UMB CS420

Nondeterministic TMs
Wednesday, March 29, 2023

THUS, FOR ANY NONDETERMINISTIC TURING
MACHINE M THAT RUNS IN SOME POLYNOMIAL
TIME p(n), WE CAN DEVISE AN ALGORITHM

THAT TAKES AN INPUT w OF LENGTH n AND
PRODUCES Eu,.. THE RUNNING TIME 1S O(P¥*n)

ON A MULTITAPE DETERMINISTIC TURING
MACHINE AND ..,

WTF, MAN, I JUsST
WANTED TO LEARN
HOW TO PROGRAM

VIDEC GAMES,

%/{/{0«/{0@#(@/{13’

* HW 7 out
« due Sun 4/2 11:59pm EST

Quiz Preview

« Which of the following are equivalent to a single-tape
deterministic TM?

last Tine: TUTING Machines

 Turing Machines can read and write to arbitrary “tape” cells
« Tape Initially contains input string

States .
l input | | Empty tape locations

* The tape Is infinite
» (to the right) head b b _é .

(0 I I

« On a transition, “head” can move left or right 1 step

Call a language Turing-recognizable it some Turing machine
recognizes 1t.

Turing Machine: High-Level Description

« M; accepts if inputis in language B = {w#w| w & {071}*}

M; = “On input string w:

We will (mostly)

1. Zig-zag across ing positions on either

define TMs using

side of the # S) . g (But it must always correspond to some
the same sym high-level { formal low-level tuple description)
~ " ription N
Cross off symb AU EIIERE, o keep track of which
* like this one

symbols correspon

2. When all symbols to the|Analogy:

check for any remaining : High-level (e.g, Pythc\>/2) function definitions

symbols remain, reject; ot Low-level assembly language

39

Turing Machines: Formal Tuple Definition

A Turing machine is a 7-tuple, (Q, %, I, 9, qo, Gaccept, Greject), Where
Q, 2, I are all finite sets and

1. @ is the set of states,

. 2 is the input alphabet not containing the blank symbol 1
. I is the tape alphabet, where u = T"and ¥ C T,

6: Q x I'—Q x I' x {LL.R} is the transition function,

. qo € (€39 je gefWrite yg move

. Qaccept € @ 15 the accept state, and

. Greject € @ 1s the reject state, where greject 7 Gaccept-

Flashback: DEFAS VS NFAS

A finite automaton is a S-tuple (Q, X, 6, qo, F'), where

1. @ is a finite set called the szates,

2. Y is a finite set called the alphabet, -
Nondeterministic

3. 5: Q X Z—>Q iS the Wﬂnsz.tionﬁln(:tion, transition produces set of
4. qo € Q is the start state, and possible next states
5. F C Q is the set of accept states. A nondeterministic finite automaton
is a S-tuple (Q, %, 9, qo, F'), where
vs 1. Q is a finite set of states,

2. Y is a finite alphabet,

3.0: Q x X.—P(Q) is the transition function,
4. qo € @ is the start state, and

5. F C @ is the set of accept states.

Femember: TUNINE Machine Formal Definition

A Turing machine is a 7-tuple, (Q,X,I', 0, qo, Gaccept, Greject), Where
Q, X, I are all finite sets and

1. Q is the set of states,

. 2 1s the input alphabet not containing the blank symbol L,
. I is the tape alphabet, where u € 'and ¥ C T,

.0:Q xI'—Q xT' x {L, R} is the transition function,

. o € @ 1s the start state,

« Qaccept € @ 15 the accept state, and

N O\ B WIN

. Qreject € () 1s the reject state, where greject 7 Gaccept-

Non

term : . Co. .
Qe TUTiNG Machine Formal Definition

inistic

Nondeterministic

A Turing Machine is a 7'mplea (Q: E: Il 5: d0s Qaccepts qreject)a where

(2, X, I are all finite sets and

1. Q is the set of states,

2. ¥ is the input alphabet not containing the blank symbol L,
3. T is the tape alphabet, where u € "'and ¥ C T,

4. 5 QO xT=—Q< >R}
5. qo € @ 1s the start state,
6. Qaccepr € @ 1s the accept state, and

0: Q@ xI'—P(Q x T x {L,R})

7. Qreject € @ 1s the reject state, where greject 7 Gaccept-

Thm: Deterministic TM < Non-det. TM

= |f a deterministic TM recognizes a language,
then a non-deterministic TM recognizes the language
« Convert: Deterministic TM = Non-deterministic TM ..
e ... change Deterministic TM 6 fn output to a one-element set

5ntm (CII CI) - {Sdtm(QI CI)}
e (just like d2n conversion of DFA to NFA --- HW 2, Problem 2)

* DONE!

< If a non-deterministic TM recognizes a language,
then a deterministic TM recognizes the language

e Convert: Non-deterministic TM = Deterministic TM ..
° Parals

A

Lwiew: NONdeterminism

Deterministic Nondeterministic
computation computation

o start .
Q star (N
({,\: 'T In nondeterministic

:

computation, every

L. : (1 step can branch into a
Q Y set of “states”
g reject (1

: : What is a “state”

.. '\ fora TM?
(

- accept or reject §: Q X F—)P(Q X ' % {L,}.R})

tastick PDA Configurations (1Ds)

e A configuration (or ID) is a “snapshot” of a PDA’s computation

3 components (g, w,Y) :
g = the current state
w = the remaining input string
y = the stack contents

A sequence of configurations represents a PDA computation

TM Configuration (ID) = 7?7

3) read/write head

1) states

control

—

b

a

b

L

2) Tape contents

A Turing machine is a 7-tuple, (Q, 2,1, 9, qo, Gaccepts Greject), Where
Q, X, T are all finite sets and

1.

S R o

Q is the set of states,

¥ is the input alphabet not containing the blank symbol .,
I" is the tape alphabet, where u € I'and ¥ C T,

0: Q@ x '—Q x I" x {L, R} is the transition function,

go € @ is the start state,

Gaccept € @ 1s the accept state, and

Greject € @ 1s the reject state, where greject 7 accept-

TM Configuration = State + Head + Tape

States

O =
—
—
O
o
-
++
o
=
SN
o
o
o
C

- —
S x11000#011000u ...<] Configafter1step
configuration

x11000#x11000uw ... Conﬁgafterzsteps
x11000#x11000uw ...

xx1000#x1 1000w ...
oy

X X X X XXH#EXXXXX XU ...
accept

TM Configuration = State + Head + Tape

q7
101151111uuu3...
10119701111
Textual
representation 1st char after state is
of “configuration” current head position

(use this in HW)

TM Computation, Formally

M = (Q, E; F; 57 q05 Qaccept QTejGCt)

Next
Single-step "¢ config Extended
(Right) aqiaB F axgsf * Base Case
i 010 € O write IF Ifor any 1D [

(5((]1,&) — (q2=X7R)
axel apel”

read « Recursive Case
(Left) abqraf = agabxs I ¥ Jif there exists some ID K
if 3(q1,a) = (g2, %, L) such that I - K and K F J
Edge cases: giaB b .goxfB itsaa) = (@xL)
Head stays at leftmost cell (L move, when already at leftmost cell)

aqi F acgy i@)= (@R . |
Add blank symbol to config (R move, when at rightmost filled cell)

Nondeterminism in TMs

Deterministic Nondeterministic
computation computation

e Start
¢ 1011q7o111),\
1011¢701111

. : { l

® 1011¢;01111

For TMs, each J
node is a reject o)'
configuration

: R

* accept or reject * accept

b k£ Ak Ak— £k

Nondeterministic TM = Deterministic |1stway

Nondeterministic

» Simulate NTM with Det. TM: S
* Det. TM keeps multiple configs on single tape (1

* Like how single-tape TM simulates multi-tape
R

* Then run all computations, concurrently
 |.e, 1step on one config, 1 step on the next, ...

1011¢,01111 #1011g,01111

« Accept If any accepting config is found .
p y accepting config ceiect | \
) , , keeps all configs *
« Why must we step configs concurrently: at each step on 1

Because any one path can go on forever! IME EIPE * accept

mtertude: RUNNING TMS INSIde other TMs

Remember: If TMs are like function definitions, then they can be called like functions ...

“loop” means input

Exercise:
string not accepted

* Given: TMs M, and M,
 Create: TM M that accepts if either M, or M, accept

WMZ M
Possible solution #1: reject accept

M = on input x,
1. Call M, with arg x; accept x if M, accepts -
2. Call M, with arg x; accept x if M, accepts

Note: This solution would be ok if we
knew M, and M, were deciders
(which halt on all inputs)

mtertude: RUNNING TMS INSIde other TMs

Exercise:
* Given: TMs M, and M,
« Create: TM M that accepts if either M, or M, accept

Possible solution #1: reject
M = on input x, accept
1. Call M, with arg x; accept x If M, accepts accept
2. Call M, with arg x; accept x if M, accepts loops

.. With concurrency!

accept accept
reject accept
loops accept
accept loops

Possible solution #2: ___

M = on Input x, reject
1. Call M, and M,, each with x, concurrently, i.e, accept
a) Run M, with x for 1 step; accept if M, accepts accept

b) Run M, with x for 1 step; accept if M, accepts

c) Repeat l0ops

accept accept
reject accept
loops accept
accept accept

V]

V]

56

Nondeterministic TM = Deterministic |2 way

(Sipser)
Nondeterministic
 Simulate NTM with Det. TM: computation
 Number the nodes at each step 1,
* Check all tree paths (in breadth-first order) [l
. 1 L0 2N
* 1-1 1(2]3 4

accept

Nondeterministic TM = Deterministic

Nondeterministic
« Simulate NTM with Det. TM: computation
 Number the nodes at each step 1
* Check all tree paths (in breadth-first order) [\

3 [V WA

* 1-1 12 3

¢ 1-2 : {’ ‘}
reject '/ \'

2"d way
(Sipser)

* accept

Nondeterministic TM = Deterministic |2 way

(Sipser)
Nondeterministic
« Simulate NTM with Det. TM: computation
 Number the nodes at each step 15
* Check all tree paths (in breadth-first order) (\ l
e 1 x 2 —\
v Vv O\
* 1-1 11£]3 4

g Y
reject '/ \'

accept

Nondeterministic TM = Deterministic |2 way

(Sipser)
Always has input, Use 3 tapes
never changes
R’
0|/0[1]|0|u| ... Inputtape
“Work tape” when checking each
D v path (re-copy input here each time)

x [x|#|0|1|x|u| ... simulation tape
Tracks which node we
v are on, e.g, 1-1-2, etc.

1(2|13(3|2|3|1[2|1]|1|3|u|... addresstape

Nondeterministic TM <& Deterministic TM

= If a deterministic TM recognizes a language,
then a nondeterministic TM recognizes the language

e Convert Deterministic TM = Non-deterministic TM

& If a nondeterministic TM recognizes a language,
then a deterministic TM recognizes the language

e Convert Nondeterministic TM = Deterministic TM

Conclusion: These are All Equivalent TMs!

 Single-tape Turing Machine
« Multi-tape Turing Machine

* Non-deterministic Turing Machine

Turing Machines as Algorithms

Turing Machines and Algorithms

 Turing Machines can express any “computation”
* |.e,, a Turing Machine models (Python, Java) programs (functions)!

Remember:
TMs = program (functions)

« 2 classes of Turing Machines

« Recognizers may loop forever
vext | o Deciders always halt

ALGORITHMS

* Deciders = Algorithms i
« l.e, an algorithm is any program that always halts “'“" N\

Flashback HW 1. Problem 1

1. Come up with 2 strings that are accepted by the DFA. Thes

To “figure out” this computation ...

2. Come up with 2 strings that are not accepted (rejected) by

not in the language recognized by the DFA. yo u h a d to “d O" (m eta) CO m p u tati O n S
3. Is the empty string, €, in the language of the DFA? (e .g.’ i n yo u r h e a d)

4. Come up with a formal description for this DFA.
Th iS re p rese ntS Recall that a DFA’s formal description is a tuple of five components, e.g.
. M= (Q32153 qsfartﬁF)-
computation by a DFA

You may assume that the alphabet contains only the symbols from the diagram.

5. Then for each of the following, say whether the computation represents an accepting
computation or not (make sure to review the definition of an accepting computation).
If the answer is no, explain why not.:

0: Q X ¥—>Q is the transition function

tastback: DFA Computations

Define the extended transition function: §: Q x &* — Q

Base case: §(q,¢) =
(q) 4 First char Last chars Remember:

\ / TMs =

Recursive case: 5((], A1 Wrest) = 5(5(% (1), Wrest) program (functions)

/

. - »
 Single transition step | A function: DFAaccepts(B,w)
: : . returns TRUE if DFA B accepts string w
Calculating this computation &
requires (meta) computation! 1) Define “current” state qo,ye = Start state q,

2) For each input char q; ...
° ° a> De-Fine qnext = 5(qcurrent' al)
Could you implement this b) Set qeurrent = Gnext

(meta) computation as an algorithm? 3) Return TRUE if geyrren IS an accept state

The language of DFAaccepts

Apea = {(B,w)| B 1s a DFA that accepts input string w }

But I thought a language is A function: DFAaccepts(B,w)
defined as a set of strings??? returns TRUE if DFA B accepts string w

mtertude: ENCOAING Things INto Strings

Definition: A Turing machine’s input is always a string

Problem: A TM’s (program’s) input could also be: list, graph, DFA, ...?

Solution: encode other kinds of TM input as a string

Notation: <SOMETHING> = string encoding for SOMETHING
« Atuple combines multiple encodings, e.g., <B, W> (om prevside)

But in this class, we don’t care
about what the encoding is!
(Just that there is one)

(Q? Z 65 qo. F)

(written as string)

Example: Possible string encoding for a DFA?

nnnnnnnnnnnn

meertude: High-Level TMs and Encodings

A high-level TM description:
1. Doesn’t need to describe exactly how input string is encoded

2. Assumes input is a “valid” encoding
 Invalid encodings are implicitly rejected

The language of DFAaccepts

Apea = {(B,w)| B is a DFA that accepts input string w }

DFAaccepts is a Turing machine recognizing language Ay, i.€,,

* its inputs strings look like <B, w> where
« Bis a DFA description
e wisany string

« DFAaccepts accepts string <B, w> if
« DFA B would end in accept state if run with input string w

But is DFAaccepts a decider or recognizer?
 le, is it an algorithm?
« To show it's an algo, need to prove:

Apra 1s a decidable language

Turing-recognizable

decidable

® o o
context-free

How to prove that a language I1s decidable?

 Create a Turing machine that decides that language!

Remember:

* A decider is Turing Machine that always halts
« |.e, for any input, it either accepts or rejects It.
* It must never go into an infinite loop

How to prove that a language I1s decidable?

Statements Justifications

1. If a decider decides alang L, 1. Definition of decidable langs
then L is a decidable lang

2. Define decider M = oninputw..., 2. See examples
M decides L

3. Lis a decidable language 3. By statements #1 and #2

How to prove that a language I1s decidable?

 Create a Turing machine that decides that language!

Remember:

* A decider is Turing Machine that always halts
« |.e, for any input, it either accepts or rejects It.
* It must never go into an infinite loop

 Deciders must also include a termination argument:
« Explains how every step in the TM halts
» (Pay special attention to loops)

Next Tire: Apga 1s a decidable language

Apea = {(B,w)| B is a DFA that accepts input string w }
Decider for Apga :

Check-in Quiz 3/29

On gradescope

