
CS450 High Level Languages

Recursive Data Definitions
(part 2)

Logistics
•

•

― Robert C. Martin,

Clean Code: A Handbook of Agile Software Craftsmanship

https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106

•

•

•

― Robert C. Martin,

Clean Code: A Handbook of Agile Software Craftsmanship

https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106

;; A Ball is one of:
(struct ball [x y xvel yvel] #:transparent)
;; x : XCoord – ball center horiz coord in animation
;; y : Ycoord – ball center vert coord in animation
;; xvel : Velocity – ball horiz pixels/tick velocity
;; yvel : Velocity – ball vert pixels/tick velocity

(define/contract (mk-ball x y xvel yvel)
 (-> XCoord? YCoord? Velocity? Velocity? ball?)
 (ball x y xvel yvel))

(define (Ball? arg)
 (and (ball? arg)
 (XCoord? (ball-x arg))
 (YCoord? (ball-y arg))
 (Velocity? (ball-xvel arg))
 (Velocity? (ball-yvel arg))))

struct
ball?

ball?

Previously

;; A ListofBalls is one of
;; - empty
;; - (cons Ball ListofBalls)

;; A WorldState is a ListofBalls

(define INITIAL-WORLD
 (list (random-ball))

;; A NEListofBalls (non-empty) is one of:

;; A WorldState is a NEListofBalls

;; A NEListofBalls (non-empty) is one of:
;; - (cons Ball empty)
;; - (cons Ball NEListofBalls)

(define (non-empty-list? arg)
 (and (cons? arg)
 (XCoord? (ball-x arg))
 (YCoord? (ball-y arg))
 (Velocity? (ball-xvel arg))
 (Velocity? (ball-yvel arg))))

cons?

;; A NEListofBalls (non-empty) is one of
;; - (cons Ball empty)
;; - (cons Ball NEListofBalls)

(define (non-empty-list-fn lst)
 (cond
 [(empty? (rest lst)) (first lst)]
 [else (first lst)
 (non-empty-list-fn (rest lst))]))

;; non-empty-list-fn : NEList -> ???

Next:

•

•

•

;; A ListofInt is one of
;; - empty
;; - (cons Int ListofInt)

cons

TEMPLATE??

Previously

;; TEMPLATE for list-fn
;; list-fn : ListofInt -> ???
(define (list-fn lst)
 (cond
 [(empty? lst)]
 [(cons? lst) (first lst)
 (list-fn (rest lst))]))

;; TEMPLATE for list-fn
;; list-fn : ListofInt -> ???
(define (list-fn lst)
 (cond
 [(empty? lst)]
 [(cons? lst) (first lst)
 (list-fn (rest lst))]))

Previously

;; A ListofInt is one of
;; - empty
;; - (cons Int ListofInt)

;; TEMPLATE for list-fn
;; list-fn : ListofInt -> ???
(define (list-fn lst)
 (cond
 [(empty? lst)]
 [(cons? lst) (first lst)
 (list-fn (rest lst))]))

inc-list

;; inc-list : ListofInt -> ListofInt
;; increments each list element by 1
(define (inc-lst lst)
 (cond
 [(empty? lst)]
 [(cons? lst) (first lst)
 (inc-lst (rest lst))]))

inc-list

(check-equal?
 (inc-list (list 1 2 3))
 (list 2 3 4))

;; inc-list : ListofInt -> ListofInt
;; increments each list element by 1
(define (inc-lst lst)
 (cond
 [(empty? lst) empty]
 [(cons? lst) (first lst)
 (inc-lst (rest lst))]))

inc-list

;; inc-list : ListofInt -> ListofInt
;; increments each list element by 1
(define (inc-lst lst)
 (cond
 [(empty? lst) empty]
 [else (add1 (first lst))
 (inc-lst (rest lst))]))

inc-list

;; inc-list : ListofInt -> ListofInt
;; increments each list element by 1
(define (inc-lst lst)
 (cond
 [(empty? lst) empty]
 [else (cons (add1 (first lst))
 (inc-lst (rest lst))]))

inc-list

big-bang

• Start:

• On a click:

;; A WorldState is … a list of balls!

Previously

Ball

ball

empty

;; next-world : WorldState -> WorldState
;; Updates position of all balls by one tick
(define (next-world w)
 (cond
 [(empty? w)]
 [else (first w)
 (next-world (rest w))]))

;; next-world : WorldState -> WorldState
;; Updates position of all balls by one tick
(define (next-world w)
 (cond
 [(empty? w) empty]
 [else (first w)
 (next-world (rest w))]))

Ball

;; next-world : WorldState -> WorldState
;; Updates position of all balls by one tick
(define (next-world w)
 (cond
 [(empty? w) empty]
 [else (next-ball (first w))
 (next-world (rest w))]))

;; next-world : WorldState -> WorldState
;; Updates position of all balls by one tick
(define (next-world w)
 (cond
 [(empty? w) empty]
 [else (cons (next-ball (first w))
 (next-world (rest w)))]))

;; next-world : ListofBall -> ListofBall
;; Updates position of all balls by one tick
(define (next-world lst)
 (cond
 [(empty? lst) empty]
 [else (cons (next-ball (first lst))
 (next-world (rest lst)))]))

;; next-world : ListofBall -> ListofBall
;; Updates position of each ball by one tick
(define (next-world lst)
 (cond
 [(empty? lst) empty]
 [else (cons (next-ball (first lst))
 (next-world (rest lst)))]))

;; inc-lst: ListofInt -> ListofInt
;; Returns list with each element incremented
(define (inc-lst lst)
 (cond
 [(empty? lst) empty]
 [else (cons (add1 (first lst))
 (inc-lst (rest lst)))]))

;; lst-fn1: (?? -> ??) Listof?? -> Listof??
;; Applies the given fn to each element of given lst

(define (inc-lst lst) (lst-fn1 add1 lst)
(define (next-world lst) (lst-fn1 next-ball lst)

(define (lst-fn1 fn lst)
 (cond
 [(empty? lst) empty]
 [else (cons (fn (first lst))
 (lst-fn1 (rest lst)))]))

;; lst-fn1: (X -> X) ListofX -> ListofX
;; Applies the given fn to each element of given lst

(define (inc-lst lst) (lst-fn1 add1 lst)
(define (next-world lst) (lst-fn1 next-ball lst)

(define (lst-fn1 fn lst)
 (cond
 [(empty? lst) empty]
 [else (cons (fn (first lst))
 (lst-fn1 (rest lst)))]))

;; lst-fn1: (X -> Y) ListofX -> ListofY
;; Applies the given fn to each element of given lst

(define (inc-lst lst) (lst-fn1 add1 lst)
(define (next-world lst) (lst-fn1 next-ball lst)

(define (lst-fn1 fn lst)
 (cond
 [(empty? lst) empty]
 [else (cons (fn (first lst))
 (lst-fn1 (rest lst)))]))

;; A ListofInt is one of
;; - empty
;; - (cons Int ListofInt)

;; A ListofBall is one of
;; - empty
;; - (cons Ball ListofBall)

;; A Listof<X> is one of
;; - empty
;; - (cons X Listof<X>)

X

Listof<Int>

Listof<Ball>

list?

;; A Posn is a
(struct posn [x y])
;; where
;; x: Integer - represents x coordinate in big-bang animation
;; y: Integer - represents y coordinate in big-bang animation

;; lst-fn1: (X -> Y) Listof<X> -> Listof<Y>
;; Applies the given fn to each element of given lst

(define (inc-lst lst) (lst-fn1 add1 lst)
(define (next-world lst) (lst-fn1 next-ball lst)

(define (lst-fn1 fn lst)
 (cond
 [(empty? lst) empty]
 [else (cons (fn (first lst))
 (lst-fn1 (rest lst)))]))

map

;; map: (X -> Y) Listof<X> -> Listof<Y>
;; Applies the given fn to each element of given lst

(define (inc-lst lst) (map add1 lst)
(define (next-world lst) (map next-ball lst)

(define (map fn lst)
 (cond
 [(empty? lst) empty]
 [else (cons (fn (first lst))
 (map (rest lst)))]))

map: (A B C … -> Z) Listof<A> Listof Listof<C> … -> Listof<Z>
;; Applies the given fn to elements (at same index) of given lsts

(check-equal? (map + (list 1 2 3) (list 4 5 6)

map

(list 5 7 9))

;; TEMPLATE for list-fn
;; list-fn : ListofInt -> ???
(define (list-fn lst)
 (cond
 [(empty? lst)]
 [(cons? lst) (first lst)
 (list-fn (rest lst))]))

Previously

;; Returns sum of list of ints
;; sum-lst: ListofInt -> Int
(define (sum-lst lst)
 (cond
 [(empty? lst) 0]
 [else (+ (first lst)
 (sum-lst (rest lst)))]))

Previously

;; render-world : ListofBall -> Image
;; Draws the given world as an image by overlaying each ball,
;; at its position, into an initially empty scene

(define (render-world lst)
 (cond
 [(empty? lst)]
 [else (first lst) (render-world (rest lst))]))

;; render-world : ListofBall -> Image
;; Draws the given world as an image by overlaying each ball,
;; at its position, into an initially empty scene

(define (render-world lst)
 (cond
 [(empty? lst) EMPTY-SCENE]
 [else (first lst) (render-world (rest lst))]))

;; render-world : ListofBall -> Image
;; Draws the given world as an image by overlaying each ball,
;; at its position, into an initially empty scene

(define (render-world lst)
 (cond
 [(empty? lst) EMPTY-SCENE]
 [else (place-ball (first lst) (render-world (rest lst)))]))

;; place-ball : Ball Image -> Image
;; Draws a ball, using its pos as the offset, into the given image
(define (place-ball b scene)
 (place-image BALLIMG (ball-x b) (ball-y b) scene))

;; render-world : ListofBall -> Image
(define (render-world lst)
 (cond
 [(empty? lst) EMPTY-SCENE]
 [else (place-ball (first lst)
 (render-world (rest lst)))]))

;; sum-lst: ListofInt -> Int
(define (sum-lst lst)
 (cond
 [(empty? lst) 0]
 [else (+ (first lst)
 (sum-lst (rest lst)))]))

(define (lst-fn2 fn initial lst)
 (cond
 [(empty? lst) initial]
 [else (fn (first lst) (lst-fn2 fn initial (rest lst)))]))

;; sum-lst: ListofInt -> Int
(define (sum-lst lst) (list-fn2 + 0 lst))
;; render-world: ListofBall-> Image
(define (render-world lst) (list-fn2 place-ball EMPTY-SCENE lst))

;; list-fn2 : (X Y -> Y) Y Listof<X> -> Y

foldr

(define (foldr fn initial lst)
 (cond
 [(empty? lst) initial]
 [else (fn (first lst) (foldr fn initial (rest lst)))]))

;; sum-lst: ListofInt -> Int
(define (sum-lst lst) (foldr + 0 lst))
;; render-world: ListofBall-> Image
(define (render-world lst) (foldr place-ball EMPTY-SCENE lst))

;; foldr: (X Y -> Y) Y Listof<X> -> Y

fn

foldr

;; foldr: (X … Y -> Y) Y Listof<X> … -> Y

(foldr + 0 (list 1 2 3)) = (1 + (2 + (3 + 0)))

(1 + (2 + (3 + 0))) = ((1 + 0) + 2) + 3)

(1 - (2 – (3 – 0))) = (((1 – 0) - 2) – 3) ???

foldl

• foldr foldl

•

(define (foldr fn initial lst)
 (cond
 [(empty? lst) initial]
 [else (fn (first lst) (foldr fn initial (rest lst)))]))

(define (foldl fn initial lst)
 (cond
 [(empty? lst)]
 [else (first lst) (foldl fn initial (rest lst)))]))

•

•

•

•

Note ListofNote

• Notes?

•

•

in-class-10-02-<Lastname>-<Firstname>.rkt

cs450f24/teams/in-class

cs450f24/in-class-10-02

• merge/pull + rebase push

https://github.com/orgs/cs450f24/teams/in-class
https://github.com/orgs/cs450f24/teams/in-class
https://github.com/orgs/cs450f24/teams/in-class

