UMB CS 420

Decidability for CFLs

Wednesday, April 5, 2023

Turing-recognizable

decidable

context-free

Halting TMs,
a.k.a., “algorithms”

... that analyze CFLs

51

%/{/{0«/{0@#{@/{&?

e HW 7 in

« HW 8 out
« Due Tues April 11 11:59pm EST

Quiz Preview

« Which of the following rules are valid for a
grammar in Chomsky Normal Form?

last Tine: DeCider Turing Machines

« 2 classes of Turing Machines

 Recognizers (all TMs): may loop forever
« TM that loops on an input does not accept that input

- Deciders (subset of TMs) (algorithms) always halt
« Must accept or reject

 Decider definitions must include a termination argument:
* Explains (informally) why every step in the TM halts
* (Pay special attention to loops)

last Tine: DECIdAble Languages About DFAS

* Apra = {(B,w)| B is a DFA that accepts input string Remember:

. . /. , TMs ~ programs
Decider TM: implements B DFA’s extended 6 fn Creating TM ~ programming

Previous theorems ~ library

o Anra = {(B,w)| B is an NFA that accepts input string w}
« Decider TM: uses NFA->DFA algorithm + A, decider

o Arex = {(R,w)| R is a regular expression that generates string w }

 Decider TM: uses RegExpr->NFA algorithm + A, decider

thstback: \Why Study Algorithms About Computing

To predict what programs will do
without running them!

1f the number n 1s a

__ — Not possible for all programs! But ...

// 1if the ck

RANSOMWAREATTACK /\

YOUR FILES HAVE BEEN ENCRYPTED

prime')} i

a prime,

function

Predicting What Some Programs Will Do ...

What if: look at simpler computation models
... like DFAs and regular languages!

Thm: Epra is a decidable language
EDFA — {<A>‘ A 1s a DFA El]fld L(A) — @}

Eoea IS @ language..... of DFA descriptions, ... where the language of each DFA ...
e, (Q,%,8,qyF) ... must be {}, i.e,, DFA accepts no strings
T 0\
... by predicting somethin
Is there a decider that A . :

about the DFA’s language

accepts/rejects DFA descriptions ... (by analyzing its description)

The key question we are studying: A

. : nalogy
Can we determine something about the DFA’s description : a program’s source code ::
runtime computatlon of a program,

oy enalyEing ey 5 ol eodkes DFA’'s language :a program’s runtime computation
Y, yZI y its sou :

Important: don’t confuse the different languages here!

Thm: Epra is a decidable language
EDFA — {<A>‘ A 1s a DFA El]fld L(A) — @}

Decider:
If loop marks at least 1 state on
T = “On input (A), where A is a DFA: each iteration, then it eventually
1. Mark the start state of A. terminates because there are finite

. states; else loop terminates
2. Repeat until no new states get marked: i

3. Mark any state that has a transition coming into it from any
state that is already marked.
4. If no accept state is marked, accept; otherwise, reject.”
.. - : Termination argument?
.e,, this I1s a “reachability” algorithm ...

... check if accept states are “reachable” from start state

—— ... It computes something about the DFA’s
Note: TM T does not “run” the DFA! language (runtime computation) by analyzing
it's description (source code)

ThMm: EQpga is a decidable language
EQpea = {(A, B)| Aand B are DFAs and L(A) = L(B)}

l.e., Can we compute whether
two DFAs are “equivalent”?

4
Replacing “DFA” with “program” =
A “holy grail” of computer science!

60

ThMm: EQpga is a decidable language
EQpea = {(A, B)| Aand B are DFAs and L(A) = L(B)}

A Naive Attempt (assume alphabet {a}):

1. Simulate: S _
« A with input a, and This might not terminate!
* Bwith inputa | (Hence it's not a decider)
* Reject if results are different, else ...

2. Simulate:

« A with input aa, and
« Bwith input aa
 Reject if results are different, else ...
. Can we compute this without

running the DFAS?

ThMm: EQpga is a decidable language
EQpea = {(A, B)| Aand B are DFAs and L(A) = L(B)}

Trick: Use Symmetric Difference

Symmetric Difference

L(A)

‘

L(B)

L(C) = (L(A) mm) U (

L(C) = 0 iff L(A)

ThMm: EQpga is a decidable language
EQpea = {(A, B)| Aand B are DFAs and L(A) = L(B)}

NOTE: This only works because: negation,
l.e., set complement, and intersection is

Construct decider using 2 parts: closed for regular languages

1. Symmetric Difference algo: L(C) = (L(A) mL(B)) U (L(A) N L(B))
« Construct C-= Union, intersection, negation of machines 4 and B

2. Decider T (from-‘library”) for: Epra = {(A)| AisaDFAand L(A) = 0}
* Because L(C) = 0'iff L(A) = L(B)

F = “On input (A, B);where A and B are DFAs: Termination
1. Construct DFA C' as described. argument?
2. Run TM T deciding Epra on input (C).
3. It T accepts, accept. It T rejects, reject.”

Predicting What Some Programs Will Do ...

@ microsoft.com/en-us/research/project/slam/

SLAM is a project for checking that software satisfies critical behavioral properties ol the interfaces it uses and to aid software
engineers in designing interfaces and software that ensure reliable and correct functioning. Static Driver Verifier is a tool in the
Windows Driver Development Kit that uses the SLAM verification engine.

“Things like even software verification, this has been the Holy Grail of computer science

for many decades but now in some very key areas, for example, driver verification we're
building tools that can do actual proof about the software and how it works in order to e :
guarantee the reliability” Bill Gates, April 18, 2002. Keynote address at WinHec . iF
2002 _ A 5N
i=node-xl); | ++ V5 Pocs end() moue;{ ' ur computer. If you do

itiom in all open applice

Static Driver Verifier Research Platform README continue _

Overview of Static Driver Verifier Research Platform

Static Driver Verifier (SDV) is a compile-time static verification .
Research Platform (SDVRP) is an extension to SDV that allows MOdel CheCklng
e Support additional frameworks (or APIs) and write custq From Wikipedia, the free encyclopedia

e | Its “language”
* Experiment with the model checking step. In computer science, model checking or propertVI@ﬂng IS @ method for checking whether a
finite-state model of a system meets a given specification (also known as correctness). This is typically

o

Sumary: AlgOrithms About Regular Langs

. Apra = {(B,w)| B is a DFA that accepts input string w }
 Decider: Simulates DFA by implementing extended & function

« Anpa = {(B,w)| B is an NFA thataccepts input string w }

 Decider: Uses NFA->DFA decider + A,, decider

o Arex = {(R,w)| R is a regular expression that generates string w }

 Decider: Uses RegExpr->NFA decider + Ay, decider

° EDFA = {<A>| A is a DFA and L(A — @}
- Decider: Reachability algorithm™| Lang of the DFA

e« FQpea = {(A,B)| Aand B are DFAs and L(A) = L(B)}

Remember:
TMs ~ programs
Creating TM ~ programming
Previous theorems ~ library

%" - Decider: Uses complement and intersection closure construction + E., decider

67

Mext: Algorithms (Decider TMs) for CFLS?

« What can we predict about CFGs or PDAs?

Thm: Acrg is a decidable language

Acrc = {{G,w)| G is a CFG that generates string w}

 This Is a very practically important problem ...

* ... €quivalent to:
« Algorithm to parse “program” w for a programming language with grammar G?

A Decider for this problem could ... ?

« But this might never halt
« E.g,what if there are rules like:S—>0SorS— S
« This TM would be a recognizer but not a decider

|[dea: can the TM stop checking after some length?

* |l.e, Isthere upper bound on the number of derivation steps?

Chomsky Normal Form

Noam Chomsky

Turing-recognizable

decidable He came up with

this hierarchy of
languages

context-free

Chomsky Normal Form

A context-free grammar is in Chomsky normal form if every rule is

of the form (non-start) Variables onl
/ y

A — 507 2 rule shapes

A — a

\

Terminals only

where a is any terminal and A, B, and C are any variables—except

that B and C' may not be the start variable.

In addition, we permit

the rule S — &, where S is the start variable|

72

Chomsky Normal Form Example

e S—>AB
c A—-> AB
cA—a
*B-b

A context-free grammar is in Chomsky normal form if every rule is

of the form

IZ A— B

A—oa

Makes the string long enough

Convert variables to terminals

« To generate string of length: 2
e Use Srule: 1time; Use 4 or B rules: 2 times

e S>AB=aB=ab

« Derivation total steps: 1 + 2 =|3

* To generate string of length: 3

e Use Srule: 1time; A rule: 1time; A or B rules: 3 times

e S= AB = AAB = aAB = aaB = aab

« Derivation total steps: 1+ 1+ 3 =[5

« To generate string of length: 4

e Use Srule:1time ; A rule: 2 times; A or B rules: 4 times
e S=> AB = AAB = AAAB = aAAB = aaAB = aaaB = aaab
_~—|2ruleshapes | « Derivation total steps: 3 + 4 =|7

where a is any terminal and A, B, and C are any variables—except
that B and C' may not be the start variable. [n addition, we permit
the rule S — &, where S is the start variable.

Chomsky Normal Form: Number of Steps

To generate a string of length n:
n - 1 steps: to generate n variables Makes the string long enough
+ n steps: to turn each variable into a terminal Convert string to terminals
Total: 2n - 1 steps

(A finite number of steps!) Chomsky normal form

A — B(C' | Use n-1 times
A — a Use n times

Thm: Acrg is a decidable language

Acrc = {(G,w)| G is a CFG that generates string w }
Proof: create the decider:

S = “On input (G, w), where G is a CFG and w is a string:

We first 1. Convert G to an equivalent grammar in Chomsky normal form.
need to 2. Listall derivations with 2n — 1 steps, where n is the length of w;
prove this is except if n = 0, then instead list all derivations with one step.
true for all
CFGs!

Step 1: Conversion to Chomsky Normal Form is an algorithm ...
Step 2:

Step 3: . .
P Termination argument?

/5

Thm: Every CFG has a Chomsky Normal Form

Chomsky normal form

Proof: Create algorithm to convert any CFG into Chomsky Normal Form

1. Add new start variable S, that does not appear on any RHS A — BC
* l.e, add rule S, > S, where S'is old start var A—a

SQ—>S
jjgﬁ‘g’aB j> S — ASA|aB
A— B|S

B —ble B ble

Thm: Every CFG has a Chomsky Normal Form

Chomsky normal form
1. Add new start variable S, that does not appear on any RHS A — BC

 |l.e,,add rule S, > S, where S is old start var A—a
2. Remove all “empty” rules of the form A > ¢
« A must not be the start variable
« Then for every rule with 4 on RHS, add new rule with A deleted
« Eg,IfR> udvisarule,add R > uv
« Must cover all combinations if A appears more than once in a RHS
« Eg,if R> udvAwis a rule, add 3 rules: R 2 uvAw, R 2 uAvw, R 2 uvw
So — S So — S
S — ASA|aB|a S — ASA|aB|a|SA|AS|S
A— B|S|e A— B|S
B — b Then, add B — b Then add, to account for possibly empty A

First, remove Then, remove

Thm: Every CFG has a Chomsky Normal Form

Chomsky normal form
1. Add new start variable S, that does not appear on any RHS A — BC

* l.e, add rule S, > S, where S is old start var A—a
2. Remove all “empty” rules of the form A > ¢
« A must not be the start variable
« Then for every rule with A on RHS, add new rule with A deleted
« Eg, IfR> udvisarule,add R > uv
« Must cover all combinations if A appears more than once in a RHS
« Eg,if R> uAvAw is a rule, add 3 rules: R 2 uvAw, R 2 udvw, R -> uvw
3. Remove all “unit” rules of the form A 2B
* Then, for every rule B> u,add rule A > u
S — ASA|aB|a|SA| AS S — ASY |aB|a|SA| AS S — ASA|aB|a|SA|AS
A B|S A— S.b|ASA|aB|a|SA|AS
A= B|S _— \
B —b B — Db
B — Db Remove, no add

80

(same variable) Remove, then add S RHSs to S, Remove, then add S RHSs to 4

Termination argument of this algorithm?

Thm: Every CFG has a Chomsky Normal Form

1.

2.

3.

4,

* l.e, add rule S, > S, where S is old start var

Remove all “empty” rules of the form A4 2> ¢
* A must not be the start variable

« Then for every rule with A on RHS, add new rule with A deleted

« Eg, IfR> udvisarule,add R > uv

Remove all “unit” rules of the form A 2B
* Then, for every rule B> u, add rule A 2> u

Split up rules with RHS longer than length 2
« Eg,A > wxyzbecomesA > wB, B> xC,C~>yz

Replace all terminals on RHS with new rule
« Eg, forabove,add W>w,X2>x, Y2y, Z>z

Chomsky normal form

Add new start variable S, that does not appear on any RHS A — BC
A—a

Sy — ASA||aB|a|SA| AS

B — b
« Must cover all combinations if A appears more than once in a RHS

« Eg,if R> uAvAw is a rule, add 3 rules: R 2 uvAw, R 2 udvw, R -> uvw

S —- ASA|aB|a|SA|AS
A—Db|ASA|aB|a|SA|AS

!

S[) — AAl ’

S — AA, |UB |a| SA| AS
A—b|AA; |UB|a|SA|AS

Al—)*SA
U — a
B — Db

UB

la| SA|AS

Thm: Acrg is a decidable language
Acre = {(G, w)| G is a CFG that generates string w }
Proof: create the decider:

S = “On input (G, w), where G is a CFG and w is a string:

We first 1. Convert G to an equivalent grammar in Chomsky normal form.
need to 2. Listall derivations with 2n — 1 steps, where n is the length of w;
prove this is except if n = 0, then instead list all derivations with one step.
true for all 3. Ifany of these derivations generate w, accept; if not, reject.”
CFGs!

Termination argument:

Step 1: any CFG has only a finite # rules

Step 2: 2n-1 =finite # of derivations to check
Step 3: checking finite number of derivations

Thm: FEckg is a decidable language

Ecre = {(G)| Gis a CFG and L(G)

Recall:
EDFA — {<A>‘ A iS d DFA and L(A) — @}

T = “On input (A), where A is a DFA:
1. Mark the start state of A.
2. Repeat until no new states get marked:
3. /' Mark any state that has a transition coming into it from any
state that is already marked.
4. If no accept state is marked, accept; otherwise, reject.”

“Reachability” (of accept state from start state) algorithm

Can we compute “reachability” for a CFG?

0}

Thm: FEckg is a decidable language
Ecrg = {(G)| GisaCFGand L(G) = 0}

Proof: create decider that calculates reachability for grammar G
* Go backwards, start from terminals, to avoid getting stuck in looping rules

9 , _ Loop marks 1 new variable on each iteration
R = “On mput <G>, where G 1s a CFG: or stops: it eventually terminates because
1. Mark all terminal Symbols inG there are a finite # of variables
2. Repeat until no new variables get marked:
3. Mark any variable A where G hasarule A — U,Us - - - U, and

each symbol Uy, . .., Uy has already been marked.

Termination argument?

Thm: EQcrg Is a decidable language? g
EQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)}

Recall: FQpra = {(A,B)| Aand B are DFAs and L(A) = L(B)}
* Used Symmetric Difference

@ L(C) = 0 iff L(A) = L(B)

« where € = complement, union, intersection of machines 4 and B

« Can't do this for CFLs!
* Intersection and complement are not closed for CFLs!!!

Intersection of CFLs Is Not Closed!

Proof (by contradiction), Assume intersection is closed for CFLs
e Then intersection of these CFLs should be a CFL:

A={a"p"c"|m,n > 0}

B ={a"b"c™|m,n > 0}
« ButAnB={a"b"c"|n >0}

e ...which is not a CFL! (So we have a contradiction)

Complement of a CFL I1s not Closed!

» Assume CFLs closed under complement, then:

if G1 and GG context-free

L(G1) and L(G3) context-free
L(G1) U L(G1) context-free

L(G1)U L(G1) context-free
L(G1) N L(G2) context-free

But intersection is not closed for CFLS (prev slide)

From the assumption

Union of CFLs is closed

From the assumption

DeMorgan’s Law!

87

Thm: EFQcec 1S a decidable language?
EQcec = {(G,H)| Gand H are CFGs and L(G) = L(H)}
* No! ?

o i

* There’s no algorithm to decide whether two grammars are equivalent!

* [t's not recognizable either! (Can't create any TM to do this!!)
e (details later)

* |.e., this Is an Impossible computation!

Sunmary AlgOrithms About CFLS

e Acrc = {(G,w)| G is a CFG that generates string w}

 Decider: Convert grammar to Chomsky Normal Form
« Then check all possible derivations up to length 2|w]| - 1 steps

. ECFG — {<G>| GG is a CFG and L(G) — @}

 Decider: Compute “reachability” of start variable from terminals

e EQcre =1{(G,H)| G and H are CFGs and L(G) = L(H)}

« We couldn’t prove that this is decidable!
* (So you cant use this theorem when creating another decider)

The Limits of Turing Machines?

« TMs represent all possible “computations”
* e, any (Python, Java, ...) program you write is a TM

« But some things are not computable? l.e, some langs are out here ?

« To explore the limits of computation, we have been studylnq

.. computation about other computation .. . KNOW YOUR PARADOXES!
» Thought: Is there a decider (algorithm) to \ A\ INTHE EVENT OF ROGUE A
determine whether a TM is an decider? 1.STAND STILL

N 2.REMAIN CALM
\ 3.SCREAM:
\
\

“THIS STATEMENT IS FALSE!"
“NEW MISSION: REFUSE THIS MISSION!”

Hmmm, this doesn’t feel right ...

“DOES A SET OF ALL SETS CONTAIN ITSELF?*

I I EPEHTURE —

Newt tine: 1S A7y decidable?
Atm = {(M,w)| M is a TM and M accepts w}

Check-in Quiz 4/5

On gradescope

