UMass Boston Computer Science

CS450 High Level Languages (section 2)
More Kinds of Data Definitions

Wednesday, September 18, 2024

Logistios

* HW 1 out
» due: Mon 9/23 12pm (noon) EST

« Course web site:
« See The Design Recipe section
e Lecture code (see lecture03.rkt) may occasionally be posted

Last

-~ Design Recipe, Step 1: Data Design

Create Data Definitions
* Describes the types of data that the program operates on

* Has 4 parts:
1. Name
2. Description of all possible values of the data
3. Interpretation explaining the real world concepts the data represents
4. Predicate returning true if the given value is in the Data Definition

Kinds of Data Definitions

 Basic data

=) o |ntervals
 Enumerations
* |temizations

template<typename T>

class Array {
.-'“rf#- * .
int size;

T* array;
T &operator[](int index) {
if(index >= size || index < @)

throw OUT_OF_RANGE; //#define OUT_OF_RANGE ©x©A
return array[index];

. It depends (on our application)!
s this what we want? | (Data representations are crucial

‘ nte '\ A l Data D e'ﬂ N |t| O because they determine what the

rest of the program looks like)

;5 An AngleD is a number in [©, 360) ;5 An AngleR is a number it [0 2m)

;3 interp: An angle in degrees ;3 interp: An angle in radians
(define (AngleD? deg) (define (AngleR? r)
(and (>= deg @) (< deg 360))) (and (>=r 0) (< r (* 2 pi))))

Function Recipe Steps 1-3:
name, signature, description

(define/contract (deg->rad deg)

(-> AngleD? AngleR?) Step 5: Code
(* deg (/ pi 180))) Not allowed by data def!
but should be ok?
(check-equal? (deg->rad 0) 0) (check-equal? (deg->rad 360) 0)

(check-equal? (deg->rad 90) (/ pi 2))

(check-equal? (deg->rad 180) pi) (check-equal? (deg->rad 360) (* 2 pi))

Step 4: Examples Step 6: Tests

\
exclude 5

Kinds of Data Definitions

 Basic data
* Intervals

== « Enumerations
* |temizations

enum season { spring, summer, autumn, winter };

enum Colours {
RED = 'RED',
YELLOW = 'YELLOW',
GREEN = 'GREEN'

TypeScript

Enumeration Data Definitions

;5 A TrafficLight is one of: NOTE: this is not the only
55 - RED-LIGHT possible data definition.
55 - GREEN-LIGHT s there a better one?

;3 - YELLOW-LIGHT
;5 Interpretation: Represents possible colors of a traffic light
(define RED-LIGHT "RED")

(define GREEN-LIGHT "GREEN")

(define YELLOW-LIGHT "YELLOW")

(define (red-light? x) (string=? x RED-LIGHT))
(define (green-light? x) (string=? X GREEN-LIGHT))
(define (yellow-light? x) (string=? X YELLOW-LIGHT))

(define (TrafficLight? x)
(or (red-light? x)
(green-light? x)
(yellow-light? x)))

Need to add an extra step to Data Design Recipe

Design Recipe, Step 1: Data Design

Create Data Definitions
* Describes the types of data that the program operates on
* Has 4 parts:

4. Predicate evaluates to true, if the given value is in the data definition

m=) -« |f needed, also define predicates for each enumeration or itemization
(some languages do this implicitly for you, Racket does not)

Enumeration Data Definitions | cond is only allowed

in functions that
process enumeration
(or itemization) data!

(define KED-LIGHT "RED")
(defing GREEN-LIGHT "GREEN")
(defyhe YELLOW-LIGHT "YELLOW")

;5 next-light: TrafficLight -> TrafficlLight
The data and | ;; Computes the next light after the given one

function have (define (next-light light)

Function Recipe Steps 1-3:
name, signature, description

(Cond cond is multi-arm if (expression) DeSigning data ﬂ rSt
the same [(red-light? light) GREEN-LIGHT] |swpscede | makes writing function
structure! [(green-light? light) YELLOW-LIGHT] C

[(yellow-light? light) RED-LIGHT])) (code) easier!

(keep order the same)

(check-equal? (next-light RED-LIGHT) GREEN-LIGHT)
(check-equal? (next-light GREEN-LIGHT) YELLOW-LIGHT) [>tep4:Examples
(check-equal? (next-light YELLOW-LIGHT) RED-LIGHT)

Last

.y Function Design Recipe

1. Name
2. Signature - types of the function input(s) and output

3. Description - explain (in English prose) the function behavior

4. Examples - show (using rackunit) the function behavior

5. Code - implement the rest of the function (arithmetic)

6. Tests - check (using rackunit) the function behavior

Function Design Recipe

5. Template - sketch out the function structure (using input’s Data Definition)

Enumeration Data Definitions

35 A TrafficLight is one of:
(define RED-LIGHT "RED")

(define GREEN-

LIGHT "GREEN")

(define YELLOW-LIGHT "YELLOW")

;5 Interpretation: Represents possible colors of a traffic light
(define (red-light? x) (string=? x RED-LIGHT))

(define, (green-light? x) (string=? x GREEN-LIGHT))
(defi;;z(yellow—light? x) (string=? x YELLOW-LIGHT))

A function’s
template is
completely
determined by
the input’s
Data Definition

(define (next-light light)
(cond
\\\s [(red-1ight? light)]
[(green-1light? light)]
[(yellow-1ight? light)]))

(keep order the same)

;5 next-light: TrafficLight -> TrafficLight
;3 Computes the next light after the given one

Step 5: €ede Template

Step 6: Code (fill in the

“ .. with arithmetic)

Kinds of Data Definitions

 Basic data

* Intervals

 Enumerations
=) ¢ [temizations

(Generalized enumeration)

Item izati on Data D eﬂ M |t| OIS | (Generalized enumeration)

2024 tax brackets

Tax Married couples filing
rate Single filers jointly

10% $11,600 or less

12% $11,601 to $47,150

22% i:;g;;o 7,301 to $201,050

24% ilg?:;?g to $201,051 to $383,900
32% i;Z;:?;; to $383,901 to $487,450
35% iég;;ig to $487,451 to $731,200

37% $609,351 or more $731,201 or mare

Source: Internal Revenue Service

Married couples filing
separately

—=ad of household

$11,600 or less

55 A Salary is one of:
5—>[0, 11600]

11601 47150]

47151 100525]

$11,601 to $47,150 3,100

(0]

$47,151 to $100,525 i?é;gégo
$100,526 to $191,150 ijlg??g[') to
$191,151 to $243,725 i;j"%;;[') to
$243,276 to $365,600 igg;;gé to
$365,601 or mare $609,351 or more

The data and function
have the same structure!

else is fallthrough case

;; Interp: Salary in USD,
split by 2024 2024 tax bracket
(deflne (10%-bracket? salary)
(and (>= salary 0) (<= salary 11600))
(define (12%-bracket? salary)
(and (>= salary 11601) (<= salary 47150))

)

;5 taxes-owed: Salary -> USD
;5 computes federal income tax owed in 2024
(define (taxes-owed salary)

(cond

\\\\\ [(10%-bracket? salary)]

o[(12%-bracket? salary)]
[else]))

Some Pre-defined Enumeranns

; A MouseEvt 1s one of these Strings:
; A KeyEvent 1s one of:

_ : — "button-down"
; — 15tring . .
.) ; — "button-up
;o — "left .,]
. ; — "drag
; — "right” ;)
L : — "move
; B u D m I
; — "enter
' : — "leave"

;3 handle-mouse: WorldState Coordinate Coordinate MouseEvt -> WorldState
;3 Produces the next WorldState

; WorldState KeyEvent -> ;5 from the given Worldstate, mouse position, and mouse event

(define (handle-key-events w ke) (define (handle-mouse w x y evt)
(cond (cond
[(= (string-length ke) 1) ...] [(string=? evt "button-down")]
Ternplate . . [(string=? evt "button-up")]
[(str?ng—. 1?ft ke) ...] [else]))
[(string=? "right" ke) ...] . A 1String is a String of length 1,
[(string=? "up" ke) ...] Design Recipe allows combining f f”figf}i'(‘fhe e
[(string=? "down" ke) ...] cases if they are handled the same | .« (. coace bar),
- "\t" (tab),

.))

i — "\r" (return), and
; — "\b" (backspace).
; interpretation represents keys on the keyboard

In-class exercise: big-bang practice

 Create a big-bang traffic light
simulator that changes on a mouse
click (“button-down” event)

;55 A TrafficLight is one of:
(define RED-LIGHT "RED")
(define GREEN-LIGHT "GREEN")
(define YELLOW-LIGHT "YELLOW")

° Data De'ﬂnltlon ChO|C€? ;3 Interpretation: Represents possible colors of a traffic light
(define (red-light? x) (string=? x RED-LIGHT))
 Pros? (define (green-light? x) (string=? X GREEN-LIGHT))
e Cons? (define (yellow-light? x) (string=? x YELLOW-LIGHT))
53 A TrafficLight2 is one of:
Submitting (define GREEN-L ©)
_ - (define YELLOW-L 1)
1. File:in-class-09-18-<Lastname>-<Firstname>.rkt (define RED-L 2)
)) ;3 Interp: represents a traffic light state
2. Join the in-class team: cs450f24/teams/in-class (define (red-L? 1i) (= 1i RED-L))
. . (define (green-L? 1i) (= 1i GREEN-L))
3. Committo repo: cs450f24/in-class-09-18 (define (yellow-L? 1i) (= 1i YELLOW-L))

« (May need to merge/pull + rebase if someone pushes before you)

https://github.com/orgs/cs450f24/teams/in-class
https://github.com/orgs/cs450f24/teams/in-class
https://github.com/orgs/cs450f24/teams/in-class

