UMB CS 420

Decidability

Monday, April 3, 2023

Turing-recognizable

decidable

context-free

%/{/{0«/{0@#(@/{13’

« HW 7 extended

—Due-Sun-4/21:59pm
* Due Tue 4/4 11:59pm

« HW 8 out Wed 4/5
* Due Tue 4/11 11:59pm

Quiz Preview

» A decider TM definition requires specifying
which of the following parts?

last Tiee: TUTING Machines and Algorithms

 Turing Machines can express any “computation”
e l.e., a TM represents a (Python, Java) program (function)!

« 2 classes of Turing Machines
« Recognizers may loop forever
Today | ¢ Deciders always halt

 Deciders = Algorithms
* |.e,, an algorithm is a program that always halts

ALGORITHMS

Flashback HW 1. Problem 1

You had to figure out
a DFA’s computation

RO ©

1. Come up with 2 strings that are accepted by the DFA. These strings are said to be in the
language recognized by the DFA.

2. Come up with 2 strings that are not accepted (rejected) by the DFA. These strings are
not in the language recognized by the DFA.

3. Is the empty string, £, in the language of the DFA?

4. Come up wit} SEm—— =

Remember:
TMs = program (functions)

Recall that a

M = (Q,

You may ass

Figuring out this HW problem
about a DFA’s computation ...
is itself (meta) computation!
language

What kind of comptitation is it?

Could you write a program
(function) to do it?

A function: DFAaccepts(B,w)
returns TRUE if DFA B accepts string w

5. Then for each of the following, say whether the computation represents an accepting

computation or not (make sure to review the definition of an accepting computation).
If the answer is no, explain why not.:

a. S(qO, a$b)

b. 6 (g1, a$b

1) Define “current” state q_,..... = start state q,
2) For each input chara; ... inw
a) Define qnext = 5(qcurrent' ai)

b> Set qcur}"ent = qnexE
3) Return TRUE if ... iS @n accept state

X)
c. (g0, abc)
X)

d. 6 (g0, cd$

This is just checks for an accepting computation 5(q0, w) € Pl

The language of DFAaccepts

The set of strings that a
Turing Machine accepts
Is a language ...

Apea = {(B,w)| B 1s a DFA that accepts input string w }

Is this language a set of strings???

A function: DFAaccepts(B,w)
returns TRUE if DFA B accepts string w

mtertude: ENCOAING Things INto Strings

Definition: A Turing machine’s input is always a string

Problem: We sometimes want TM’s (program’s) input to be something else ...
« set, graph, DFA, ...?

Solution: allow encoding other kinds of TM input as a string

Notation: <SOMETHING> = string encoding for SOMETHING
* Atuple combines multiple encodings, €.g., <B, w> tron peevsice] 1+ doesn’t matter!

In this class, we don'’t care
Example: Possible string encoding for a DFA? about what the encoding is!

J (Just that there is one)

= (o e

(@Q,%,6,q0, F)

(written as string)

bbeo |

nnnnnnnnnnnn

meertude: High-Level TMs and Encodings

A high-level TM description:

1. Needs to say the type of its input
« E.g, graph, DFA, etc. M = “On input (B, w), where B is a DFA and w is a string:

2. Doesn't need to say how input string is encoded

3. Assumes TM knows how to parse and\extract parts/of input
Description of M can refer to B's (Q, 2, 6, q,, F)

4. Assumes input is a valid encoding
 Invalid encodings implicitly rejected

DFAaccepts as a TM recognizing Ape,

Remember:
TM ~ program (function)
Creating TM ~ programming

Apea = {(B,w)| B is a DFA that accepts input string w }

A function: DFAaccepts(B,w) M = “On input (B, w), where B is a DFA and w is a string:
returns TRUE if DFA B accepts string w _
p g B = (Q,Z, 5) qO'F)
1) Define “current” state q.,.... = Start state q, 1) Define “current” state q.,.... = Start state q,
2) For each input charag; ... inw 2) For each input char g, ... inw
a) Define Qnext - 5(chrrent' ai) a) Define qnext = 6(qcurrent' ai)
b) Set CIcurrent: qnext b) Set CIcurrentz QHext
3) Return TRUE if q_,...; IS @an accept state 3) Accept if g ... IS @an accept state

The language of DFAaccepts

Apea = {(B,w)| B is a DFA that accepts input string w }

Turing-recognizable

e Ay has a Turing machine (DFAaccepts)

« But is that TM a decider or recognizer?
e |.e, is it an algorithm?

« To show it's an algo, need to prove:

decidable

® o o
context-free

Apra 1s a decidable language

How to prove that a language I1s decidable?

How to prove that a language I1s decidable?

Statements Justifications

1. If a decider decides a lang L, 1. Definition of decidable langs
then L is a decidable lang

2. Define decider M = oninputw..., 2. See M def, and examples
key M decides L

step

3. Lis a decidable language 3. By statements #1 and #2

How to Design Deciders

« ADeciderisaTM ...

» See previous slides on how to:
 write a high-level TM description
« Express encoded input strings

« E.g, M=0n input <B, w>, where Bis a DFA and w is a string: ...

« A Decider is a TM ... that must always halt
« Can only accept or reject
« Cannot go into an infinite loop

* So a Decider definition must include an extra termination argument:
« Explains how every step in the TM halts
« (Pay special attention to loops)

« Remember our analogy: TMs ~ Programs ... so Creating a TM ~ Programming
 To design a TM, think of how to write a program (function) that does what you want

Thm: Apga is a decidable language

Apea = {(B,w)| B is a DFA that accepts input string w }
Key
step Decider for ADFA Decider input must match strings in the language!

M = “On input (B, w), where B is a DFA and w is a string:
“Calling” the DFA (with an input argument)

Where “Simulate =

 Define “current” state Clcumnt = start state q, Remember:

* For each inputcharxinw. TM ~ program
- Define Tnext = 0(qcurrent X) Creating TM ~ programming
N Set qcurrent_ qnext

Thm:

Apra 1s a decidable language

Apea = {(B,w)| B is a DFA that accepts input string w }

Decider for A DFA - NOTE: A TM must declare “function” parameters and types ... (don't forget it)

M =

Undeclared parameters can’t be used! (This TM is now invalid because B, w are undefined!) ‘

1. Simulate B on iIlpllt w. ... which can be used (properly!) in the TM description

2. If the simulation ends in an accept state, accept. If it ends in a
nonaccepting state, reject.”

Thm: Apga is a decidable language

Apea = {(B,w)| B is a DFA that accepts input string w }

Decider for Appa :

M = “On input (B, w), where B is a DFA and w is a string:
1. Simulate B on input w.

2. [If the simulation ends in an accept state, accept. If it ends in a

nonaccepting state, reject.”
Whiere “Simulate” =
 Define “current” state q_ ... = Start state g,
¢ For each inputcharxinw...

- Define Qnext = 5(qcurrent' X)
| - Set Qcurrent = Qnext

Termination Argument: Step #1\always halts because the simulation
Input Is always finite, so the loop has finite iterations and always halts

Deciders must have a termination argument:
Explains how every step in the TM halts (we typically only care about loops)

Thm: Apga is a decidable language

Apea = {(B,w)| B is a DFA that accepts input string w }

Decider for Appa :

M = “On input (B, w), where B is a DFA and w is a string:
1. Simulate B on input w.
2. [If the simulation ends in an accept state, accept. If it ends in a
nonaccepting state, reject.”

Termination Argument: Step #2 always halts because
we are checking only the state of the result (there's no loop)

Deciders must have a termination argument:
Explains how every step in the TM halts (we typically only care about loops)

Thm: Apga is a decidable language

Apea = {(B,w)| B is a DFA that accepts input string w }

Decider for Appa :

M = “On input (B, w), where B is a DFA and w is a string:
1. Simulate B on input w.
2. If the simulation ends in an accept state, accept. If it ends in a
nonaccepting state, reject.”

_-- Columns #2 and #3

must match

A good set of

— - - examples needs
This I1s what a “See Examples some Yes's and

justification should look like! some No's

Thm: Anea is a decidable language
Anea = {(B, w)| B 1s an NFA that accepts input string w}

Decider for AnEga :

(tashback: NF A->DF A

Have: N = (Q,X,0,qo, F)
Want to: constructa DFA M = (Q', X, 0', qo’, F")

This conversion is computation

by a
hine

New TM Variation:
: : Doesn’t accept or reject,
Turing Machine N FA_)D FA Just writes “output” to tape

TM NFA-DFA = On input <N>, where Nisan NFAand N = (Q, .4, q, I)
1. Write to the tape:

Where:

Why 1s this guaranteed to halt?

I
Because a DFA description has

only finite parts (finite states,
finite transitions, etc)

Thm: Anea is a decidable language
Anea = {(B, w)| B 1s an NFA that accepts input string w}

- . Remember:
Decider for AnFa : =
Creating TM ~ programming
“Calling” N = “On input (B, w), where B is an NFA and w is a string:—1 Previous theorems ~ library
another TM.
Must give

correct arg type!

New capability:
TM can|check tape
of another TM
after calling it

Termination argument: This is a decider (i.e,, it always halts) because:
- Step 1 always halts bc there's a finite number of states in an NFA
- Step 2 always halts because M is a decider

How to Design Deciders, Part 2

Hint:
 Previous theorems are a “library” of reusable TMs

« When creating a TM, try to use this “library” to help you
o Just like libraries are useful when programming!

« E.g, “Library” for DFAs:

- NFASDFA, RegEXpr->NFA
« Union operation, intersect, star, decode, reverse

 Deciders for: App, Anpar Arpxor -

Thm: Arex is a decidable language

Arex = {(R,w)| R is a regular expression that generates string w }

Decider: NOTE: A TM must declare “function” parameters and types ... (don't forget it)
P = “On input (R, w), where R is a regular expression and w is a string:
1. Convert regular expression R to an equivalent NFA A by using
the PfOC@dUI‘e RegEXpr->NFA ... which can be used (properly!) in the TM description

Remember:
TMs ~ programs
Creating TM ~ programming
Previous theorems ~ library

/%J’éfaaé' Re g EX p réN FA Does this conversion

... 50 guaranteed to always always halt, and why?
reach base case(s)

R 1s a regular expression it R 1s

1. a for some a in the alphabet ¥, _"Q—a’©

2’ ¢ E? @ v Construction of N to recognize A; o A
N)
3- @,? 4@ N\ - 5 @
”O © O o o o OO ° ©
4. (R1 U R5y), where R; and Ry a | - 00| [€
5. (Ry6 R2), where Ry and Ry a1 | | —— | expregione o- .

6./(R7), where R; is a regular exj ol ro

Yes, because recursive call N o }
only happens on “smaller”
regular expressions ...

- /

Thm: Arex is a decidable language

Arex = {(R,w)| R is a regular expression that generates string w }

Decider:

P = “On input (R, w), where R is a regular expression and w is a string:

1. Convert regular expression R to an equivalent NFA A by using
the procedure RegExpr->NFA When “calling” another TM, must give proper arguments!

2. Run TM N on iIlpllt <A, ’lU) (from prev slide)
3. If N accepts, accept; if N rejects, reject.”

Termination Argument: This is a decider because:

- Step 1: always halts because converting a reg expr to NFA is done recursively,
where the reg expr gets smaller at each step, eventually reaching the base case

- Step 2: always halts because N is a decider

Decidable Languages for DFAS (So Far)

Remember:
TM ~ program
Creating TM ~ programming
Previous theorems ~ library

* Apra = {(B,w)| B is a DFA that accepts input string
« Deciding TM implements extended DFA 6

o Anra = {(B,w)| B is an NFA that accepts input string w}
« Deciding TM uses NFA->DFA + DFA decider

o Arex = {(R,w)| R is a regular expression that generates string w }
« Deciding TM uses RegExpr->NFA + NFA->DFA + DFA decider

thstback: \Why Study Algorithms About Computing

To predict what programs will do
without running them!

{n)
1f the number n 1s a
// 1f the ct

RANSOMWARE ATTACK

YOUR FILES HAVE BEEN ENCRYPTED

Not possible in general! But ...

Predicting What Some Programs Will Do ...

What if we look at weaker computation models
... like DFAs and regular languages!

Thm: Epra is a decidable language
EDFA — {<A>‘ A 1s a DFA El]fld L(A) — @}

Eoea 1S @ language of DFA descriptions, ... where the language of each DFA must
e, (Q,%,8,qyF) .. be {}, i.e.,, the DFA accepts no strings

| T

: ST ... by computing something
We determine what is In this language ... about the DFA’s language (by

analyzing its definition)

l.e., by predicting how the DFA
will behave

Important: don’t confuse the different languages here!

Thm: Epra is a decidable language
EDFA — {<A>| A 1s a DFA and L(A) — @}

Decider:
If loop marks at least 1 state on

T = “On input (A), where A is a DFA: each iteration, then it eventually
1. Mark the start state of A. terminates because there are finite

: states; else loop terminates
2. Repeat until no new states get marked: ’ P
3. Mark any state that has a transition coming into it from any
state that is already marked.
4. If no accept state is marked, accept; otherwise, reject.”
Termination argument?

.e., this is a “reachability” algorithm ...

... check if accept states are “reachable” from start state
. ... It computes something
Note: Machine does not “run” the DFA! about the DFA’s language
(by analyzing its definition)

38

ThMm: EQpga is a decidable language
EQpea = {(A, B)| Aand B are DFAs and L(A) = L(B)}

l.e., Can we compute whether two
DFAs are “equivalent”?

4
Replacing “DFA” with “program” =
A “holy grail” of computer science!

39

ThMm: EQpga is a decidable language
EQpea = {(A, B)| Aand B are DFAs and L(A) = L(B)}

A Naive Attempt (assume alphabet {a}):

1. Run A with input a, and Bwith inputa [This might not terminate!
 Reject if results are different, else ... (Hence it's not a decider)

2. Run A with input aa, and B with input aa
 Reject if results are different, else ...

3. Run A with input aaa, and B with input aaa
 Reject if results are different, else ...

Can we compute this
c ... without running the DFAs?

ThMm: EQpga is a decidable language
EQpea = {(A, B)| Aand B are DFAs and L(A) = L(B)}

Trick: Use Symmetric Difference

Symmetric Difference

L(A)

‘

L(B)

L(C) = (L(A) mm) U (

L(C) = 0 iff L(A)

ThMm: EQpga is a decidable language
EQpea = {(A, B)| Aand B are DFAs and L(A) = L(B)}

NOTE: This only works because: negation,
l.e., set complement, and intersection is

Construct decider using 2 parts: closed for regular languages

1. Symmetric Difference algo: L(C) = (L(A) mL(B)) U (L(A) N L(B))
« Construct C-= Union, intersection, negation of machines 4 and B

2. Decider T (from-‘library”) for: Epra = {(A)| AisaDFAand L(A) = 0}
* Because L(C) = 0'iff L(A) = L(B)

F = “On input (A, B);where A and B are DFAs:
1. Construct DFA C as described.
2. Run TM T deciding Epra on input (C).
3. It T accepts, accept. It T rejects, reject.”

Predicting What Some Programs Will Do ...

@ microsoft.com/en-us/research/project/slam/

SLAM is a project for checking that software satisfies critical behavioral properties ol the interfaces it uses and to aid software
engineers in designing interfaces and software that ensure reliable and correct functioning. Static Driver Verifier is a tool in the
Windows Driver Development Kit that uses the SLAM verification engine.

“Things like even software verification, this has been the Holy Grail of computer science
for many decades but now in some very key areas, for example, driver verification we're
building tools that can do actual proof about the software and how it works in order to
guarantee the reliability” Bill Gates, April 18, 2002. Keynote address at WinHec

z, Or

2002 ¥ N
i=node-xl); | ++ V5 Pocs end() moue;{ \ ur computer. If you do
itiom in all open applice
Static Driver Verifier Research Platform README continue _

Overview of Static Driver Verifier Research Platform

Static Driver Verifier (SDV) is a compile-time static verification

Research Platform (SDVRP) is an extension to SDV that allows MOdel CheCklng

e Support additional frameworks (or APIs) and write custq From Wikipedia, the free encyclopedia

e | Its “language”
* Experiment with the model checking step. In computer science, model checking or propertVI@ﬂng IS @ method for checking whether a
finite-state model of a system meets a given specification (also known as correctness). This is typically

=4

Summary: Decidable DFA Langs (e, atgorithms)

e Apra = {(B,w)| B is a DFA that accepts input string w }

o Anra = {(B,w)| B is an NFA that accepts input string w}

o Arex = {(R,w)| R is a regular expression that generates string w }

o Eppa = {(A)| AisaDFAand L(A) = 0} Remember:
TM ~ program

Creating TM ~ programming
o EQpea = {(A, B)| Aand B are DFAs and L(A) = L(B)} Previous theorems ~ library

fNext Tine: AlgOrithms (Decider TM) for CFLS?

« What can we predict about CFGs or PDAs?

Thm: Acrg is a decidable language

Acrc = {{G,w)| G is a CFG that generates string w}

 This a is very practically important problem ...

e ... equivalent to:
* Is there an algorithm to parse a programming language with grammar G?

A Decider for this problem could ... ?

« But this might never halt
« Eg,whatifthereisarulelike:S—>0SorS—S
« This TM would be a recognizer but not a decider

|[dea: can the TM stop checking after some length?

* |l.e, Isthere upper bound on the number of derivation steps?

Check-in Quiz 4/3

On gradescope

