UMB CS 420

Inductive Proofs
Monday February 27, 2023

%/{/{0«/{0@#{@/{&?

« HW 3 in
= Due Sun 2/26 11:59pm EST

* HW 4 out
e Due Sun 3/5 11:59pm EST

Quiz Preview

« Which of the following best describes
when to use a proof by induction?

Kinds of Mathematical Proof

 Deductive proof (from before)
e Starting from assumptions and known definitions,
« Reach conclusion by making logical inferences

* Proof by induction (now)

« Use this when working with recursive definitions

A valid recursive definition has:
- base case(s) and
- recursive case(s) (with “smaller” self-reference)

Proof by Induction

To Prove: a Statement about a recursively defined “thing” x:

1. Prove: Statement for base case of x

2. Prove: Statement for |recursive case of x:

. Assume: induction hypothesis (|

H)

.e., Statement IS true forjsome X ijer

« E.g,if xis number, then “smaller” = lesser number

+ Prove: Statement for x, ..., using IH (and known definitions, theorems ...)
tO Xi,0er Preserves Statement

 Typically: show that going from x

smaller

A valid recursive definition has:

- base case(s) and

- recursive case(s)

(with| “smaller”

self-reference)

Natural Numbers Are Recursively Defined

A Natural Number is:

Base Case | ¢ O Self-reference

Recursive

ae . *Ork+1, where kis a Natural Number

But definition is valid because self-reference is “smaller”

So proving things about Natural Numbers
requires proof by induction!

A valid recursive definition has:
- base case and
- recursive case (with “smaller” self-reference)

Proof By Induction Example (sipser ch o)

M —1

= loan balance after t months
* t = # months
« P =principal = original amount of loan
« M = interest (multiplier)
* Y=monthly payment

t__
Prove true: P, = PM' —Y (M 1)

(Details of these variables not too important here)

Proof By Induction Example (sipser ch o)
Mt —1

M —1 —
An proof by Induction exactly

| | ; \ Ll
Proof: by induction on natural number ¢ (ﬁ‘e‘fewzgtjrgfz“urrﬂgzrﬂf;ﬁ;ﬁ'iﬁe

induction is “on”

Prove true: P, = PM* —Y

Base Case, t = 0: A Natural Number is:
e Goal: Show PO = P (amount owed at start = loan amount) -0
. * Ork+1,wherekisa
* Proof of Goal: 0 MY —1 natural number
P,=PM°—Y (= _p
M —1
Plugint=0

Simplify, to get to goal statement

Proof By Induction Example (sipser ch o)

A proof by induction exactly follows the

. 7\475 . 1 recursive definition (here, natural
Prove true: Pt _ PM L Y numbers) that the induction is “on
M — 1 A Natural Number is:

-0

m)+ k+1, for some nat num k

Inductive Case: t = k+ 1, for some nat num k
» Inductive Hypothesis (IH), assume statement true for some ¢ = (smaller) k

“Connect together” known |, == PM" — Y

definitions and statements M —1
\Goal statement to prove, for t = k+1:" Puy1 =|PM —Y (
Plug in IH

e Proof of Goal:
Pk:-{-l >y Pﬁﬂf - Y

Mk—|—1_1
)

Simplify, to get to goal statement

Definition of P,

In-class Exercise: Proof By Induction

A proof by induction exactly follows the
recursive definition (here, natural

Prove: (Z * 1) , _— numbers) that the induction is “on”
— <

m
: A Natural Number is:
p— . 0
Z | :

: k+1, for some nat num k
1=0

Use Proof by Induction.

Make sure to clearly state what (number) the induction is “on”

Proof by Induction: CS 420 Example

Statement tO prove: LANGOF (G) = LANGOF (R=GNFA>RegExpr(G))

 Where:

* G=a GNFA Condition for GNFA»RegExpr function to be “correct”,
R =a Regular Expression | ie, the languages must be equivalent

* R=GNFA>RegEXpr(G)

* .., GNFA»RegExpr must not change the language!
 Key step: the rip/repair step

last Tiwe: GNFAXREGEXpTY (recursive) function

On GNFA input G:
oo |+ If G has 2 states, return the regular expression (from the transition),

e.o..
5 @ (Ry) (Ro)* (Rs) U (Ry)
Recursive definitions have:

- base case and
- recursive case
(with a “smaller” object)

- Else:
Recursive |+ “Rip out” one state

Case . “Repair” the machine to get an equivalent GNFA ¢’
 Recursively call GNFA®RegExpr(G)

Proof by Induction: CS 420 Example

Statement 10 prove:

LANGOF (G) = LANGOF (GNFA>RegEXpr(G))

Recursively defined “thing”

Proof: by Induction on # of states In G

Plug in

. 4 Why is thi k
] 1. Prove Statement is true for base case [has 2 states .— “(y) | Py isthis ano

Goal LANGOF ((«)"“~(s)) = LANGOF (GNFA>RegExpr((» -“~++))) | 3. From (1) and (2)

Statements _—— — Justifications
1. LANGOF ((«)"~(»)) = LANGOF (R) 1. Definition of GNFA
2. GNFA>RegEXpr((«)"-(+))=R 2. Definition of GNFA>RegEXpr

Don't forget to write out
Statements / Justifications !

Proof by Induction: CS 420 Example

Statement 1o prove: | LANGOF (G) = LANGOF (GNFA»RegEXxpr(G))

Proof: by Induction on # of states In G
1. Prove Statement is true for base case |¢has 2 states @)L

2. Prove Statement is true for recursive case: | G has > 2 states
 Assume the induction hypothesis (IH):

. LANGOF (G')
» Statement Is true for smaller ¢’ _
« Use it to prove Statement is true for larger G LANGOF (GNFA®RegExpr(G’))
- Show that going from G to G’ preserves Statement | (Where G’ has less states than G)
Don’t forget to write out () e (%) Show that “rip/repair” step
‘ ; converts G to smaller, equivalent G’

Statements / Justifications ! s

before

Proof by Induction: CS 420 Example

Statement 1o prove: | LANGOF (G) = LANGOF (GNFA»RegEXxpr(G))

Proof: by Induction on # of states In G
1. Prove Statement is true for base case |¢has 2 states @)L

V] 2. Prove Statement is true for recursive case: | ¢ has > 2 states
 Assume the induction hypothesis (IH):

) LANGOF (G')
« Statement 1s true for smaller G’ _
« Use it to prove Statement is true for larger G LANGOF (GNFA®RegExpr(G’))
- Show that going from G to G’ preserves Statement | (Where G’ has less states than G)
Statements Justifications
1. LANGOF (G’) = LANGOF (GNFA>RegEXpr(G’')) 1. IH
2. LANGOF (G) = LANGOF (G") . Correctness of Rip/Repair step (prev)

2
3. GNFA->RegExpr(G)=GNFA>RegExpr(G¢’) 3. Def of GNFA»RegEXxpr
Goal 4. LANGOF (G) = LANGOF (GNFA>RegEXpr(G)) 4. From (1), (2), and (3)

$ fa~ HoOw to Prove A Language |s Regular?

e Construct DFA
e Construct NFA

» Create Regular Expression mmm | 3lishty different because

of recursive definition

R is a regular expression if R is
1. a for some a in the alphabet X,
2. g,
3. 0,
4. (R1 U Rs), where R; and R, are regular expressions,
5. (R1 o R), where Ry and R; are regular expressions, or
6. (R7), where R; is a regular expression.

Proof by Induction

To Prove: a Statement about a recursively defined “thing” x:
1. Prove: Statement for base case of x

2. Prove: Statement for recursive case of x:
. Assume: induction hypothesis (IH)

.e., Statement is true for some X, ijer
« E.g,if xis number, then “smaller” = lesser number
=)+ Eg, ifxisregular expression, then “smaller” = ...
+ Prove: Statement for x,,..., using IH (and known definitions, theorems ...)

* Usually, must show that going from x, ;.. t0 X, Preserves Statement

378

for some a in the alphabet 3,

a
6, “smaller”

Whole reg expr
b)

1.
2.
3.
4. (R1 U Ry), where Ry and R, are regular expressions,

5. (R1 o Rs), where Ry and R are regular expressions, or
6. (R7), where R; is a regular expression.

Thm: Reverse Is Closed for Regular Langs

R

abc — cba

R

For any string w = wiwsz - - - Wy, the reverse of w, written w'™, is the string w in reverse order, ws, - - - waws.

For any language A, let A™ = {w™| w € A}

. . . R { a, ab, abc }R — {a,ba, cba}
Theorem: if A is regular, so is A

Proof: by induction on the regular expression of A

Thm: Reverse I1s Closed for Regular Langs
if A is regular, so is A™

Proof: by Induction on regular expression of A: (6 cases)

Base cases | 1. @ for some a in the alphabet 3, | same reg. expr. represents 4™ so it is regular

2. €, | same reg. expr. represents A® so it is regular

3. (ﬂ, same reg. expr. represents A® so it is regular

inductive |4. (27 U Rs), where R; and R, are regular expressions, ¢m=
== (Ry o Rg), where R; and Ry are regular expressions, or

6. (R7), where R; is a regular expression.

Need to Prove: if A is a regular language, described by reg expr R, U R,, then AR is regular
|H1: it A, is a regular language, described by reg expr R, then A, ® is regular

IH1: if A, is a regular language, described by reg expr R,, then A, % is regular

“smaller”

Thm: Reverse I1s Closed for Regular Langs
if A is regular, so is A™

Proof: by Induction on regular expression of 4: (Case # 4)
Statements Justifications

Language A is regular, with reg expr R, U R, Given
R, and R, are regular expressions Def of Regular Expression
R, and R, describe regular langs A, and A4, Reg Expr < Reg Lang (Prev Thm)
If A, is a regular language, then A, % is regular IH
IH

A ®and A,% are regular
AR U A,Ris regular
ARUAR=(A, UA)R

By (3), (4), and (5)

Union Closed for Reg Langs
Reverse and Union Ops Commute
. A=A4,UA4, By (1), (2), and (3)

Goal | 10. AZRisregular 10 By (7), (8), (9)

W oo NN

1
2
3
A
5. IfA,is aregular language, then A,% is regular
6
7
8
9

Thm: Reverse I1s Closed for Regular Langs

if A is regular, so is A™®
Proof: by Induction on regular expression of A: (6 cases)

Base cases | [] 1. @ for some a in the alphabet 3,

Inductive ZI 4

Ry U Rs), where Ry and R are regular expressions,
cases

will use similar

5. (R1 o Ry), where Ry and R are regular expressions, or | Remaining cases
6. (R7), where R; is a regular expression. reasoning

In-Class quiz 2/27

See gradescope

