UMB CS420

Turing Machines (TMs)

Monday, March 27, 2023

CS 420: Where We've Been, Where We're Going

» Turing Machines (TMs) g

- Memory: states + infinite tape, (arbitrary-+ead/write)
« Expresses any “computation”

* PDAs: recognize context-free languages < .
. . Turing-recognizable
A s o1 Memory: states + infinite stack (push/pop only)
A— B e Can't express: arbitrary dependency, decidable
b - eg, {ww| w € {0,1}*}

context-free

* DFAs / NFAs: recognize regular langs
« Memory: finite states

e Can't express: dependency
e.g, {0"1"|n > 0}

Start t : h e n
- Ll t - th = the/ - @ 3

A special
subset of TMs

regular

Alan Turing

* First to formalize a model of computation
* |.e,, he invented many of the ideas in this course

* Also studied Artificial Intelligence
* The Turing Test

ChatGPT passes the Turing test

In 1950, Alan Turing proposed the Turing test as a way to measure a machine’s intelligence. The test pits a human against
a machine in a conversation. If the machine can fool the human into thinking it is also human, then it is said to have
passed the Test. In December 2022, ChatGPT, an artificial intelligence chatbot, became the second chatbot to pass the
Turing Test, according to Max Woolf, a data scientist at BuzzFeed

Google’s LaMDA Al in the summer of 2022, demonstrating that it is invalid. For many years, the
Turing test has been used as a standard for sophisticated artificial intelligence models.

6 Max Woolf & L
@minimaxir - Follow

congrats to OpenAl on winning the Turing Test

Finite Automata vs Turing Machines

 Turing Machines can read and write to arbitrary “tape” cells
« Tape initially contains input string

e Tape IS Infinite input | | Empty tape locations

 To the right -
5 head ababuuué...

States l

« Fach step: “head” can move left or right

« Turing Machine can accept / reject at any time

Call a language Turing-recognizable if some Turing machine
recognizes it.

Turing Machine Example

Example
™

input
. . . o L k
Define: /1 accepts inputs in language B = {w#w| w € {0,1}*} /1.
. . —
M, = “On input string w: head 011000#011000u ...

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols/correspond.

High-level: “Cross off” This is a high-level TM description

Low-level &: write "x" char || 4 i equivalent to (but more concise than)

our typical (low-level) tuple descriptions,
l.e., one step = maybe multiple § transitions

Analogy
“High-level”: Python
“Low-level”: assembly language

Turing Machine Example

M, accepts inputs in language B = {w#w| w € {0,1}*}

. . * j
M; = “On input string w: “Cross off” = write “x" char 011000#011000u ...

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

Y
x11000#011000uw ...

Turing Machine Example

M, accepts inputs in language B = {w#w| w € {0,1}*}

. . * j
M; = “On input string w: “Cross off” = write “x" char 011000#011000u ...

1. Zig-zag across the tape to corresponding positions on either ~

xI14000#011000uw ...

side of the # symbol to check whether these positions contain

the same symbol. If they do not, or if no # is found, reject. x11000#%x11000u ...

Cross off symbols as they are checked to keep track of which
symbols correspond.

Turing Machine Example

M, accepts inputs in language B = {w#w| w € {0,1}*}

. . oy
M, = “On input string w: Head “zags” back to start 011000#011000u ...
1.

Zig-zag across the tape to corresponding positions on either

side of the # symbol to check whether these positions contain —

the same symbol. If they do not, or if no # is found, reject. x11000#x11000u ...

Cross off symbols as they are checked to keep track of which —
symbols correspond.

Y
x11000#011000uw ...

x11000#x11000uw ...

Turing Machine Example

M, accepts inputs in language B = {w#w| w € {0,1}*}

. . oy
M, = “On input string w: Continue crossing off 011000#011000u ...

1. Zig-zag across the tape to corresponding positions on either

side of the # symbol to check whether these positions contain —

Y
x11000#011000uw ...

the same symbol. If they do not, or if no # is found, reject. x11000#x11000u ...

Cross off symbols as they are checked to keep track of which AY
symbols correspond.

x 11 000#x11000uw ...

T
xx1000#x11000uw ...

Turing Machine Example

M, accepts inputs in language B = {w#w| w € {0,1}*}

M = “On input string w:

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

2. When all symbols to the left of the # have been crossed off,
check for any remaining symbols to the right of the #. If any
symbols remain, reject; otherwise, accept.”

—
011000#0

B
x11000#0

xllO()O#_gc

—)¢(11000#X

@1000#}:

!

X X X XXX #X

Turing Machine Example

M, accepts inputs in language B = {w#w| w € {0,1}*}

M = “On input string w: jOllOOO#OllOOOu...
1. Zlg—zag across the tape to corresponding positions on elthfzr X—i L 000#011000u ..

side of the # symbol to check whether these positions contain —

the same symbol. If they do not, or if no # is found, reject. x11000#x11000u ...

Cross off symbols as they are checked to keep track of which —

symbols correspond.

x11000#x11000uw ...

}ﬂ{lOOO#XllOOOu...
! —
2. When all symbols to the left of the # have been crossed off, XXXXXX#XXXXXXU ...
check for any remaining symbols to the right of the #. If any accept

symbols remain, reject; otherwise, accept.”

Turing Machines: Formal Definition

This is a “low-level” TM
description

A Turing machine is a 7-tuple, (Q, %, I, 9, qo, Gaccept, Greject), Where
Q, 2, I are all finite sets and

1. @ is the set of states,

. 2 is the input alphabet not containing the blank symbol 1
. I is the tape alphabet, where u = T"and ¥ C T,

6: Q x I'—Q x I' x {LL.R} is the transition function,

go € (1€ | spi Write | move

. Qaccept € @ 15 the accept state, and

. Greject € @ 1s the reject state, where greject 7 Gaccept- . .
Is this machine

deterministic?
Or non-deterministic?

B = {w#w| w € {0,1}*}

Formal Turing Machine Example

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where

000

000

000

000

000

x X

Q, X, T are all finite sets and

1. @ is the set of states,

SN I

move

100

100

Ou ..

Ou ..

—,

Xu ..
accept

¥ is the input alphabet not containing the blank symbol v,
I" is the tape alphabet, where u € "'and X C T,

0: Q xI'—@Q x T x {L., R} is the transition function,
go € read es| write
Gaccepr € @ 15 the accept state, and
Grejece € @ 15 the reject state, where grejece # Gaceept-

Read char (0 or 1), cross it off, move head R(ight)

Transitions on this side: [@ g
Crossed offa 0

B = {w#w| w € {0,1}*}

Formal Turing Machine Example

011000#011000uw ..

—
x11000#011000u ... 'z

x11000#x11000uw ..

}(—11000#X11000u... 0,1—>R

xx1000#x11000uw ..
v

X X XX XXHEXXXXX XU ..

accept x—R ‘@ @ @’ x—R

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where
Q, X, T are all finite sets and
1. @ is the set of states,
¥ is the input alphabet not containing the blank symbol v,
I" is the tape alphabet, where u € "'and X C T,
0: Q xI'—@Q x T x {L., R} is the transition function,

go € read es| write | move \
Gaccepr € @ 15 the accept state, and

X—>R

SN I

Grejece € @ 15 the reject state, where grejece # Gaceept-

B = {w#w|w € {0,1}*}

Formal Turing Machine Example

ol

be
]
—_
O
O
o
H
-
—
—
O
O
@
C

J o *—J o
— -
- =
O O
o o
O o
+H# +*
o o
— =
- -
o o
o o
O O
C C
o
]
i~
M
7
o
1
=

o

e

[
o
o
o
H
o

[
—
o
o

Ou ..
—,

X X XX XXHEXXXXX XU ..

accept x—R ‘@ @ @’ x—R

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where
Q, X, T are all finite sets and

1. @ is the set of states,

2. ¥ is the input alphabet not containing the blank symbol v, “Zag” Left @. 0,1,x—1,
3. I is the tape alphabet, where u € I'and 3 C T, to last x

4. 5: Q x '—Q x I x {L.R} is the transition function, #—1

5. 90 € read ksl write | move

6. Gaccepr € @ 1s the accept state, and \ x—R qr 0, 1—L

7.

Grejece € @ 15 the reject state, where grejece # Gaceept-

B = {w#w| w € {0,1}*}

Formal Turing Machine Example

Read char (0 or 1), cross it off, move head R(ight)

’
01 OO0OO0O#011000wuw ..
Y
x 1 OO0OO0O#01 1000w This sid
IS SIde:
x 1 oooﬂciioOOu Crossed off a 1
R’
x 1 O0O0O#x11000u @ @
x—R 0,1—R
i > D
X X O0O0O#x11000uw ..
Y
X X XXX H#HEXXXXXXU ..
accept x—R ‘@ @ @’ x—R

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where
Q, X, T are all finite sets and
1. @ is the set of states,
¥ is the input alphabet not containing the blank symbol v,
I" is the tape alphabet, where u € "'and X C T,
0: Q xI'—@Q x T x {L., R} is the transition function,
go € read es| write | move
Gaccepr € @ 15 the accept state, and

SN I

Grejece € @ 15 the reject state, where grejece # Gaceept-

Formal Turing Machine Example

’

01 O0OO0O#011000uw ..
Y

x 1 O0OO0O#01 1000w ...
x 1 000#—}¢(11000|_|..
?{1 O0O0O#x11000uw ...
X—}‘L{ OOOﬁXllOOOu..

v Ty
X X XXX XH#EXXXXX XU ..

accept

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where
Q, X, T are all finite sets and
1. @ is the set of states,
¥ is the input alphabet not containing the blank symbol v,
I" is the tape alphabet, where u € "'and X C T,
0: Q xI'—@Q x T x {L., R} is the transition function,
go € read es| write | move
Gaccepr € @ 15 the accept state, and

SN I

Grejece € @ 15 the reject state, where grejece # Gaceept-

\ X—>R

B = {w#w| w € {0,1}*}

Accept if all
crossed out

Reject state not shown
Any transition not shown

goes 1o reject state

TMs: High-level vs Low-level?

M; = “On input string w:

1. Zig-zag across the tape
side of the # symbol to
the same symbol. If tl
Cross off symbols as tk
symbols correspond.

2. When all symbols to t
check for any remainir
symbols remain, reject;

Turing Machine: High-level Description

» M accepts if inputisin language B = {w#w| w € {0,1}*}

M; = “On input string w:

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they Aons “$ oot s found, reject.
Cross off symbols as thes/ We Will (mostly) \q track of which

bol d. stick to high-level
RO TR descriptions of

2. When all symbols to Turing machines, _>n crossed off,
check for any remaining & like thisone At of the #. If any
symbols remain, reject; otherwise;—.ccept.”

TM High-level Description Tips

Analogy:
 High-level TM description ~ function definition in “high level” language, e.g. Python
« Low-level TM tuple ~ function definition in bytecode or assembly

TM high-level descriptions are not a “do whatever” card, some rules:
1. All TMs must have a name, e.g., M, M, = “On input string w:
2. Input strings must also be named (like a function parameter), e.g., w

3. TMs can “call” or “simulate” other TMs (if they pass appropriate arguments)
« e.g,astepforaTM M can say: “call TM M, with argument string w, if M, accepts w then ..., else ...”

4. Follow typical programming “scoping” rules L Shoalate B onimput v
« can assume functions we've already defined are in “global” scope, RE2NFA .. B put -

5. Other variables must also be defined (named) before they are used

2. If simulation ends in accept state,

* e.g, can define a TM inside another TM N = “On input (B, w), where B is an NFA and w is a string:
. 1. Convert NFA B to an equivalent DFA C', using the procedur
6’ m USt be equ“’alent toa lOW'level formal‘ tu ple . this conversion given in Theorem 1.39.
» high-level “step” represents a finite # of low-level & transitions 2. Run TM M from Theorem 4.1 on input (C, w).

» So one step cannot run forever
« Eg,can’t say “try all numbers” as a “step”

S = “On mput w
1. Construct the following TM M.
M> = “On input z:

Non-halting Turing Machines (TMs) <®

So a TM computation
has 3 possible results:
« A Turing Machine can run forever - Accept

) - Reject
« E.g, the head can move back and forth in a loop - Loop forever

« We will work with two classes of Turing Machines:

« Arecognizer is a Turing Machine that may run forever (all possible TMs)
A decider is a Turing Machine that always halts.

Call a language Turing-recognizable if some Turing machine (Call a language Turing-decidable or simply decidable if some

recognizes it. . : Turing machine decides it. . ,
(3 possible computation results) (2 possible computation results)

Formal Definition of an “Algorithm”

* An algorithm is equivalent to a Turing-decidable Language
(always halts)

Turing-recognizable

(3 possible
computation
results)

decidable

(2 possible
computation
context-free results)

Many functions we have defined
this semester are algorithms!
e.g., all our conversion functions
are deciders!!

- d2n

- RE2NFA

- n2p

More Turing Machine Variations

THUS, FOR ANY NONDETERMINISTIC TURING
MACHINE M THAT RUNS IN SOME POLYNOMIAL
TIME p(r), WE CAN DEVISE AN ALGORITHM

THAT TAKES AN INPUT w OF LENGTH n AND
PRODUCES E,,. THE RUNNING TIME IS O(pin)
ON A MULTITAPE DETERMINISTIC TURING
MACHINE AND ...

WTF, MAN, I JUST
WANTED To LEARN
HowW T0 PROGRAM

VIDEO GAMES,

Y
O(1]0 0| u
1. Multi-tape TMs | \/ ,
a|ada|a|u
Y
b|la|u
Deterministic Nondeterministic
computation computation
o . Q: start (.}f—\
2. Non-deterministic TMs (Y
L. : ![1.
L reject -(1
R

« accept or reject

* accept

We will prove that
these TM variations
are equivalent to
deterministic,
single-tape
machines

Reminder: Equivalence of Machines

« Two machines are equivalent when ...

. ... they recognize the same language

Theorem: Single-tape TM < Multi-tape TM

= |f a single-tape TM recognizes a language,
then a multi-tape TM recognizes the language
 Single-tape TM is equivalent to ...
e ... multi-tape TM that only uses one of its tapes
e (could you write out the formal conversion?)

& |f a multi-tape TM recognizes a language,
then a single-tape TM recognizes the language

« Convert: multi-tape TM - single-tape TM

32

Multi-tape TM =» Single-tape TM

Idea: Use delimiter (#) on single-tape to simulate multiple tapes
« Add “dotted” version of every char to simulate multiple heads

¥

O|11(0(1(O0|u]...
M !
dalalal|luUJ] ...
e
bla]|u
S + n ° °
#01010#_aaa#baiu

Theorem: Single-tape TM < Multi-tape TM

= If a single-tape TM recognizes a language,
then a multi-tape TM recognizes the language

 Single-tape TM is equivalent to ...
* ... multi-tape TM that only uses one of its tapes

& If a multi-tape TM recognizes a language,
then a single-tape TM recognizes the language

« Convert: multi-tape TM - single-tape TM

Check-in Quiz 3/27

On gradescope

