UMB CS 420
NP-Completeness

Monday, May 8, 2023 MY HoBay:
EMBEDDING NP-(OMPLETE PROBLEMS IN RESTAURANT ORDERS
CHOTCHKIES ResTAURAWT W VR O T IERS A
<« APPENZERS | . EXACTY? UHH.
MIXED FRUIT 215 HERE, THESE PAPERS ON THE KNAPSACK.
PROBLEM MIGHT HELP YOU OUT.
FRENCH FRIES 275 \ ;?:sm, 1 HAVE SIngm:R
ABLES TO GET TO—
SIDE SALAD 3.35 B e
HOT WINGS 5-55] SOMETHING ON TRAVELING SALESNAN? /
MOZZAREUA STIOS 4:20 \
SAMPLER PLATE 5.80 % 0 ‘%Qb %
—— SANDWICHES ~— d /
RARREN1IE Lsc

%/{/{0&(/{06/%@/{56’

« HW 12 out (last hw)
« Due Sunday 5/14 11:59pm

* Fill out course evaluations! (sent in email)

Q1 Which of the following are needed to show that a
language L is NP-Complete?
1 Point

(select all that apply)

Quiz Preview

last Tine: NEFITIETS, FOrmally

PATH = {(G, s,t)| G 1s a directed graph that has a|directed path|from s to ¢}
|

... with extra argument:
can be any string that helps
to find a result in poly time

(is often just a potential
result itself)

Decider ...

A verifier for a language A is an ‘flgorithm V, where

A = {w| V accepts (w, ¢) for some string c¥.

_ . . certificate, or proof
We measure the time of a verifier only in terms of the length of w,

so a polynomial time verifier runs in polynomial time in the length

of w. A language A is polynomially verifiable if it has a polynomial
time verifier.

* A certificate ¢ has length at most n*, where n = length of w

Last Tive: THe class NP

DEFINITION

NP is the class of languages that have polynomial time verifiers. 2 ways to Sh.OV.V that
a language Is In NP

T EIEGREIM e unaussumessasansaseas s ass ansa anaa s s s aun s ansan s | AR AR R R an R mnma e

A language is in NP iff it is decided by some nondeterministic polynomial time
Turing machine.

Last [ime: NP VS P

P The class of languages that have a deterministic poly time decider

.e., the class of languages that can be solved “quickly”
« Want search problems to be in here ... but they often are not

NP The class of languages that have a deterministic poly time verifier

Also, the class of languages that have a nondeterministic poly time decider

.e., the class of language that can be verified “quickly”
» Actual search problems (even those not in P) are often in here

One of the Greatest unsolved

B Question: Does P = NP?

o
chizgaybe wiy/ge CLIQUE

d tomofrow 27,

/ HAMPATH
, d/'scol/ere) COMPOSITES

Proving P # NP is hard: how do you prove that an algorithm

won't ever have a poly time solution?
(in general, it's hard to prove that something doesn't exist)

Not Much Progress on whether P=NP 7

The Status of the P Versus NP Problem

By Lance Fortnow o
Communications of the ACM, September 2009, Vol. 52 No. 9, Pages 78-86 : 3
10.1145/1562164.1562186

LANCE FORTNOW

« One important concept:
 NP-Completeness

135

NP-Completeness

DEFINITION

A language B is NP-complete it it satisfies two conditions:

1S 1 eas
Must prove for all 1. Bisin NP, and y

langs, not just a 2. every A in NP is polynomial time reducible o B. hard????
single language

What's this?

tastback: Mapping Reducibility

Language A is mapping reducible to language B, written A <,

B,

if there is a computable function f: ¥* — ¥* where for every w,

w e A< f(w) € B. IMPORTANT: “if and only if” ...

The function £ is called the reduction from A to B| To show mapping reducibility:

1. create computable fn

... Means

2. and then show forward direction
3. and reverse direction
(or contrapositive of reverse direction)

A <m

B

A function f: ¥X*— X" is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

Polynomial Time Mapping Reducibility

To show poly time mapping reducibility:
Language A is mapping reducible to language | 1. Create computable fn

if there is a computable function f: 2*— »*, | 2. show computable fn runs in poly time
3. then show forward direction

w € A<= f(w) € B. |4 and show reverse direction
(or contrapositive of reverse direction)

The function f is called the reduction from A 1

Language A is polynomial time mapping reducible, or simply poly-
nomial time reducible, to language B, written A <p B, if a polyno-
mial time computable function f: >*— >* exists, where for every
w,

w € A< f(w) € B.

The function f is called the polynomial time reduction of A to B.

oly time oly time
A function f: X*— X*is agcomputable function 1Psome Turlng
machine M, on every input w, halts with just f(w) on its tape

Theorem: 3SAT is polynomial time reducible to CLIQUE.

last Tive: CLIQUE 1s in NP j/ QCE Q
CLIQUE = {(G, k)| G is an undirected graph with a k-clique}

PROOF IDEA 'The clique is the certificate.

PROOF The following is a verifier V' for CLIQUE.

V = “On mput ((G, k), c):
1. Test whether c is a subgraph with & nodes in G.
2. ’Test whether G contains all edges connecting nodes in c.
3. If both pass, accept; otherwise, reject.”

141

Theorem: 3SAT is polynomial time reducible to CLIQUE.

Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE

145

Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z

146

Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)

147

Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)

Formula ¢ Combines vars and operations (TAyY) V (xAZ)

148

Boolean Satisfiability

« A Boolean formula is satisfiable if ...

. ... there is some assignment of TRUE or FALSE (1 or 0) to its
variables that makes the entire formula TRUE

e |Is (TAy) V (zAZ) satisfiable?
* Yes
 x = FALSE,

y = TRUE,
7z = FALSE

The Boolean Satisfiability Problem

SAT = {(¢)| ¢ is a satisfiable Boolean formula}
Theorem: SAT Is in NP:

e Let n =the number of variables in the formula

Verifier:

On input <¢, c>, where c Is a possible assignment of variables in ¢ to values:
« Plug values from c into ¢, Accept if result is TRUE

Running Time: O(n)

| Non-deterministic Decider: - - }
On input <¢>, where ¢ is a boolean formula:
« Non-deterministically try all possible assignments in parallel
« Accept if any satisfy ¢ }

‘Running Time: Checking each assignment takes time 0O(n)

Theorem: 3SAT is polynomial time reducible to CLIQUE.

More Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)

Formula ¢ Combines vars and operations (T N 'y) V (:1: N E)

152

More Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)
Formula ¢ Combines vars and operations (TAyYy) V (xAZ)

Literal A var or a negated var T Or T.

153

More Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)
Formula ¢ Combines vars and operations (TAyYy) V (xNZ)
Literal A var or a negated var T Or T.

Clause Literals ORed together (:1'31 VIoVIzV 334)

154

More Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)
Formula ¢ Combines vars and operations (TAyYy) V (xNZ)
Literal A var or a negated var T Or T.
Clause Literals ORed together (:1'31 VIaVI3V 334)
Conjunctive Normal Form (CNF) Clauses ANDed together (1 VZ2 VT3 V) A (23 VT5 V 26)

A =AND = “Conjunction”
V= OR ="“Disjunction”
- = NOT = “Negation”

155

More Boolean Formulas

" hmoolean | s | campe

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)
Formula ¢ Combines vars and operations (TAyYy) V (xAZ)
Literal A var or a negated var T Or T.
Clause Literals ORed together (:1'31 VIaVI3V 334)
Conjunctive Normal Form (CNF) Clauses ANDed together (1 VZ2 VT3 V) A (23 VT5 V 26)
3CNF Formula Three literals in each clause (z1 V@ vas) A (23 VIS Vag) A (a3 VTGV ag)

A =AND = “Conjunction”
V= OR ="“Disjunction”
- = NOT = “Negation”

156

The 3SAT Problem

3SAT = {(¢)| ¢ is a satistiable 3cnf-formula}

heorem: 3SAT is polynomial time reducible to CLIQUE.

3SAT = {(¢)| ¢ is a satisfiable 3cnf-formula} CLIQUE = {(G, k)| G is an undirected graph with a k-clique}

To show poly time mapping reducibility:
1. create computable fn,

2. show that it runs in poly time,

3. then show forward direction of mapping red.
4. and reverse direction

(or contrapositive of reverse direction)

heorem: 3SAT is polynomial time reducible to CLIQUE.

3SAT = {(¢)| ¢ is a satisfiable 3cnf-formula} CLIQUE = {(G, k)| G is an undirected graph with a k-clique}

Need: poly time computable fn converting a 3cnf-formula ... Example:
o= (r1VayVizd) N (TYVT2VT) A (T V23 VT
« ...to a graph containing a clique:

« Each clause maps to a group of 3 nodes
« Connect all nodes except: —z

Runs in poly time:

« Contradictory nodes - # literals = 7
Don't forgetiff | Nodes in the same group # nodes (n)
= If ¢p € 3SAT - # edges poly in #
« Then each clause has a TRUE literal nodes 0(n?)

* Those are nodes in the 3-clique!
e Eg,x,=0,x,=1

< If ¢ & 3SAT

« Then for any assignment, some clause must have a contradiction with another clause
« Then in the graph, some clause’s group of nodes won't be connected to another group, preventing the clique

Polynomial Time Mapping Reducibility

Language A is polynomial time mapping reducible, or simply poly-
nomial time reducible, to language B, written A <p B, if a polyno-
mial time computable function f: ¥*— >* exists, where for every
w)

w e A< f(w) € B.

The function f is called the polynomial time reduction of A to B.

oly time oly time
A function f: X*— X*is agcomputable function 1Psome Turmg
machine M, on every input w, halts with just f(w) on its tape

Flastback If A <., B and B is decidable, then A is decidable.

Has a decider

PROOF We let M be the decider for B and f be the reduction from A to B.
We describe a decider NV for A as follows.

N = “On input w:
1. Compute f(w).
decides| 2. Run M on input f(w) and output whatever M outputs.”

decides

This proof only works because of the if-and-only-if requirement

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — 3%, where for every w,

we A<= f(w) € B,

The function f is called the reduction from A to B.

e ¥ c¥
Thm: IfA gml_)B and B rs—deetrdable; then A 1s-deetdable-

PROOF We let M be the decider for B and f be the reduction from A to B.
We describe a decider IV for A as follows.

N = “On input w:
1. Compute f(w).
2. Run M on input f(w) and output whatever M outputs.”

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — 2*, where for every w,

we A<= f(w) € B.

The function f is called the reduction from A to B.

c? c?¥
Thm: IfA gml_)B and B rsdeetdable; then A 1is-deeidable:

oly time oly time
PROOF Welet M be tht—"-Adecider for B and f be th%educdon from A to B.
We describe &lecider N for A as follows.
poly time

“On input w:

N =
1. Compute f(w).
2. Run ﬂ/{ on input f(w) and output whatever M outputs.”

f
poly time |
Language A igynapping reducible to language B, written A <, B,
; if there is a computable function f: ¥* — 3%, where for every w,
* * 164
The function f is called the reduction from A to B.

NP-Completeness

DEFINITION

A language B is NP-complete it it satisfies two conditions:

1. Bisin NP, and
2. every A in NP is polynomial time reducible to B.

« How does this help the P = NP problem?

THEOREM = e s

It B is NP-complete and B € P, then P = NP.

assume — 2

~
T \
THEOREM O eSS // NP ‘ s vs o

‘ // .

Proof: If B is NP-complete and B € P, then P =NP. [~ | /
" /
DEFINITION S

A language B 1s NP-complete if it satisfies two conditions:

1. Bisin NP, and A<p B
2. every A in NP is polynomial fime reducible to B.

2. Ifalanguage A € NP, then A€ P
* Given a language A € NP ...
e ... can poly timemapping reduge A to B --- why?

 because Bis NP-Complete (assumption)

e Then A also eP|..

» Because A <p Band B € P,then A €¢ P | 5o to prove P=NP, we only need
(prev slide) to find a poly-time algorithm for

one NP-Complete problem!

Thus, If a language B is NP-complete and in P, then P = NP

P

r A — verifier for A that ignores its certificate

NP-Completeness

DEFINITION

A language B is NP-complete it it satisfies two conditions:

1. Bisin NP, and
2. every A in NP is polynomial time reducible to B.

« How does this help the P = NP problem?

THEOREM = e s

It B is NP-complete and B € P, then P = NP.

But we still don’t know any NP-Complete problems! || S0 to prove P=NP, we only need
to find a poly-time algorithm for

Figuring out the first one is hard! one NP-Complete problem!
(just like figuring out the first undecidable problem was hard!)

The Cook-Levin Theorem

The first NP-

Complete It sort of makes sense that every

problem e S S problem can be reduced to it ...

SAT is NP-complete.

(complicated proof --- defer explaining for now)

After this, it'll be much easier to find other
NP-Complete problems!

TH EOREM --

It B is NP-complete and B <p C for C' in NP, then C' is NP-complete.

THEOREM rwreeresssssnnes known | UNKNOWN | eeeraeeeseseessensseessmns

Key Thm: 1f B is NP-complete and B <p C' for C' in NP, then C' is NP-complete.

To use this theorem,
C must be in NP

P rOOf: DEFINITION
° N e e d to S h O W: C iS NI‘ - CO m p lete: A lzing;aiinBl\Ti;]\;i:;omplete if it satisfies two conditions:
° it's i N NP <g|ve N), an d 2. every A in NP is polynomial time reducible to B.

» every lang 4 in NP reduces to Cin poly time (must show)

 For every language A in NP, reduce A - C by:

* First reduce 4 2 /Bin poly time
« Can do this because B is NP-Complete

« Then reduce B = Cin poly time
« This is given

 Total run time: Poly time + poly time = poly time

THEOREM --

Usin g: It B is NP-complete and|B <p C'|for C'in NP, then|C' is NP-complete.

3 steps to prove a language|C is NP-complete:
1. Show Cis in NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

To show poly time mapping reducibility:
1. create computable fn,
2. show that it runs in poly time,
3. then show forward direction of mapping red,,
4. and reverse direction

(or contrapositive of reverse direction)

THEOREM ..

U Si [g: It B 1s NP-complete and B <p C for C'in NP, then|C' is NP-complete.

3 steps to prove a language C is NP-complete:
1. Show Cis in NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

Example:

Let C = 3SAT, to prove|3SAT is NP-Complete:
1. Show 3SATis in NP

172

Fasktack SSAT is in NP
BSAT = {(¢)| ¢ is a satisfiable Boolean formula}

Let n = the number of variables in the formula

Verifier:

On input <¢, c>, where c is a possible assignment of variables in ¢ to values:
 Accept If ¢ satisfies ¢

Running Time: O(n)

Non-deterministic Decider: b
On input <¢>, where ¢ is a boolean formula:

« Non-deterministically try all possible assignments in parallel

« Accept if any satisfy ¢ |

Running Time: Checking each assignment takes time O(n)

THEOREM --

U Si [g: It|B 1s NP-complete and|B <p C'|for C'in NP, then C' is NP-complete.

3 steps to prove a language i1s NP-complete:
1. Show Cis in NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

Example:

Let C = 3SAT, to prove 3SAT is NP-Complete:
vl 1. Show 3SATis in NP
V] 2.. Choose B, the NP-complete problem to reduce from: SAT
3.] Show a poly time mapping reduction from SAT to 3SAT

174

Theorem: SAT Is Poly Time Reducible to 3SAT

SAT = {(®)| ¢ is a satisfiable Boolean formula} e * 3SAT = {{(¢)| ¢ is a satishable 3cnf-formula}

To show poly time mapping reducibility:
1. create computable fn f,
2. show that it runs in poly time,
3. then show forward direction of mapping red.,
= if ¢ € SAT, then f(¢) € 3SAT
4. and reverse direction
< if f¢p) € 3SAT, then ¢ € SAT
(or contrapositive of reverse direction)
& (alternative) if ¢ & SAT, then f(¢p) & 3SAT

Theorem: SAT Is Poly Time Reducible to 3SAT

A B
;
SAT = {(¢)| ¢ is a satisfiable Boolean formul%SAT = {(¢)| ¢ is a satisfiable 3cnf-formula}
f

— T
. .

Want: poly time computable fn converting a Boolean formula ¢ to 3CNF:

1. Convert ¢ to CNF (an AND of OR clauses)

a) Use DeMorgan’s Law to push negations onto literals
2(PVQ) <= (-P)A(-Q) (PAQ) <= (-P)V(-Q)

b) Distribute ORs to get ANDs outside of parens
(PV(QAR)) = (PVQ)A(PVR)| om)

2. Convert to 3CNF by adding new variables
(ayVasVasVay) < (@1VaxVz)A(ZVasVay)

Remaining step: show
iff relation holds ...

O(n)

O(n)

... this thm is a special
case, don’t need to
separate forward/reverse
dir bc each step is
already a known “law”

THEOREM --

U Si [g: It B 1s NP-complete and B <p C for C'in NP, then C' is NP-complete.

3 steps to prove a language i1s NP-complete:
1. Show Cis in NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

Example: Each NP-complete problem
Let C = 3SAT, to prove 3SAT is NP-Complete: we prove makes it easier to
1. Show 3SATis in NP prove the next one!

V2. Choose B, the NP-complete problem to reduce from: SAT
V13. Show a poly time mapping reduction from SAT to 3SAT

177

THEOREM --

U Si [g: It B 1s NP-complete and B <p C for C'in NP, then C' is NP-complete.

3 steps to prove a language i1s NP-complete:
1. Show Cis in NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

Example:

Let C = 3SAT CLIQUE, to prove 3SAT CLIQUE is NP-Complete:
?1. Show 3SAT-CLIQUE is in NP

?2. Choose B, the NP-complete problem to reduce from: SAT-3SAT
?3. Show a poly time mapping reduction from 3SAT to 3SAT-CLIQUE

179

o8
(lastback: CLIQUE 1s in NP z
CLIQUE = {(G, k)| G is an undirected graph with a k-clique}

PROOF IDEA The clique is the certificate.

Let n=# nodesin G

PROOF The following is a verifier V' for CLIQUE. cisatmostn

V =%“On input ((G, k), c): For each node in ¢, check
1. Test whether c is a subgraph with k£ nodes in G.| whether it's in G: O(n)

2. 'Test whether G contains all edges connecting nodes in c.| for each pair of nodes in c,

3. If both pass, accept; otherwise, reject.” check whether there's an
edge in G: O(n?)

(lashback: ~ 3SAT is polynomial time reducible to CLIQUE.

3SAT = {(¢)| ¢ is a satisfiable 3cnf-formula} CLIQUE = {(G, k)| G is an undirected graph with a k-clique}

Need: poly time computable fn converting a 3cnf-formula ... Example:
o= (r1VayVizd) N (TYVT2VT) A (T V23 VT
« ...to a graph containing a clique:

« Each clause maps to a group of 3 nodes
« Connect all nodes except: —z

Runs in poly time:

« Contradictory nodes - # literals = 7
Don't forgetiff | Nodes in the same group # nodes (n)
= If ¢ € 3SAT - # edges poly in #
- Then each clause has a TRUE literal nodes 0(n?)

* Those are nodes in the clique!
e Fg,x,=0,x,=1

< If ¢ & 3SAT

« For any assignment, some clause must have a contradiction with another clause
« Then in the graph, some clause’s group of nodes won’t be connected to another group, preventing the clique

THEOREM --

U Si [g: It B 1s NP-complete and B <p C for C'in NP, then C' is NP-complete.

3 steps to prove a language i1s NP-complete:
1. Show Cis in NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

Example:

Let C = 3SAT CLIQUE, to prove 3SAT CLIQUE is NP-Complete:
V1. Show 3SAT-CLIQUE is in NP
V2. Choose B, the NP-complete problem to reduce from: SAT-3SAT
V13. Show a poly time mapping reduction from 3SAT to 3SAT-CLIQUE

182

NP-Complete problems, so far

o SAT = {{(¢)| ¢ is a satisfiable Boolean formula} (havent proven yet)
o 3SAT = {(¢)| ¢ is a satisfiable 3cnf-formula} (reduced SAT to 3SAT)

e CLIQUE = {(G, k)| G is an undirected graph with a k-clique} (reduced 3SAT to CLIQUE)

Each NP-complete problem we prove
makes It easier to prove the next one!

Mewt Time: The Cook-Levin Theorem

The first NP-

Complete It sort of makes sense that every

problem e S S problem can be reduced to it ...

SAT is NP-complete.

After this, it'll be much easier to find other
NP-Complete problems!

TH EOREM --

It B is NP-complete and B <p C for C' in NP, then C' is NP-complete.

Quiz 5/8

On gradescope

