VMB CS 420 NP-Completeness

Monday, May 8, 2023

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

Announcements

- **HW 12 out** (last hw)
 - Due Sunday 5/14 11:59pm
- Fill out course evaluations! (sent in email)

Quiz Preview

Q1 Which of the following are needed to show that a language L is NP-Complete? 1 Point
(select all that apply)
it must be in P
it must be in NP
every language in NP must be poly-time reducible to L
L must be poly-time reducible to every other language in NP

Last Time: Verifiers, Formally

• A certificate c has length at most n^k , where n = length of w

Last Time: The class NP

DEFINITION

NP is the class of languages that have polynomial time verifiers.

2 ways to show that a language is in **NP**

THEOREM

A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine.

Last Time: NP VS P

P The class of languages that have a **deterministic** poly time **decider**

I.e., the class of languages that can be solved "quickly"

• Want search problems to be in here ... but they often are not

NP

The class of languages that have a **deterministic** poly time **verifier**

Also, the class of languages that have a nondeterministic poly time decider

I.e., the class of language that can be verified "quickly"

• Actual <u>search</u> problems (even those not in **P**) are often in here

One of the Greatest unsolved

Does P = NP?

(in general, it's hard to prove that something doesn't exist)

Not Much Progress on whether P = NP?

The Status of the P Versus NP Problem By Lance Fortnow Communications of the ACM, September 2009, Vol. 52 No. 9, Pages 78-86 10.1145/1562164.1562186 LANCE FORTING LANCE FORTING

- One important concept:
 - NP-Completeness

NP-Completeness

DEFINITION

A language B is **NP-complete** if it satisfies two conditions:

Must prove for <u>all</u> langs, not just a single language

- **1.** *B* is in NP, and easy
- \rightarrow 2. every A in NP is polynomial time reducible to B.

hard????

What's this?

Flashback: Mapping Reducibility

Language A is *mapping reducible* to language B, written $A \leq_{\text{m}} B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

IMPORTANT: "if and only if" ...

The function f is called the **reduction** from A to B

To show **mapping reducibility**:

- 1. create computable fn
- 2. and then show forward direction
- 3. and reverse direction (or contrapositive of reverse direction)

... means $\overline{\overline{A}} \leq_{\mathrm{m}} \overline{\overline{B}}$

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a **computable function** if some Turing machine M, on every input w, halts with just f(w) on its tape.

Polynomial Time Mapping Reducibility

Language A is mapping reducible to language if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A

To show poly time mapping reducibility:

- 1. create computable fn
- 2. show computable fn runs in poly time
- 3. then show forward direction
- 4. and show reverse direction(or contrapositive of reverse direction)

Language A is **polynomial time mapping reducible**, or simply **polynomial time reducible**, to language B, written $A \leq_P B$, if a polynomial time computable function $f: \Sigma^* \longrightarrow \Sigma^*$ exists, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **polynomial time reduction** of A to B.

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

Theorem: 3SAT is polynomial time reducible to CLIQUE.

Last Time: CLIQUE is in NP

 $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$

PROOF IDEA The clique is the certificate.

PROOF The following is a verifier V for CLIQUE.

V = "On input $\langle \langle G, k \rangle, c \rangle$:

- 1. Test whether c is a subgraph with k nodes in G.
- 2. Test whether G contains all edges connecting nodes in c.
- **3.** If both pass, accept; otherwise, reject."

Theorem: 3SAT is polynomial time reducible to CLIQUE.

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$

Boolean Satisfiability

• A Boolean formula is satisfiable if ...

• ... there is some **assignment** of TRUE or FALSE (1 or 0) to its variables that makes the entire formula TRUE

- Is $(\overline{x} \wedge y) \vee (x \wedge \overline{z})$ satisfiable?
 - Yes
 - *x* = FALSE, *y* = TRUE, *z* = FALSE

The Boolean Satisfiability Problem

 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

Theorem: SAT is in NP:

Let n = the number of variables in the formula

Verifier:

On input $\langle \phi, c \rangle$, where c is a possible assignment of variables in ϕ to values:

• Plug values from c into ϕ , Accept if result is TRUE

Running Time: O(n)

| Non-deterministic Decider:

On input $\langle \phi \rangle$, where ϕ is a boolean formula:

- Non-deterministically try all possible assignments in parallel
- Accept if any satisfy ϕ

Running Time: Checking each assignment takes time O(n)

Theorem: 3SAT is polynomial time reducible to CLIQUE.

??

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \lnot)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$
Literal	A var or a negated var	$x \text{ or } \overline{x}$

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \lnot)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$
Literal	A var or a negated var	$x \text{ or } \overline{x}$
Clause	Literals ORed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4)$

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \lnot)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$
Literal	A var or a negated var	$x \text{ or } \overline{x}$
Clause	Literals ORed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4)$
Conjunctive Normal Form (CNF)	Clauses ANDed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4) \wedge (x_3 \vee \overline{x_5} \vee x_6)$

∧ = AND = "Conjunction"
∨ = OR = "Disjunction"
¬ = NOT = "Negation"

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$
Literal	A var or a negated var	$x \text{ or } \overline{x}$.
Clause	Literals ORed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4)$
Conjunctive Normal Form (CNF)	Clauses ANDed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4) \wedge (x_3 \vee \overline{x_5} \vee x_6)$
3CNF Formula	Three literals in each clause	$(x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6} \vee x_4)$

∧ = AND = "Conjunction"
∨ = OR = "Disjunction"
¬ = NOT = "Negation"

The 3SAT Problem

 $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$

Theorem: 3SAT is polynomial time reducible to CLIQUE.

 $3SAT = \{\langle \phi \rangle | \ \phi \text{ is a satisfiable 3cnf-formula}\}$ $CLIQUE = \{\langle G, k \rangle | \ G \text{ is an undirected graph with a k-clique}\}$

To show poly time <u>mapping reducibility</u>:

- 1. create computable fn,
- 2. show that it runs in poly time,
- 3. then show forward direction of mapping red.,
- 4. and reverse direction(or contrapositive of reverse direction)

Theorem: 3SAT is polynomial time reducible to CLIQUE.

Need: poly time computable fn converting a 3cnf-formula ...

 $\phi = (x_1 \vee x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_2})$

• ... to a graph containing a clique:

Each clause maps to a group of 3 nodes

Connect all nodes <u>except</u>:

 Contradictory nodes Nodes in the same group Don't forget iff

 \Rightarrow If $\phi \in 3SAT$

- Then each clause has a TRUE literal
 - Those are <u>nodes in the 3-clique!</u>
 - E.g., $x_1 = 0$, $x_2 = 1$

 $\Leftarrow \mathsf{lf} \, \phi \notin \mathit{3SAT}$

• Then in the graph, some clause's group of nodes won't be connected to another group, preventing the clique

- # literals = O(n)# nodes
- # edges poly in # nodes

 $O(n^2)$

Polynomial Time Mapping Reducibility

Language A is **polynomial time mapping reducible**, or simply **polynomial time reducible**, to language B, written $A \leq_P B$, if a polynomial time computable function $f: \Sigma^* \longrightarrow \Sigma^*$ exists, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **polynomial time reduction** of A to B.

Flashback: If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

Has a decider

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

- 1. Compute f(w).
- decides 2. Run M on input f(w) and output whatever M outputs."

This proof only works because of the if-and-only-if requirement

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

Thm: If $A \leq_{\frac{m}{P}} B$ and $B \stackrel{\in}{\text{is decidable}}$, then $A \stackrel{\in}{\text{is decidable}}$.

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

- 1. Compute f(w).
- 2. Run M on input f(w) and output whatever M outputs."

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

Thm: If $A \leq_{\underline{m}} B$ and $B \stackrel{\in Y}{\text{is decidable}}$, then $A \stackrel{\in Y}{\text{is decidable}}$

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

- **1.** Compute f(w).
- 2. Run M on input f(w) and output whatever M outputs."

poly time Language A is mapping reducible to language B, written $A \leq_{\text{m}} B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

NP-Completeness

DEFINITION

A language B is **NP-complete** if it satisfies two conditions:

- **1.** B is in NP, and
- **2.** every A in NP is polynomial time reducible to B.
- How does this help the P = NP problem?

THEOREM

If B is NP-complete and $B \in P$, then P = NP.

THEOREM

Proof:

If B is NP-complete and $B \in P$, then P = NP.

DEFINITION

A language B is NP-complete if it satisfies two conditions:

1. *B* is in NP, and

- $A \leq_{\mathbf{P}} B$
- 2. every A in NP is polynomial time reducible to B.

 $rA \rightarrow verifier for A$ that ignores its certificate

- 2. If a language $A \in \mathbf{NP}$, then $A \in \mathbf{P}$
 - Given a language $A \in NP ...$
 - ... can poly time mapping reduce A to B --- why?
 - because *B* is NP-Complete (assumption)
 - Then A also $\in \mathbf{P}$...
 - Because $A \leq_{\mathbf{P}} B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$ (prev slide)

So to prove P = NP, we only need to find a poly-time algorithm for one NP-Complete problem!

Thus, if a language B is NP-complete and in P, then P = NP

NP-Completeness

DEFINITION

A language B is **NP-complete** if it satisfies two conditions:

- **1.** *B* is in NP, and
- 2. every A in NP is polynomial time reducible to B.
- How does this help the P = NP problem?

THEOREM

If B is NP-complete and $B \in P$, then P = NP.

But we still don't know any NP-Complete problems!

Figuring out the first one is hard!

(just like figuring out the first undecidable problem was hard!)

So to prove **P** = **NP**, we only need to find a poly-time algorithm for one **NP-Complete problem**!

The Cook-Levin Theorem

The first NP-Complete problem

THEOREM ...

SAT is NP-complete.

(complicated proof --- defer explaining for now)

It sort of makes sense that every problem can be reduced to it ...

After this, it'll be much easier to find other NP-Complete problems!

THEOREM

If B is NP-complete and $B \leq_{\mathrm{P}} C$ for C in NP, then C is NP-complete.

known

unknown

<u>Key Thm</u>: If B is NP-complete and $B \leq_{\mathrm{P}} C$ for C in NP, then C is NP-complete.

To use this theorem, C must be in **NP**

Proof:

- Need to show: C is NP-complete:
 - it's in NP (given), and
 - every lang A in NP reduces to C in poly time (must show)
- For every language A in NP, reduce $A \rightarrow C$ by:
 - First reduce $A \rightarrow B$ in poly time
 - Can do this because B is NP-Complete
 - Then reduce $B \rightarrow C$ in poly time
 - This is given
- <u>Total run time</u>: Poly time + poly time = poly time

DEFINITION

A language B is NP-complete if it satisfies two conditions:

- **1.** *B* is in NP, and
- **2.** every A in NP is polynomial time reducible to B.

<u>Using</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language C is NP-complete:

- 1. Show *C* is in **NP**
- 2. Choose *B,* the **NP**-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

To show poly time mapping reducibility:

- 1. create computable fn,
- 2. show that it runs in poly time,
- 3. then show forward direction of mapping red.,
- 4. and reverse direction (or contrapositive of reverse direction)

<u>Using</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language C is NP-complete:

- 1. Show C is in NP
- 2. Choose B, the NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

Example:

Let C = 3SAT, to prove 3SAT is **NP-Complete**:

1. Show *3SAT* is in **NP**

Flashback, 3SAT is in NP

 $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula}\}$

Let n =the number of variables in the formula

Verifier:

On input $\langle \phi, c \rangle$, where c is a possible assignment of variables in ϕ to values:

• Accept if c satisfies ϕ

Running Time: O(n)

Non-deterministic Decider:

On input $\langle \phi \rangle$, where ϕ is a boolean formula:

- Non-deterministically try all possible assignments in parallel
- Accept if any satisfy ϕ

Running Time: Checking each assignment takes time O(n)

Using: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

- 1. Show C is in NP
- 2. Choose B, the NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

Example:

Let C = 3SAT, to prove 3SAT is **NP-Complete**:

- ✓ 1. Show *3SAT* is in **NP**
- \square 2. Choose B, the NP-complete problem to reduce from: SAT
 - 3. Show a poly time mapping reduction from *SAT* to *3SAT*

Theorem: SAT is Poly Time Reducible to 3SAT

To show poly time <u>mapping reducibility</u>:

- 1. create **computable fn** *f*,
- 2. show that it runs in poly time,
- 3. then show **forward direction** of mapping red., \Rightarrow if $\phi \in SAT$, then $f(\phi) \in 3SAT$
- 4. and reverse direction
 - \Leftarrow if $f(\phi) \in 3SAT$, then $\phi \in SAT$ (or contrapositive of reverse direction)
 - \Leftarrow (alternative) if $\phi \notin SAT$, then $f(\phi) \notin 3SAT$

Theorem: SAT is Poly Time Reducible to 3SAT

<u>Want</u>: poly time <u>computable fn</u> converting a Boolean formula ϕ to 3CNF:

- 1. Convert ϕ to CNF (an AND of OR clauses)
 - a) Use DeMorgan's Law to push negations onto literals

$$\neg (P \lor Q) \iff (\neg P) \land (\neg Q) \qquad \neg (P \land Q) \iff (\neg P) \lor (\neg Q) \qquad O(\mathbf{n})$$

$$\neg (P \land Q) \iff (\neg P) \lor (\neg Q)$$

b) Distribute ORs to get ANDs outside of parens $(P \lor (Q \land R)) \Leftrightarrow ((P \lor Q) \land (P \lor R))$ O(n)

2. Convert to 3CNF by adding new variables

$$(a_1 \lor a_2 \lor a_3 \lor a_4) \Leftrightarrow (a_1 \lor a_2 \lor z) \land (\overline{z} \lor a_3 \lor a_4) \bigcirc (n)$$

Remaining step: **show** iff relation holds ...

... this thm is a special case, don't need to separate forward/reverse dir bc each step is already a known "law"

<u>USing</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

- 1. Show C is in NP
- 2. Choose B, the NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

Example:

Let C = 3SAT, to prove 3SAT is **NP-Complete**:

- \checkmark 1. Show 3SAT is in NP
- \square 2. Choose B, the NP-complete problem to reduce from: SAT
- ☑3. Show a poly time mapping reduction from SAT to 3SAT

Each NP-complete problem we prove makes it easier to prove the next one!

<u>Using</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

- 1. Show C is in NP
- 2. Choose B, the NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from *B* to *C*

Example:

Let $C = \frac{3SAT}{CLIQUE}$, to prove $\frac{3SAT}{CLIQUE}$ is NP-Complete:

- ?1. Show 3SAT CLIQUE is in NP
- ?2. Choose *B,* the **NP**-complete problem to reduce from: *SAT-3SAT*
- ?3. Show a poly time mapping reduction from 3SAT to 3SAT CLIQUE

CLIQUE is in NP

 $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$

PROOF IDEA The clique is the certificate.

Let n = # nodes in G

c is at most n

PROOF The following is a verifier V for CLIQUE.

V = "On input $\langle \langle G, k \rangle, c \rangle$:

- **1.** Test whether c is a subgraph with k nodes in G.
- 2. Test whether G contains all edges connecting nodes in c.
- 3. If both pass, accept; otherwise, reject."

For each node in c, check whether it's in G: O(n)

For each pair of nodes in c, check whether there's an edge in G: $O(n^2)$

Flashback:

3SAT is polynomial time reducible to CLIQUE.

Need: poly time computable fn converting a 3cnf-formula ...

Example: $\phi = (x_1 \vee x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_2})$

• ... to a graph containing a clique:

Each clause maps to a group of 3 nodes

Connect all nodes <u>except</u>:

 Contradictory nodes Nodes in the same group Don't forget iff

 \Rightarrow If $\phi \in 3SAT$

- Then each clause has a TRUE literal
 - Those are nodes in the clique!
 - E.g., $x_1 = 0$, $x_2 = 1$

 \Leftarrow If $\phi \notin 3SAT$

Then in the graph, some clause's group of nodes won't be connected to another group, preventing the clique

- # literals = O(n)# nodes
- # edges poly in # nodes $O(n^2)$

<u>Using</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

- 1. Show C is in NP
- 2. Choose B, the NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from *B* to *C*

Example:

Let C = 3SAT CLIQUE, to prove 3SAT CLIQUE is NP-Complete:

- **☑**1. Show *3SAT-CLIQUE* is in **NP**
- \square 2. Choose B, the NP-complete problem to reduce from: SAT3SAT
- ☑3. Show a poly time mapping reduction from *3SAT* to *3SAT CLIQUE*

NP-Complete problems, so far

• $SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$ (havent proven yet)

• $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$ (reduced *SAT* to *3SAT*)

• $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$ (reduced 3SAT to CLIQUE)

Each NP-complete problem we prove makes it easier to prove the next one!

Next Time: The Cook-Levin Theorem

The first NP-Complete problem

THEOREM "

SAT is NP-complete.

It sort of makes sense that every problem can be reduced to it ...

After this, it'll be much easier to find other NP-Complete problems!

THEOREM

If B is NP-complete and $B \leq_{\mathrm{P}} C$ for C in NP, then C is NP-complete.

Quiz 5/8

On gradescope