UMB CS 420

Unrecognizability
Monday, April 24, 2023

%/{/{0«/{0@#(@/{13’

e HW 9 In
+ PDye-Stnr4/2311:59pm-EST

* HW 10 out
e Due Sun 4/30 11:59pm EST

Quiz Preview

« If a language i1s undecidable, which of the following
statements about its recognizability cannot be true?

last Tiwe: SHOWING Mapping Reducibility

Step 1:
Show there is computable

Language A is mapping reducible to language B, written A <., B|fnf... by creatinga TM

if there is a computable function f: ¥* — ¥* where for every w,
: : Step 2:
w e A< f(w) € B. “If and only If" | | Prove the iff is true for f

The function f is called the reduction from A to B.

Step 2a: “forward” direction (=): if w € Athen filw) €B

f
.//_»\.

Step 2b: “reverse” direction (&): if fiw) € Bthen we A

A function f: X*—3* is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

Step 2b: Equivalent (contrapositive): if w & A then flw) ¢ B

last Tire: USING Mapping Reducibility

To prove decidability ...

« If A <,, Band B is decidable, then A is decidable.

Undecidability Proof
Known (Unknown) Technique #4:
want to prove Mapping Reducibility

To prove undecidability ... + this theorem

« If A <, B and A is undecidable, then B is undecidable.

Be careful with the direction of the reduction,
l.e. what is known and what is unknown!

Flashback: EQ+y 1s undecidable

EQ+y = {(My, My)| My and My are TMs and L(M;) = L(M,)}

Proof by contradiction:

 Assume EQ+\y has decider R; use to create Et\ decider:
={(M)| MisaTMand L(M) = (0}

S = “On input (M), where M is a TM:
1. Run R on input (M, M;), where M; is a TM that rejects all
inputs.
2. If R accepts, accept; if R rejects, reject.”

Alternate Froof: EQ\ is undecidable

EQ+y = {{(My, Ms)| My and M5 are TMs and L(M;) = L(M>)}

Proof by mapping reducibility: Bry <m EQty
Step 1: create computable fn f, computed by TM S

S = “On input (M), where M is a TM:
1. Construct: (M, M), where M; is a TM that rejects all
inputs.
2. output: (M, M)

Step 2: show iff requirements of mapping reducibility
Do for HW 10!

And use theorem ...
If A <,, B and A is undecidable, then B is undecidable.

Flashback, E+m 1s undecidable

Erm = {(M)| M isaTM and L(M) = 0}

Proof, by contradiction:
« Assume FEtm has decider R; use to create Atw decider:

S = “On input (M, w), an encoding of a TM M and a string w:

1. Use the description of M and w to construct the TM M,
M, = “On input z:

) 1. Ifx # w, reject.

2. Run Ron mput <M1> 2. Ifz = w, run M on input w and accept if M does.”

3. If R accepts, reject; if R rejects, accept.” M. - |
1)

- accepts wif M does
rejects everything else

If M accepts w, then M, not in E.,,!
So do the opposite!

Abternate /D/Wf' Frwm 1s undecidable

Erm = {(M)| M isaTM and L(M) = 0}
Proof, by mapping reducibility??: Atm <m Ftm
Step 1: create computable fn fi <M, w> > <M,>, computed by S

S = “On input (M, w), an encoding of a TM M and a string w:

1. Use the description of M and w to construct the TM M,
M; = “On input z:
1. Ifx # w, reject.

2, Output: < > 2 If x = w, run M on input w and accept if M does.”
LD
Tt

I] L
3. It Raccepts; reject;

Step 2: show iff requirements of mapping reducibility:

Do for HW 10!

* This reduces A}, to Etm !
e |t's good enough, if: undecidable langs are closed under complement

Turing Unrecognizable?

Is there anything out here?

Atwm

' Turing-recognizable

decidable

context-free

Where do these
undecidable languages go?

Erm = {{M)| M isaTM and L(M) = 0}
EQcrc = {(G,H)| G and H are CFGs and L(G) = L(H)}
EQ+y = {(My, My)| My and M, are TMs and L(M;) = L(M>)}

Thm: Some langs are not Turing-recognizable

Proof: requires 2 lemmas

- Lemma 1: The set of all languages is uncountable (hw9)

 .emma 2: The set of all TMs is countable

* Therefore, some language is not recognized by a TM
(pigeonhole principle) o

Thm: Some langs are not Turing-recognizable

Proof: requires 2 lemmas

- Lemma 1: The set of all languages is uncountable (hw9)

* Proof, by contradiction: Assume the set of all languages is countable
 Then there is a bijection mapping natural numbers to languages (def of countable)

1= 519, 12 513, -

2 > S51, 599, S93) e
3 = 531, S32, S33, -+

where strings in each language are ordered lexicographically (assumption from problem)
« But some language is always not mapped to: s, s, S3, ...

« where s; #,,, S, # S,y S3 # S35, ... (diagonalization technique)

« and sy, s,, S35, ... IS alphabetically ordered
« Thus there is no bijection, which is a contradiction

Thm: Some langs are not Turing-recognizable

Proof: requires 2 lemmas

« Lemma 1: The set of all languages is uncountable

« Alternate Proof: Show a bijection with another uncountable set ...
» ... The set of all infinite binary sequences (from textbook)

Mapping a Language to a Binary Sequence

All Possible Strings |
o >>=1{¢ 0 1, 00, 01, 10, 11, 000, 001, ---
ome Language o
(subset of above) A = { 0, 00, 01, 000, 001,
Its (unique) (XA = 0 1 0 1 1 0 0 1 1
Binary Sequence

Each digit represents one possible string:
- 1 if lang has that string,
- 0 otherwise

Thm: Some langs are not Turing-recognizable

Proof: requires 2 lemmas

This is an “existence” proof,

but it's not “constructive”,

l.e., it doesn’t give an example of
an unrecognizable language

« Lemma 1: The set of all languages is uncountable
« Proof: Show there is a bijection with another uncountable set ...

... The set of all infinite binary sequences

> Now just prove set of infinite binary sequences is uncountable (diagonalization)

 Lemma 2: The set of all TMs is countable

« Because every TM M can be encoded as a string (M)

« And set of all strings is countable

* Order the strings lexicographically (length 0 strings, then length 1 strings, etc)

Co-Turing-Recognizability

* A language is co-Turing-recognizable if ...
e ... It Is the complement of a Turing-recognizable language.

Thm: Decidable <& Recognizable & co-Recognizable

125

Thm: Decidable < Recognizable & co-Recognizable

= If a language is decidable, then it is recognizable and co-recognizable
« Decidable = Recognizable:
A decider is a recognizer (that always halts)

« Decidable = Co-Recognizable:
 To create co-decider from a decider ... switch reject/accept of all inputs
« A co-decider is a co-recognizer, for same reason as above

Thm: Decidable < Recognizable & co-Recognizable

= If a language is decidable, then it is recognizable and co-recognizable
« Decidable = Recognizable:
A decider is a recognizer (that always halts)

« Decidable = Co-Recognizable:
 To create co-decider from a decider ... switch reject/accept of all inputs
« A co-decider is a co-recognizer, for same reason as above

< If a language Is recognlzable and co-recognizable, then it is decidable
« Let M, = recognlzer for the language, /
- and M, = recognizer for its complement

e Decider M:

* Run 1steponM,,
* Run 1step on M,,
« Repeat, until one machine accepts. If it's M,, accept. If it's M,, reject

Termination Arg: Either M, or M, must accept and halt, so M halts and is a decider

A Turing-unrecognizable language

« We've proved:

Atwm is Turing-recognizable

A+m 1s undecidable

e SO:

Unrecognizability

A1m 1s not Turing-recognizable SR —

« We know: recognizable & co-recognizable = decidable

Contrapositive: undecidable = can’t be both recognizable & co-recognizable

Is there anything out here?

ATm Atm

context-free

Where do these
undecidable languages go?

regular

Erm = {{M)| M isaTM and L(M) = 0}
EQcrc = {(G,H)| G and H are CFGs and L(G) = L(H)}
EQ+y = {(My, My)| My and M, are TMs and L(M;) = L(M>)}

Mapping Reducibility Can be Used to Prove ..
- Decidability
. Undecidability
+ Recognizability

« Unrecognizability

More Helpful Theorems

If A <\, B and B is Turing-recognizable, then A is Turing-recognizable.

It A <;, Band Aisnot Turing-recognizable, then B is not Turing-recognizable.

Unrecognizability

Proof Technique #2:
« Same proofs as: Mapping reducibility

If A <,, B and B is decidable. then A is decidable. + this theorem
If A <,, B and A is undecidable, then B is undecidable.

Thm: EQsy is neither Turing-recognizable nor co-Turing-recognizable.
EQ+y = {(Mu1, Ms)| My and M; are TMs and L(M;) = L(M2)}

1. EQ+1p\ 1s not Turing-recognizable

Atm ./
Turi ng—recogmzable

dec1dable

context- free
Now just have to show this

: Cp e A E EQ
mapping reducibility P s g uiid A is not Turing-recognizable, then 15 15 not Turing-recognizable.

Atm

Mapping Reducibility implies Mapping Red. of Complements

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — ¥* where for every w,

w e A<= f(w) € B.

The function f is called the reduction from A to B.

A<y, B

implies

A<, B

Thm: EQsy is neither Turing-recognizable nor co-Turing-recognizable.
EQ+y = { (M1, Mz)| My and M> are TMs and L(M;) = L(M2)}

1. EQ1\ 1s not Turing-recognizable
Two Choices:
 Create Computable fn: Atm 2 EQ+y

Because mapping reducibility implies
* Or Computable fn: ATIVI - EQ+m mapping reducibility of complements

And use theorem ...

If A <, B and A is not Turing-recognizable, then B is not Turing-recognizable.

Thm: EQ+y, is not ‘Turing-recognizable

Step 1 EQ+y = {{(M1, Ms)| My and Ms are TMs and L(My) = L(Ma)}

Computable fn

* Create Computable fn: Aty 2 EQ+y,
o UM"I ’LU) > <M1j M2> M, and M, are TMs and L(M,) & L(M>)

F' = “On input (M, w), where M is a TM and w a string:
1. Construct the following two machines, M; and M>.
M; = “On any mput: <— Accepts nothing
1. Reject.”

M, = “On any input: ' Accepts nothing or everything |
1 e S s v A i sy ”
Step 2, iff: . Run M :)n w. It 1t accepts, accept.
= If M accepts w, then M, # M, (M, My).

- because M, accepts nothing

but M, accepts everything | e s a
f

$

Thm:EQ+y is neither Turing-recognizable nor co-Turing-recognizable.
EQTM == {<M1}ﬂ/f2)| ﬂ/fl and ﬂ/fg are TMs f:l]_'ld L(Ml) = L(ﬂ/fz)}

1. EQt)y 1s not Turing-recognizable

. Or Computable fn: Atm = EQmy

And use theorem ...

 DONE! If A <, B and A is not Turing-recognizable, then B is not Turing-recognizable.

(Definition of co-Turing-recognizable)
2. EQ+y is not ¢O-Turing-recognizable
(A lang is co-Turing-recog. if it is complement of Turing-recog. lang)

136

Frevions:EQ+y is not Turing-recognizable
EQ+y = {{(My, M2)| My and Ms are TMs and L(M;) = L(M2)}

* Create Computable fn: Atm =2 EQ+y,
Step 1 ¢ (M,w) =2 (M, M) M and M; are TMs and L(M;) % L(M,)

F' = “On input (M, w), where M is a TM and w a string:
1. Construct the following two machines, M; and M>.
M; = “On any mput: <— Accepts nothing
1. Reject.”
M, = “On any input: < | Accepts nothing or everything
1. Run M on w. If it accepts, accept.”
2. Output (M, Ms).”

137

NOW: EQ+y is not Turing-recognizable
EQty = {(M1, Ma)| My and Ms are TMs and L(M;) = L(Ma>)}

- Create Computable fn: Aty = B0y,

Step 1 ¢ (M,w) =2 (M, M) M and M; are TMs and L(M;) % L(M,)

F' = “On input (M, w), where M is a TM and w a string:
1. Construct the following two machines, M; and M>.
M = “On any input: <— Accepts nething everything
1. Accept.”
My, = “On any input: < Accepts nothing or everything

1. Run M on w. If it accepts, accept.”
2. Output (M;, My).”

Step 2, iff: e : a
= If M accepts w, then M,|=IM, ;

DONE! | < f M does not accept w, then M,[# M, .

Unrecognizable Languages?

ATm Arm

' Turing-recognizable

decidable

context-free

Where do these go?

Erv = {{M)| M isaTMand L(M) = (0}
EQcrc = {(G,H)| G and H are CFGs and L(G) = L(H)}
EQ+y = {(My, My)| My and M, are TMs and L(M;) = L(M>)}

Unrecognizable Languages

ATm Arm

' Turing-recognizable

decidable

context-free

Where do these go?

Erv = {{M)| M isaTMand L(M) = (0}
next |EEE) EQcrc = {(G.H)| G and H are CFGs and L(G) = L(H)}

Thm: EQ.¢; IS not Turing-recognizable

Unrecognizability
Recognizable & co-recognizable = decidable Proof Technique #1

Contrapositive: undecidable = can’t be both recognizable & co-recognizable
- We didn’t prove this yet (but it is true and we will assume it here):

FEQ e 1s undecidable

m=) « \\e now prove:
EQc¢ 1S co-Turing recognizable

* And conclude that:
* EQ.c IS Not Turing recognizable

Thm: EQ.¢: 1S co-Turing-recognizable

EQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)}

Recognizer for EQ:

M = On input (G, H), where G and H are CFGs:

« For every possible string w:

Accept if How to compute this?

« weL(G)and w & L(H),or

« w¢L(G) and w € L(G) Use decider for: | Acec = {(G,w)| G is a CFG that generates string w}
« Else reject

This is only a recognizer because
it loops forever when L(G) = L(H)

Unrecognizable Languages

ATm Arm

' Turing-recognizable

decidable

context-free

Where do these go?

Etm ={(M)| MisaTMand L(M) = ()}
?? EQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)}

Unrecognizable Languages

Where do these go?

next |EEE) Ery = {(M)| M isaTMand L(M) = 0}

Thm: E;, Is not Turing-recognizable

Unrecognizability
Recognizable & co-recognizable = decidable Proof Technique #1

Contrapositive: undecidable = can’t be both recognizable & co-recognizable

« We've proved:
« E- I1s undecidable

== « \We now prove:
E;y 1S CO-Turing recognizable

» And then conclude that:
« E-y IS not Turing recognizable

Thm: E;,, IS co-Turing-recognizable

Erm ={(M)| MisaTMand L(M) = 0}

Recogn izer fO I ETM: Let s1, s2, ... be a list of all strings in ¥*

“On input (M), where M is a TM:
1. Repeat the following for|i|=1,2,3,....
2. Run M for|i|steps on each input, s1, S2, . . . ,\Sik
3. If M has accepted any of these, accept. Otherwise, continue.”

This is only a recognizer because it
loops forever when L(M) is empty

Unrecognizable Languages

Check-in Quiz 4/24

On gradescope

