Non-CFLs

Wednesday, March 22, 2023

(AN UNMATCHED LEFT PARENTHESIS CREATES AN UNRESOLVED TENSION THAT WILL STAY WITH YOU ALL DAY.

Announcements

- HW 6
 - Due Sunday 3/26 11:pm EDT

Quiz Preview

- The Pumping Lemma for CFLs states that:
 - all strings in a CFL that are longer than the pumping length can be split into 5 substrings uvxyz ...
 - ... where repeating some of these substrings (together) results in a "pumped" string that is still in the language.
 - Which are the substrings that can be pumped (together) in this way?

Flashback: Pumping Lemma for Regular Langs

• Pumping Lemma describes how strings repeat

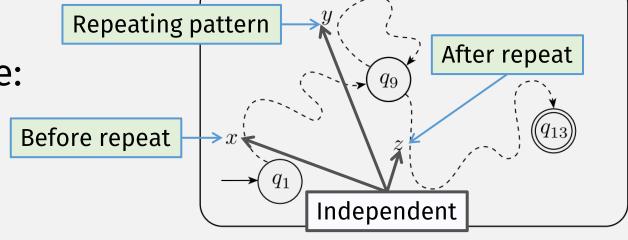
Regular language strings repeat using Kleene star operation

• 3 substrings x y z are independent!

A non-regular language:

$$\{\mathbf{0}^n_{\backslash}\mathbf{1}^n_{/}|\ n\geq 0\}$$

Kleene star can't express this pattern: 2nd part depends on (length of) 1st part



• Q: How do CFLs repeat?

Repetition and Dependency in CFLs

Parts before/after repetition point are linked Repetition repetition $B \to \#$

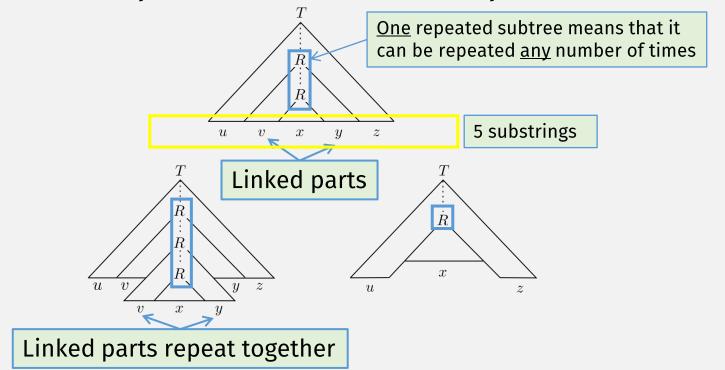
$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000#111$$

How Do Strings in CFLs Repeat?

NFA can take loop transition any number of times, to process repeated y in input

• Strings in regular languages <u>repeat states</u>

• Strings in CFLs repeat subtrees in the parse tree



Pumping Lemma for CFLS

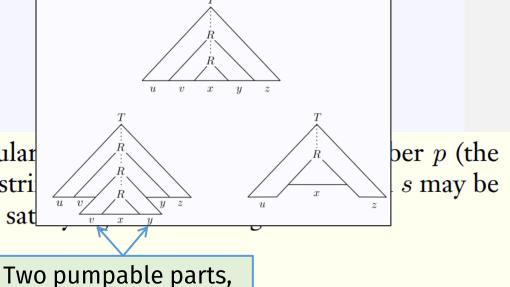
Pumping lemma for context-free languages If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces s = uvxyz satisfying the conditions

But they must be pumped together!

- 1. for each $i \geq 0$, $uv^i xy^i z \in A$,
- **2.** |vy| > 0, and
- 3. $|vxy| \le p$.

Pumping lemma If A is a regular pumping length) where if s is any stridivided into three pieces, s = xyz, sat

- 1. for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \leq p$. One pumpable part



pumped together

A Non CFL example

language $B = \{ \mathbf{a}^n \mathbf{b}^n \mathbf{c}^n | n \ge 0 \}$ is not context free

Intuition

- Strings in CFLs can have two parts that are "pumped" together
- This language requires three parts to be "pumped" together
- So it's not a CFL!

Proof?

Want to prove: $a^nb^nc^n$ is not a CFL

Proof (by contradiction): Now we must find a contradiction ...

- Assume: $a^nb^nc^n$ is a CFL
 - So it must satisfy the pumping lemma for CFLs
 - I.e., all strings \geq length p are pumpable
- Counterexample = $a^p b^p c^p$

Pumping lemma for context-free languages If *A* is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces s = uvxyz satisfying the conditions

- 1. for each $i \geq 0$, $uv^i x y^i z \in A$
- **2.** |vy| > 0, and
- 3. $|vxy| \le p$.

Reminder: CFL Pumping lemma says: all strings $a^n b^n c^n \ge \text{length } p \text{ are splittable}$ into *uvxyz* where *v* and *y* are pumpable

Contradiction if: string \geq length p that is **not splittable** into *uvxyz* where *v* and *y* are pumpable

$$p \text{ as } p \text{ bs } p \text{ bs}$$

Want to prove: $a^nb^nc^n$ is not a CFL

Possible Splits

Proof (by contradiction):

Contradiction

Not

pumpable

- Assume: $a^n b^n c^n$ is a CFL
 - So it must satisfy the pumping lemma for CFLs
 - i.e., all strings \geq length p are pumpable
- Counterexample = $a^p b^p c^p$

Contradiction if: string \geq length p that is **not splittable** into *uvxyz* where *v* and *y* are pumpable

- Possible Splits (using condition # 3: $|vxy| \le p$)
 - vxy is all as
 - vxy is all bs
 - vxy is all cs
 - vxy has as and bs
 - ✓ vxy has bs and cs

So $a^n b^n c^n$ is not a CFL

(<u>justification</u>:

contrapositive of CFL pumping lemma)

p bs p as p bs

conditions

2. |vy| > 0, and 3. $|vxy| \le p$.

1. for each $i \geq 0$, $uv^i x y^i z \in A$,

 $a^p b^p c^p$ cannot be split into uvxyzwhere v and y are pumpable

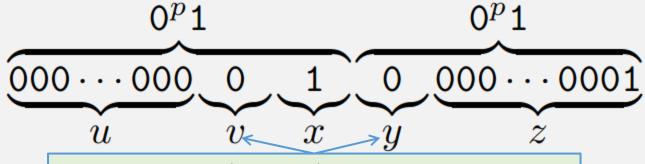
Pumping lemma for context-free languages If *A* is a context-free language,

then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces s = uvxyz satisfying the

Another Non-CFL $D = \{ww | w \in \{0,1\}^*\}$

Be careful when choosing counterexample $s: 0^p 10^p 1$

This s can be pumped according to CFL pumping lemma:



Pumping v and y (together) produces string still in D

• CFL Pumping Lemma conditions: $\ \blacksquare 1$. for each $i \ge 0$, $uv^i xy^i z \in A$,

This <u>doesn't prove</u> that the language is a CFL! It only means that <u>this attempt to prove</u> that the language is <u>not</u> a CFL <u>failed</u>.

2.
$$|vy| > 0$$
, and

Another Non-CFL $D = \{ww | w \in \{0,1\}^*\}$

Need another counterexample string s:

If vyx is contained in first or second half, then any pumping will break the match

$$\bigcap^p \mathbf{1}^p \mathsf{0}^p \mathbf{1}^p$$

So vyx must straddle the middle

But any pumping still breaks the match because order is wrong

- CFL Pumping Lemma conditions: 1. for each $i \ge 0$, $uv^i xy^i z \in A$,

 - **2.** |vy| > 0, and
 - **3.** $|vxy| \leq p$.

Now we have proven that this language is **not a CFL!**

A Practical Non-CFL

- XML
 - ELEMENT → <TAG>CONTENT</TAG>
 - Where TAG is any string
- XML also looks like this <u>non-CFL</u>: $D = \{ww | w \in \{0,1\}^*\}$
- This means XML is <u>not context-free!</u>
 - Note: HTML is context-free because ...
 - ... there are only a finite number of tags,
 - so they can be embedded into a finite number of rules.

In practice:

- XML is <u>parsed</u> as a CFL, with a CFG
- Then matching tags checked in a 2nd pass with a more powerful machine ...

Next: A More Powerful Machine ...

 M_1 accepts its input if it is in language: $B = \{w \# w | w \in \{0,1\}^*\}$

 $M_1 =$ "On input string w:

Infinite memory (initial contents are the input string)

1. Zig-zag across the tape to corresponding positions on either side of the # symbol to check whether these positions contain the same symbol. If they do not, or if no # is found, reject. Cross off symbols as they are checked to keep track of which symbols correspond.

Can move to, and read/write from arbitrary memory locations!

In-class quiz 3/22

See gradescope