=\1;

F) 777

Look in:

l Current Project

IZ} Find options
Match case
|| Match whole word
Search up

| use:

Regular expressions

Find Next | |

Replace

1 Replace All

|




Regular Expressions:

A Widely Used Programming Language

(in other tools / languages)

ja\fa . thl | . regex General Commands Manual GREP(1)

, egrep, fgrep, rgrep - print lines matching a pattern

e Unix / Linux
/ Class Pattern

i [oPTIONSH PATTERN [FILE.N.]
e Java e YT U

DESCRIPTION

Java |ang Object searches the named input EILEs (or standard input if no files are
: - named, or if a single hyphen-minus (-) is given as file name) for lines
: H containing a match to the given PATTERN. By default, grep prints the

o Pyth on java.util.regex.Pattern containing o

@, Python » | English v|[3.86rc1 v|Documentation » The Python Standard Library » Text Processing Services » (Quil

« Web APIs )

About regular expressions (regex) — Regular expression operations

Analytics supports regular expressions so you can create more flexible definitions for things like
view filters, goals, segments, audiences, content groups, and channel groupings. ce code: Liba‘re.py

This article covers regular expressions in both Universal Analytics and Google Analytics 4.
module provides regular expression matching operations similar to those found in Perl.
In the context of Analytics, regular expressions are specific sequences of characters that
broadly or narrowly match patterns in your Analytics data.

For example, if you wanted to create a view filter to exclude site data generated by your own

employees, you could use a regular expression to exclude any data from the entire range of IP

addresses that serve your employees. Let’s say those IP addresses range from 198.51.100.1 -

198.51.100.25. Rather than enter 25 different IP addresses, you could create a regular 331
expression like 198\.51\.100\.\d* that matches the entire range of addresses.



Why These (Closed) Operations?

e Union
e Concat
e Kleene star

All regular languages can be constructed from:
- single-char strings, and
- these three closed operations!

The are used to define regular expressions!

332



Regular Expressions: Formal Definition

R is a regular expression if R is — :
This Is a recursive

definition

1. a for some a in the alphabet 3,

2. €,

(R1 U Ry), where R; and R are regular expressions,
. (R1 0 R2), where Ry and R» are regular expressions, or
. (R}), where R; is a regular expression.

333



flasntack: Recursive Definitions

Recursive definitions are
definitions with a self-reference

A valid recursive definition must have:
- base case and
- recursive case (with a “smaller” self-reference)




flasntack: Recursive Definitions

function factorial( n )

{

Base case if ( ) Self-reference
return 1;

Recursive case else - -
Recursive call with

“smaller” argument

return factorial



flasntack: Recursive Definitions

A Natural Number is either: Self-reference
Base case e Zero, Or
Recursive case e the Successor of a Natural Number “smaller” argument



flasntack: Recursive Definitions

A node followed by a list

Node { <«(——— ‘23H8H35H10A/
data; ’
Node next;
()
Smaller Self- refe rence Left sub-tree is a binary tree \ o @ /Right sub-tree is a binary tree
() () (@) =)

Where's the base case??

| call it my billion-dollar mistake. It Data structures are

was the invention of the null lv d f. d
reference in 1965. common y. erine
recursively

— fe;m/ Noare —



Regular Expressions: Formal Definition

R is a regular expression if R is

1. a for some a in the alphabet 3, (A lang containing a) length-1 string

3 Base 2 : - n :
Cases . €, | (Alang containing) the empty string
3. 0, Theempty set (ie, a lang containing no strings)
union —4, (R; U R»), where R; and R are regular expressions, .
, 3 Recursive

concat 5, (Ry o R2), where R; and Ry are regular expressions, or |  cases

star —76. (R]), where R; is a regular expression.

Note:

- A regular expression represents a language
- The set of all regular expressions represents a set of languages




Regular Expression: Concrete Example

Entire regular expr: language whose
strings come from these languages
concat’ed (implicit) together

the language {“0”, 1"} (O U1 ) 0* the language {*, "0, “00%, ...}

the language {“0”} the language {“1"}

» Operator Precedence:
« Parentheses
« Kleene Star
» Concat (sometimes use o, sometimes implicit)Rif,Z'fi”:f;?ffil"aﬁfaﬁetE,
« Union 2 .

R1 U R;), where R; and R; are regular expressions,

3.
4., (
5. (R1 0 R2), where Ry and R» are regular expressions, or
6. (R7), where R; is a regular expression.



Regular Expressions = Regular Langs?

Prove: Any regular language

R is a regular expression if R is can be constructed from:
1. a for some a in the alphabet 3, _ base cases +
3 Base 2 union, concat, Kleene star
Cases &
3. 0,
— 4. (R; U R»), where R and R5 are regular expressions,
3 Recursive ( 2) : 2 e P
Cases |- (R1o0 R2),where Ry and R» are regular expressions, or
6. (R7), where R; is a regular expression.
Actually:

- Aregular expression represents a regular language
- The set of all regular expressions represents the set of regular languages

(But we have to prove it)



Thm: A Lang Is Regular iff Some Reg Expr Describes It

= If a language Is regular, it is described by a reg expression

& If a language Is described by a reg expression, it Is regular

(Easier) How to show that a
+ To prove this part: cONvert reg expr — equivalent NFA! language Is regular?

* (Hint: we mostly did this already when discussing closed ops)

Construct a DFA or NFA!



RegEXpr->NFA

R is a regular expression it R is

. a
1 a for some a in the alphabet &, )—’©
@ \ Construction of N to recognize Ay o Ay
N( N
?

3 — O 5 @}
~O o °. 0 o

4 (Ry U Ry), where oy and Ry a | /|0 -J% e

5.

6.

(R1 0 R2), where Ry and Ry a1 | | —— | expregione o=
5 . oy e
(RY), where R; is a regular exj 2, © ofe i }

@) O @

. /




Thm: A Lang Is Regular iff Some Reg Expr Describes It

= If a language Is regular, it is described by a reg expression
(Harder)

- To prove this part: Convert an DFA or NFA — equivalent Regular Expression
e To do so, we first need another kind of finite automata: a GNFA

&< If a language Is described by a reg expression, it Is regular
(Easier)
« Convert the regular expression — an equivalent NFA!

(could you write this as Statements and Justifications?)




Generalized NFAs (GNFASs)

A plain NFA
abUba | = 3 GNFA with single char

regular expr transitions

Goal: convert GNFAs
to Regular Exprs

« GNFA = NFA with regular expression transitions



GNFA->RegExpr function

On GNFA input G:

e If G has 2 states, return the regular expression (on transition),
e.8. Equivalent regular expression

@ (Ry) (Ro)* (R3) U (Ry) —

Could there be
less than 2 states?




GNFA>RegEXpr Preprocessing

* First, modify input machine to have:

Does this change the

ine?
. New start state: language of the machine?

« No incoming transitions
e ectransition to old start state

* New, single accept state:
« With e transitions from old accept states



GNFA->RegExpr function (recursive)

On GNFA input G:

oase |+ If G has 2 states, return the regular expression (from transition),
e.g.:
Q (Ry) (Ro)* (R3) U (Ry)
Recursive qi
Case
* Else:

« “Rip out” one state
« “Repair” the machine to get an equivalent GNFA G’ | Recursive definitions have:
- Recursively call GNFA®RegExpr(G) ; Dasecase and

- recursive case
(with “smaller” self-reference)




GNFA->RegExpr: “Rip/Repair” step

N @ (Ry) (Ro)* (R3) U (Ry)
RS

after

To convert a GNFA to a regular expression:
“rip out” state, then “repair”,
before and repeat until only 2 states remain



GNFAéRegExpr: “Rip/Repair” step

Before: two paths from g; to g;:
1. Not through q,,

2. Through g,
/ Q (Ry) ()™ (R3) U (Ry)

after

before



GNFA->RegExpr: “Rip/Repair” step

After: union of two “paths” from g, to q,
1. Not through q,,

Iy

Rl @
R

2

before

2. Through g,

o~

(121) (Ro)™ (123)

O

after

U (12y)



GNFA->RegExpr: “Rip/Repair” step

Ry
o ) LED B BV (R
o @ s after
R

2

before Before:
- path through q,;, has 3 transitions

- One s self-loop



GNFAéRegExpr: “Rip/Repair” step

After:
- Self loop becomes star operation
o o - Others are concat’ed together
(1) (R)* (Ra)|U (Ry)
q;
Ry Rs
@ concat after
R Star operation
before Before:

- path through q,;, has 3 transitions
- One s self-loop



GNFA->RegExpr: Rip/Repair “Correctness”

@ (Ry) (Ro)* (R3) U (Ry)

after

Must show these
are equivalent

Equivalent =
same language

before



GNFA>RegExpr “Correctness”

 “Correct” / “Equivalent” means:

LANGOF ( G ) = LANGOF (R)

* Where:
* G=a GNFA
« R =a Regular Expression
* R=GNFA>RegEXpr(G)

* |.e.,, GNFA»RegExpr must not change the language!
« Key step: the rip/repair step



GNFA->RegExpr: Rip/Re

Must show these are
equivalent

R, @(Ro (Ro)* (R3)
(]
e ‘ after

nalr “Correctness”

U ()

Must prove:

2

before

R, R,
e 2 Ccases:
@ 1.
R

2.

« Every string accepted before, is accepted after

Accepted string does not go through q,;,
M Acceptance unchanged (both use R, transition part)

String|goes through q;,

« Acceptance unchanged?

V+ Yes, via our previous reasoning



Thm: A Lang Is Regular iff Some Reg Expr Describes It

= If a language Is regular, it is described by a regular expr
Need to convert DFA or NFA to Regular Expression ...

i « Use GNFA>RegEXxpr to convert GNFA — equiv regular expression!

< If a language Is described by a regular expr, it is regular
V] « Convert regular expression — equiv NFA!

Now we may use regular expressions to
e p rese nt regu la r la ngs. So a regular language has these

equivalent representations:

DFA
So we also have another way to prove - NFA

things about regular languages! Regular Expression



In-Class quiz 2/22

See gradescope



